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In this study, a Boiling Water Reactor (BWR) design was made using the Monte Carlo
(MCNPX) method. The reactor core in the designed BWR system was divided into an 8 × 8
square lattice with a constant pitch of 30.48 cm. In this study, americium (Am), which is
found in the minor actinidine (MA) of spent nuclear fuel known as nuclear waste from
existing reactors, was used as fuel with the addition of oxygen and fluorine. In this study,
AmO2 and AmF3 fuels at the rate of 0.02–0.1% were used as Americium Mixed Fuels, and
Zircaloy-2 (Zr-2), SiC, and VC were used as clad. Neutronic calculations for certain
Americium Mixed Fuels and clads were compared in the designed BWR system. In
the BWR system designed in the study; keff, neutron flux, fission energy, heating, and
depleted Amwere calculated. The three-dimensional (3-D) modeling of the designed BWR
systemwas performed by using MCNPX-2.7.0 Monte Carlo method and the ENDF/B-VII.0
nuclear data library.
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INTRODUCTION

BWR is a type of light water reactor (LWR) from the fission reactors used today. BWR uses water as a
coolant for electric energy production and fissile fuel as a fuel. Today, fission reactors generally use
235U fuel enriched with 2–5%. Current fission reactors around the world consume about 60,000 tons
of uranium per year (Doligez et al., 2017). Considering that there are nuclear reactors available in
different parts of the world, it is estimated that there will be problems with uranium supply in the
future. Nuclear reactors in the European Union produce around 2,500 tons of nuclear spent fuel per
year (The European Technical Working Group on ADS, 2001; Biarrotte et al., 2009; Bouly et al.,
2009). Nuclear spent fuel from fission reactors contains uranium (about 95 wt%), plutonium (0.9 wt
%), MA; Np, Am, and Cm (0.1 wt%), and fission products (4 wt%). Nuclear spent fuel is considered
to be a good energy source for existing reactors and is stored as nuclear waste. However, nuclear
spent fuel management is one of the major problems in the use of nuclear energy (Waris and
Sekimoto, 2001; Warin, 2007; IAEA, 2009). In order to solve this problem, this spent fuels has high
radiotoxicity should be converted into stable or short-lived isotopes by nuclear reactions (Fridstrom,
2010; Loberg, 2010; Loberg et al., 2010; Zakova and Wallenius, 2013; Kumari et al., 2020). This
situation can be created naturally or artificially, such as through human intervention (Günay, 2016).

MA, which has a low rate of nuclear fuel spent, is the most dangerous radioactive waste for public
health due to its long life and high level of radioactivity (Şahin et al., 2011). In addition, some of the
Mas, such as 242mAm (σf � 5700 barns) (Pfennig et al., 2006), and 245Cm (σf � 2,145 barns) (Pfennig
et al., 1998), have high fission cross-sections with thermal neutrons, and this makes MAs very
valuable fissile fuel alternatives for reactors. One tonne of spent nuclear fuel remaining from existing
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reactors (LWR) contains approximately 100 g of americium in
MAs (Narbutt, 2020). The isotopes of americium have half-lives
of 241Am (t1/2 � 432.2 years) (Audi et al., 2003), 242Am (t1/2 �
16 h), 242mAm (t1/2 � 141 years), and 243Am (t1/2 � 7370 years)
and 3.43 Ci/g for 241Am, 808 Ci/g for 242Am, 10.5 Ci/g for
242mAm, 0.199 Ci/g for 243Am activities (Keith et al., 2004).
For this reason, in this study, we aimed to use americium
mixed fuels to reduce the amount of long-lived and
radioactive americium in MAs.

The fuel cladding of nuclear reactors can crack as it is exposed
to the corrosive effects and stresses of the fission products. Zr-2
(98% Zr, 1.6% Sn, 0.15% Fe, 0.1% Cr, 0.05% Ni) (Nishino et al.,
1996; Masterson, 2017), SiC (48.3% Si, 51.7% C) (Sauder et al.,
2013), and VC (80.9% V, 19.1% C) were developed as fuel
cladding in LWRs to solve this undesired situation in reactor
life and energy production. Zr-2, SiC, and VC have outstanding
properties of not spreading cracks throughout the cladding,
irradiation stability, low stress levels, the ability to maintain
their mechanical properties and chemical inactivity at high
temperatures, and resistance to vapor oxidation (Williams
et al., 1996; Edsinger and Murty, 2001; Korkut et al., 2016; Jha
et al., 2019; Singh et al., 2019). In nuclear reactors, a low thermal
neutron absorption cross-section is preferred to increase energy
production. Zr-2, SiC, and VC have thermal neutron cross-
sections of 0.18 barn, 0.12 barn (Zhou and Feng, 2018), and
5.1 barn (Finley et al., 1960), respectively.

Experimental and theoretical studies have been conducted on
nuclear reactor core and fuel assembly for nearly 50 years. In
recent years, studies have focused especially on the recycling of
MAs (OECD-NEA, 2013). Maldonado et al. (2010) investigated
MA as burnable poison using americium and UO2 in the BWR
fuel assembly. François et al. (2011) suggested a MOX fuel in
which all fuel pins contained MA and plutonium in the BWR fuel
groups. Masumi et al. (1995) suggested the use of a Mixed oxide
(MOX) fuel assembly with MA in BWR.

The reuse of long-life MAs as a MOX fuel (such as NpO2,
AmO2, and CmO2) and fluoride compounds (such as NpF3,
AmF3, and CmF3) in nuclear reactors reduces both energy
production and the burden of keeping them for many years

(IAEA, 2009; Lu et al., 2013; OECD-NEA, 2015; Van Rooijen
et al., 2015; Dolan, 2017; Vigier et al., 2018). Technically, AmO2 is
used as a source for alpha particles in a typical smoke detector
(Kostecka, 2008). MOX and fluoride compound fuels provide
cladding concepts compatible with cladding (such as SiC) (Dolan,
2017). In this study, AmO2 and AmF3 fuels were used in the
ranges of 0.02–0.1% as americiummixed fuels, and Zr-2, SiC, and
VC were used as clad. In this study, neutronic calculations were
made as keff, neutron flux, fission energy, heating, and depleted
Am. The aim of this study is to investigate the effects of
americium mixed fuels and clads on neutronic calculations in
the designed BWR system. In the present study, the MCNPX-
2.7.0 Monte Carlo method and the ENDF/B-VII.0 nuclear data
library were used for 3-D numerical calculations in the designed
BWR system.

MATERIALS AND METHODS

Geometry Description
In this study, parameters of the Peach Bottom-2 nuclear power
plant (Solis et al., 2001) were used in this BWR model. The
designed BWR system is a cylinder, and the radius of the cylinder
is 264.08 cm. The total active core height is 365.76 cm. The
reactor core was divided into the square lattice 8 × 8 type
with a constant pitch of 30.48 cm. The core was surrounded
by the reflector, which was graphite. The outboard side of the
reflector was surrounded by SS316LN ferritic steel with a width of
5 cm. The core design of the designed BWR system in this study is
shown in Figure 1.

The core consists of 185 fuel assemblies surrounded by
approximately 40 reflector assemblies. Every square lattice for

FIGURE 1 | The core design of the designed BWR system in MCNPX.

FIGURE 2 | The square lattice in the core of the designed BWR system in
MCNPX.
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the fuel rods was separated into four small square zones with a
size of 13.40612 cm. Every small square zone was divided into the
small square lattices 7 × 7 type with a constant pitch of
1.94084 cm. The square lattice (fuel assembly) in the core of
the designed BWR system is shown in Figure 2.

It was put fuel pins in cylinder shape into the small square
lattices. The fuel pins were created from the fuel rod, gap, and
clad. It was made the fuel rod radius 0.60579 cm and the clad
radius 0.71501 cm in the fuel pins. The gap had a width of
0.01524 cm in between the fuel rod and the clad. The pin cell
geometry in the small square lattice of the designed BWR system
is shown in Figure 3 (Günay et al., 2015).

A total of 49 fuel rods were placed inside every small square
lattice with 196 fuel rods inside every square lattice. Thus, 36,260
fuel rods were put into the designed BWR system. The control
rods provided reactivity control was put inside the cruciform in
between four of the small square lattices. The blade radius of the
control rod was 0.39624 cm, and the blade half length was
11.98626 cm. The absorber pins were made in cylinder shape
into the cruciform (Figure 2). The absorber pins were used with a
0.23876 cm radius. A total of 185 cruciforms were used in the
designed BWR system. In every cruciform, 84 absorber pins were
used (21 per wing). Thus, 15,540 absorber pins were used in the
designed BWR system.

Around 0.02–0.1% AmO2 and AmF3 was used in the fuel rods,
and Zr-2, SiC, and VC were used as the clad. In the cruciform,
Type-304 stainless steel was used as the structural material. H2O
was used as a coolant in the designed BWR system. The control
rods were filled by B4C.

Numerical Calculations
Nuclear data for reactor simulation are required. Nuclear data are
obtained by experimental, theoretical, and Evaluated Nuclear
Data Files (ENDFs). ENDF has been formed by compiling
experimental data and calculations from different countries.
ENDF is used with model calculations to make the reactor
simulation (Şarer et al., 2009; Günay, 2013; Günay, 2015;
Kabach et al., 2019; Wooten, 2019; Wan et al., 2020).

The Monte Carlo method (Pelowitz, 2011; Pelowitz et al.,
2011) was developed for reactor simulation and modeling, many
physical problems of deterministic methods, and three-
dimensional complex configurations of materials. The MCNPX
(MCNP eXtended) (Waters, 2002) transport code from the
Monte Carlo method examines neutron, proton, and
photonuclear interactions using cross-section libraries from
ENDF/B. The process of neutron transport should be

investigated to determine the neutron distribution in the
reactor. For this purpose, the Boltzmann equation is
commonly used for neutronic calculations in a reactor.

1
ν

z

zt
ϕ(r,Ω, E, t) + Ω.∇ϕ(r, Ω, E, t)

+∑ t(r, E, t)ϕ(r, Ω, E, t)
� q(r, Ω, E, t) (1)

1
]

z
zt ϕ(r,Ω, E, t) � Change of neutron flux in unit time,

Ω.∇ϕ(r, Ω, E, t) � Neutron loss because of convection,
∑ t(r, E, t)ϕ(r, Ω, E, t) � Neutron loss because of nuclear
reactions.

Terms in Eq. 1 for q(r, Ω, E, t) can be defined as follows
[Eq. 2]:

q(r,Ω, E, t) � ∫∞

0
dE′∫4π

dΩ′∑(r,Ω′→ EΩ′→Ω)ϕ(rΩ,E′, t′)
+ S(r,Ω, E, t)

(2)

∫∞
0
dE’ ∫ 4πdΩ∑ (r, E’ → E, Ω’ →Ω)ϕ(r, Ω’, E’, t) �

Contribution of neutrons on neutron flux due to scattering.
S(r, Ω, E, t) � Contribution of neutron source independent
on the neutron flux

In this study, the 3-D modeling of the reactor core and fuel
assembly into the designed BWR system was performed by using
the ENDF/B-VII.0 (Chadwick et al., 2006) nuclear data library
and MCNPX-2.7.0 Monte Carlo method to solve the Boltzmann
Eqs 1, 2. The BWR system was designed with MCNPX-2.7.0 and
was operated for 2000 MWth thermal power output and 1.105

particle history.

3 RESULTS

In this study, keff, neutron flux, fission energy, heating, and
depleted Am neutronic values were calculated by using Zr-2,
SiC, and VC as clad and AmO2 and AmF3 at the rate of 0.02–0.1%
as fuel.

The effective neutron multiplication factor (keff) is important
for the critical status effective in determining the contribution of
nuclear reactions to neutron multiplication of a nuclear reactor.
keff [Eq. 3] is defined as the net increase in the number of
neutrons from one generation to the next. keff � 1 is the
desired critical operating mode of a reactor. If keff <1, the
number of neutrons will decrease exponentially. If keff >1, the
number of neutrons will increase exponentially, which will be
dangerous to operate the reactor (Duderstadt and Hamilton,
1976; Ouahdani et al., 2018).

keff � (number of neutrons generated in the next generation)
(number of neutrons generated in a generation)

(3)

Figure 4 shows the keff value for AmO2, AmF3 fuels at
0.02–0.1% rates, and Zr-2, SiC, VC clads. Figure 4 shows that
the keff value increases with the increase in the rates of AmO2 and

FIGURE 3 | Pin cell geometry of the designed BWR system in MCNPX.
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AmF3 fuels. SiC (σ � 0.12 b) contributes more to keff as it captures
less thermal neutrons than Zr-2 (σ � 0.18 b) and VC (σ � 5.1
barn). In a nuclear reactor, keff must be greater than 1 for its
power to reach its maximum value from zero during start-up
(Şahin and Şarer, 2019). But, the effective multiplication constant
must keff ≤1 with the help of control rods throughout the
operation of the reactor to avoid the critical accident. As a
result, it is seen that this reactor design for 0.08–0.1% AmO2

fuel, SiC clad (keff � 0.918–1.037), and Zr-2 clad (keff �
0.914–1.031) reaches the desired critical operating mode. It is
also seen that keff is very small in VC clad for AmO2 and AmF3
fuels at 0.02–0.1% rates.

Figure 5 shows the neutron flux value for AmO2 and AmF3
fuels at 0.02–0.1% rates and Zr-2, SiC, and VC clads. Neutron flux
distribution for a nuclear reactor is an effective parameter for
neutronic calculations as fission energy, heating, and fissile fuel
production. Neutron flux is the total length traveled by neutrons
per unit time and volume (Stamm’ler and Abbate, 1983). In this
study, in the BWR system simulation designed with MCNPX-
2.7.0, which F4 tally was used to calculate the neutron flux
distribution by track-length estimates of the total cell flux.
Figure 5 shows that the neutron flux value increases with the
increase in the rates of AmO2 and AmF3 fuels. Figure 5 (for SiC
captures less thermal neutrons than Zr-2 and VC) shows the
highest neutron flux (1.7609.1013 n/cm2.s) result from 0.1%
AmO2 fuel for SiC clad and the lowest neutron flux
(1.1564.1013 n/cm2.s) result from 0.02% AmF3 fuel for VC clad.

Figure 6 shows the fission energy values for AmO2 and AmF3
fuels at 0.02–0.1% rates and Zr-2, SiC, and VC clads in the
designed BWR system. Fission energy released by the fission
reaction consists of various energy modes, such as kinetic energy
from fission products and fission neutrons, fast gamma rays, and
energy from subsequent neutron capture. The fission energy in
this regard is an important parameter for neutronic calculations
of a nuclear reactor (Günay and Kasap, 2014; Liu et al., 2019). In
this study, the F7 tally was used to calculate fission energy in the
BWR system designed with MCNPX-2.7.0. Figure 6 shows that
the fission energy value increases with the increase in the rates of
AmO2 and AmF3 fuels. In addition, since the thermal neutron
cross-section of SiC is less than Zr-2 and VC, more thermal
neutrons in SiC contributed to fission energy production. As a
result, it was seen in Figure 6 that the highest fission energy
(60.32 MeV/n) from 0.1% AmO2 fuel for SiC clad and the lowest
fission energy (5.78 MeV/n) from 0.02% AmF3 fuel for VC clad.

Figure 7 shows the heating value in the relevant regions of the
designed BWR system for the rates of AmO2 and AmF3 fuels, and

FIGURE 4 | The keff values for Zr-2, SiC, and VC clads, the fuel
components AmO2 and AmF3 in the BWR system.

FIGURE 5 | The neutron flux values for Zr-2, SiC, and VC clads, the fuel
components AmO2 and AmF3 in the BWR system.

FIGURE 6 | The fission energy values for Zr-2, SiC, and VC clads, the fuel
components AmO2 and AmF3 in the BWR system.
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Zr-2, SiC, and VC clads. In addition, Table 1 shows the integrated
heating for Zr-2, SiC, and VC clads, the fuel components AmO2

and AmF3 in the BWR system. The F6 tally was used to calculate
the heating by track-length estimates of the total cell heating, in
this BWR system. Heating is produced through neutron flux,
fission, and other reactions. Most of the fission energy released in
the fuel region of a nuclear reactor turns into heating. Therefore,
the neutron flux in the fuel region is more intense than the other
regions for fission reaction occurs in the americium-mixed fuel
rods in the fuel region of the designed BWR system. Hence,
Figure 7 shows that the heating value in the fuel region is higher
than the other regions. It was seen in Figure 7 that the heating
value increased with the increase of fuel rates in the fuel region,
and the AmO2 heating value was higher than AmF3 for Zr-2, SiC,
and VC clads. In Figure 7 for the fuel region, it is seen that the
highest contribution to heating comes from 0.1% AmO2 with
values of 8.0392 Watt/gr for Zr-2, 8.0782 Watt/gr for SiC, and
5.0597 Watt/gr for VC, while the lowest contribution to heating
comes from 0.02% AmF3 with values of 1.5815 Watt/gr for Zr-2,
1.5938Watt/gr for SiC and 0.7738Watt/gr for VC. As a result, the
highest heating value in the fuel region was obtained from 0.1%
AmO2 fuel content and SiC clad. A small heat release will occur
through neutron and c-ray radiation in the coolant around the

fuel rods (Şarer et al., 2013; Şahin et al., 2016). Figure 7 shows that
the heating value in the coolant region (water) around the fuel
rods increased slightly with the increase of fuel rates. When this
increase is examined for the water region in Figure 7, we can see
that the highest contribution (0.2614 Watt/gr) to heating comes
from 0.1% AmO2 and SiC clad, and the lowest contribution
(0.2539 Watt/gr) comes from 0.02% AmF3 and VC clad. In
Figure 7, it is seen that the heating values in the clad and
cruciform region decreased with the increase of fuel rates for
Zr-2, SiC, and VC clads. It was seen in Figure 7 that the greatest
contribution to the heating value comes from the fuel region and
the smallest contribution comes from the clad region. It was
observed in Table 1 that the integrated heating value increased
due to the increase in the fission reaction with increasing fuel
rates for Zr-2, SiC, and VC clads. It was seen in Table 1 that the
heating values for Zr-2 and SiC clads of AmO2 fuel and heating
values for Zr-2 and SiC clads of AmF3 fuel are similar results
because of the similar thermal neutron cross sections of Zr-2 and
SiC clads. But VC contributes less to the integrated heating value
(both AmO2 and AmF3 fuel), as it captures more thermal
neutrons than Zr-2 and SiC. As a result, it was seen in
Table 1 that the smallest contribution to the integrated
heating value comes from 0.02% AmF3 fuel for VC clad with
1.113 Watt/gr and the greatest contribution to the integrated
heating value comes from 0.1% AmO2 fuel for SiC clad with 8.428
Watt/gr.

Figure 8 shows the amount of depleted Am for AmO2 and
AmF3 fuels in 0.02–0.1% rates and Zr-2, SiC, and VC clads in the
designed BWR system. Figure 8 shows that the depleted Am value
increases with the increase in the rates of AmO2 and AmF3 fuels for
Zr-2, SiC, and VC clads. In Figure 8 is seen that the amount of
depleted Am is the highest for 0.1% AmO2 and AmF3 fuels and the
lowest for 0.02% AmO2 and AmF3 fuels. The thermal neutron

FIGURE 7 | The contribution of each zone to the heating for Zr-2, SiC,
and VC clads, the fuel components AmO2 and AmF3 ( 0.02%, 0.04%, 0.06%,
0.08%,0.1%) in the BWR system.

TABLE 1 | The integrated heating (Watt/gr) for Zr-2, SiC, and VC clads, the fuel
components AmO2 and AmF3 in the BWR system.

moles % Zr-2 SiC VC

AmO2 AmF3 AmO2 AmF3 AmO2 AmF3

0.02 3.041 1.966 3.069 1.985 1.683 1.113
0.04 4.965 3.275 4.978 3.289 2.833 1.813
0.06 6.419 4.354 6.434 4.358 3.818 2.453
0.08 7.509 5.289 7.523 5.298 4.649 3.043
0.1 8.411 6.060 8.428 6.073 5.392 3.571

FIGURE 8 | The depleted Am values for Zr-2, SiC, and VC clads, the fuel
components AmO2 and AmF3 ( 0.02%, 0.04%, 0.06%, 0.08%, 0.1%) in the
BWR system (the red color indicates the initial Am amount before the fuel is
discharged; the black, green and blue colors indicate the depleted Am
amount after the fuel is discharged for the clads).
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cross-section of SiC is less than Zr-2 and VC. Thus, when using SiC
cladding, more thermal neutron contributes to the amount of
depleted Am. As a result, it was seen in Figure 8 that the
highest depleted Am (0.939 gr) from 0.1% AmO2 fuel for SiC
clad and the lowest depleted Am (0.059 gr) from 0.02% AmF3 fuel
for VC clad after the fuel was discharged.

DISCUSSION

In this study, a BWR system in 8 × 8 type square lattice was
designed by using MCNPX-2.7.0 Monte Carlo method for
modeling, ENDF/B-VII.0 nuclear data library for neutronic
calculations, AmO2 and AmF3 for fuel rods, Zr-2, SiC, and
VC for clad. Neutronic calculations such as keff, neutron flux,
fission energy, heating, and depleted Am were made for
0.02–0.1% AmO2 andAmF3 fuels and Zr-2, SiC, and VC clads.

In the study, it was observed that keff, neutron flux, fission
energy, heating, and depleted Am values increased with the
increasing rates of Am mixed fuels in Zr-2, SiC, and VC clads.
It was found that neutronic results calculated with AmO 2 fuel
and SiC clad were higher than AmF3 fuel and Zr-2, VC clads. As a

conclusion, considering the neutronic results obtained in this
study, it is recommended to use AmO2 fuel and SiC clad in BWR
reactor models.
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