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In the context of smart grids, the need for forecasts of the power output of small-scale

photovoltaic (PV) arrays increases as control processes such as the management of

flexibilities in the distribution grid gain importance. However, there is often only very

little knowledge about the PV systems installed: even fundamental system parameters

such as panel orientation, the number of panels and their type, or time series data of

past PV system performance are usually unknown to the grid operator. In the past,

only forecasting models that attempted to account for cause-and-effect chains existed;

nowadays, also data-driven methods that attempt to recognize patterns in past behavior

are available. Choosing between physics-based or data-driven forecast methods

requires knowledge about the typical forecast quality as well as the requirements that

each approach entails. In this contribution, the achieved forecast quality for a typical

scenario (day-ahead, based on numerical weather predictions [NWP]) is evaluated for

one physics-based as well as five different data-driven forecast methods for a year at

the same site in south-western Germany. Namely, feed-forward neural networks (FFNN),

long short-term memory (LSTM) networks, random forest, bagging and boosting are

investigated. Additionally, the forecast quality of the weather forecast is analyzed for key

quantities. All evaluated PV forecast methods showed comparable performance; based

on concise descriptions of the forecast approaches, advantages and disadvantages

of each are discussed. The approaches are viable even though the forecasts regularly

differ significantly from the observed behavior; the residual analysis performed offers a

qualitative insight into the achievable forecast quality in a typical real-world scenario.

Keywords: PV forecasting, forecast quality, numerical weather prediction, smart grid, PV modeling, machine

learning

1. INTRODUCTION

Applications for forecasting the power produced by photovoltaic (PV) systems include the
prediction of possible overload situations in the grid and the planning of corresponding
countermeasures such as flexibility management, as well as the local optimization of energy
consumption in a nanogrid.

With an increasing percentage of houses that feature small-size PV systems and the possibility of
local (own) consumption, the need for reliable power forecasts to be used in subsequent processes
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also increases: Kraiczy et al. (2019) outline applications of
PV forecasting in distribution system operation and list
requirements that these would entail. The authors expect an
increasing demand for PV forecasts and list day-ahead forecasts
for congestion management as one of the major use cases.
However, they also acknowledge that the lack of information
about installed systems is a dominant characteristic for small-
scale PV systems at the distribution level, which, in sum, provide
far more power than large-scale PV systems that are required to
provide information (Kraiczy et al., 2019, section 3).

Roughly speaking, there are two approaches to creating
models of PV systems: physics-based methods attempt to model
the system’s behavior by physical equations and causal relations,
whereas data-driven methods attempt to identify patterns in
meteorological and power output data to create predictions.
Hybrid methods that attempt to combine the advantages of
physics-based and data-driven methods exist, as well (for
example Massucco et al., 2019).

Physics-based PV performance models can be parameterized
by a small set of quantities that exist in the real world and
can thus be measured or taken from data sheets. Typically,
a model is valid for a whole class of similar systems—
a parameter set defines a specific model instance, but the
underlying system of equations (the model) stays the same.
Consequently, no power measurements are necessary to create
forecasts for a new site. This means that this approach can be
scaled to provide forecasts for many systems rapidly, and that
forecasts for systems that do not exist in reality (yet) can also
be created.

On the other hand, data-driven approaches such as neural
networks require large amounts of historical power output
data as well as historical weather forecasts. Obtaining such
data often proves to be difficult for both technical as well
as organizational reasons, for example concerns about the
protection of privacy rights. However, forecast models can be
created without knowledge about the system’s technical details as
long as the plausibility of results can be assessed.

Both approaches rely on weather forecasts as an input to
the model. Typically, the irradiance in the horizontal plane and
the air temperature are required inputs. Possibly, forecasts for
wind speed, cloud cover, snow, and other quantities could also
be required.

In this paper, the question “how do physics-based/data-driven
PV system performance modeling approaches compare in a
typical real-life scenario?” is answered by comparing one physics-
based PV performance model and several data-driven forecast
methods with respect to their performance, but also additional
criteria such as the prerequisites for their usage. By “typical
real-life scenario,” we wish to summarize the context: day-
ahead forecasts based on numerical weather prediction (NWP)
forecasts with only little knowledge about the PV system itself.

Similar work is, for example, reported by Ogliari et al. (2017),
Richter et al. (2015, section 3.2). Ogliari et al. (2017) compared
a hybrid model based on artificial neural networks to a three-
parameter diode model by using the power measurements of a
single PV module (245 Wp) and weather forecasts provided at
11 a.m. on the previous day and also investigated the effects of

different amounts of training data and different training methods
on the results. Their analysis is predominantly based on the
normalized mean absolute error (nMAE).

In contrast, the comparison presented in this paper is based on
an analysis of the day-ahead forecast performance for an 82 kWp-
PV system installed in south-western Germany for the entire year
2019 using the weather forecasts created at 9 p.m. UTC for the
following day. The analysis follows best practices suggested in the
literature and comprises qualitative and quantitative assessments
based on residual analysis and selected error metrics, as described
in section 2.

The models for which the forecast quality is evaluated are
described in section 3. Since the uncertainty of the weather
forecast represents a major source of error (Richter et al., 2015,
section 6), an analysis of the achieved forecast quality at a nearby
weather station for key quantities is included in section 4.1. The
primary use of the results of the performance analysis, shown in
section 4.2, is the ability to quantify the uncertainty of a forecast
as described in section 5.1. The conclusions drawn from the
analysis are stated in section 5.2.

2. METHOD

There are many sources of uncertainty both when creating
PV forecasts as well as when analyzing the forecast’s quality
by comparison to measurement data. In their review of
these uncertainties, Richter et al. (2015) identify three groups:
uncertainties with respect to the measurement or estimation of
the solar resource, uncertainties in PVmodeling, and other “field-
related uncertainties.” They express the individual uncertainties
in terms of the normalized root mean square error (nRMSE) and
calculate the overall uncertainty by means of error propagation.
When “using state-of-the-art models”(Richter et al., 2015, section
4) to calculate the generated energy, the authors arrive at an
estimated uncertainty of±6–±8%.

Despite this number can be useful for planning, operations,
and management of PV systems, a more detailed analysis
is required when attempting to understand and compare
the characteristics of different forecast methods. Furthermore,
Dobreva et al. (2020, p. 135) point out that the RMSE is sensitive
to outliers, scale-dependent unless normalized, and lacking a
“criterion indicating whether the deviation of the model is
unacceptably large or reasonably small.”

In this section, the overall process for evaluating the forecast
performance of the use case under investigation is outlined by
explaining the graphical residual analysis applied, summarizing
the metrics used, stating the equations for applying the gained
information to add uncertainty information to a newly created
forecast, and describing the data sets upon which the analysis
was performed.

2.1. Performance Evaluation
At the start of the analysis, PV performance forecasts, boundary
conditions, measurement values, and residuals (“forecast minus
measurement”) were saved in a time series database (TSDB) for
the entire time frame under investigation.
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Then, different analyses were performed as suggested by
Stein et al. (2010) as a “standardized approach to PV system
performance model validation.” Stein et al. (2010) focused on the
use of their approach for model validation and improvement, and
thus stated that environment conditions measured as accurately
as possible should be used as model input. However, subsequent
processes “see” the overall forecast including the uncertainty
of the weather forecast, therefore the suggested analyses were
applied to the overall forecast as well.

First, measurements, forecasts, residuals, and characteristic
values per day were plotted over time to allow for an interactive
exploration of the data set and to identify possible (seasonal)
trends or sudden changes. Best, worst and average forecast
performances per day were identified to show and characterize
the range of achieved forecast quality. Three days in winter were
removed from the analysis because the system was obviously
covered in snow; throughout the year, there are 11 more days that
were removed from the analysis because there was no weather
data for technical reasons.

Then, scatter plots of forecast and measurement over
measured quantities were created. These plots indicate the
forecast’s variance, show outliers in the data set, and could also
indicate systematic errors such as consistent forecast errors due
to panel aging or shadowing.

For a good model that describes the relevant aspects of a
system with the necessary accuracy and without any systematical
errors, the residuals are expected to follow a normal distribution
(page 3 in Stein et al., 2010; Dobreva et al., 2020, section
2.1). Therefore, a normal distribution with the same standard
deviation σ as the residuals and an expected value µ of zero
was plotted on top of a histogram of the residuals as a form of
normality test. For proper scaling, a whole-number fraction of
the standard deviation was chosen as bin size for the histogram
and the probability density function of the normal distribution
wasmultiplied by a scaling factor as shown in Equation (1), where
Ns represents the total number of residuals, and nb/σ denotes the
number of bins per standard deviation.

PDF =
σNs

nb/σ
×

1

σ
√
2π

e
− 1

2

(

x−µ
σ

)2

(1)

In addition to the qualitative insight that the residual analysis
provides, a quantitative metric to assess the overall performance
in terms of a number that allows ranking of different models is
desirable. Ideally, this metric should be scale independent and
robust, allow the comparison of different models at the same
site and at different sites, and accurately represent the quality of
the forecast.

The metrics s (Equation 2) and mm (Equation 3) proposed
by Dobreva et al. (2020) fulfill these requirements and are
consequently used in this work. In the defining equations, Pi
represents the set of predicted values and Mi the corresponding
measurements; r denotes the Pearson correlation coefficient
(compare Dobreva et al., 2020, Appendix A.1).

s =
√

2(1− r) (2)

TABLE 1 | Basic properties of the metrics s and mm.

Metric Range Perfect match Chaotic Opposite

s ∈ [0, 2] 0
√
2 2

mm ∈ [0, 1] 1 0 –

mm =
∑n

i=1min(Pi,Mi)
∑n

i=1 max(Pi,Mi)
(3)

Since s emphasizes the similarity of the form of measured and
forecasted values and is independent of their magnitude, mm as
a metric of how well the magnitude of values is reproduced is
needed as well. Table 1 summarizes the properties of s andmm.

As an example of how the proposed analysis looks like,
consider the validation results of the physics-based PV-
performance model described in section 3.1 against parts of
the “New Data Set for Validating PV Module Performance
Models” published by Marion et al. (2014): to ensure that the
model equations were correctly implemented and to verify the
general validity of the model, a model instance representing the
HIT05667-module installed in Eugene/Oregon from December
20, 2012 through January 20, 2014 was created.

First, simulation results of this model instance using
measured diffuse horizontal and direct horizontal (calculated
as difference between global and diffuse) irradiance as well as
ambient temperature as boundary conditions were compared
to measurements for a single, perfectly sunny day (2013-05-
03), as shown in Figure 1A. Measurements are shown in dark
gray and the forecast in blue. For this site, the model slightly
overestimates the power output in the morning and slightly
underestimates the module’s performance in the early morning,
around noon, and in the late evening. Nonetheless, a good
agreement between forecast and measurements can be achieved
with only five parameters (location, azimuth and tilt angle,
efficiency at reference conditions, and total area).

For the time period between March 15, 2013 and June 25,
2013, a scatter plot of forecast against measured values and a
histogram of the residuals were created (Figure 1B). It confirms
the general validity of the model as well as the slight deviations
in the form of the power curve already seen in Figure 1A. About
43% of the 13,875 calculated residuals fall in the bin from−5 to 0
W; 89% of the forecast values differ from the measurement by no
more than−10 to+5 W.

The metrics confirm a very good match (s = 0.07,
mm = 0.95) and there are no apparent issues. It is thus
concluded that the implemented model represents the power
output of a PV plant accurately enough to use it for creating PV
performance forecasts.

2.2. Adding Uncertainty Information to
Forecasts
Visualizing a forecast over time as a single line implies exactness;
the inherent uncertainty of the forecast and its confidence
level(s) are not shown. Therefore, such visualizations are
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FIGURE 1 | Comparison of measurements and the forecast created using the physics-based model for the HIT05667-module in Eugene/Oregon by means of a run

plot for May 5, 2013 (A) and scatter plot and histogram of residuals for three and a half months (March 15, 2013–June 25, 2013, B).

incomplete at best and misleading at worst, resulting in frequent
misinterpretations (Toet et al., 2016).

In order to accurately convey the inherent uncertainty of a
forecast and thereby increase the potential value it has to a user,
the information collected on the forecast accuracy in the past
was extrapolated and applied to newly created forecasts based on
the assumption that the distribution of residuals in the future is
similar to their distribution in the past.

This extrapolation is based on the past distribution of the
relative error ei = Pi−Mi

Mi
, evaluated at each time instant i, in terms

of the 25 and 75% quartiles Q1 and Q3. Equations (4b) and (4c)
are used to calculate the extent of the confidence band for the 50%
confidence level.

cband75%,upper = min

[(

1

1+ O1
∗ forecast

)

, Pmax

]

(4a)

cband50%,upper = min

[(

1

1+ Q1
∗ forecast

)

, Pmax

]

(4b)

cband50%,lower = max

[(

1

1+ Q3
∗ forecast

)

, 0

]

(4c)

cband75%,lower = max

[(

1

1+ O7
∗ forecast

)

, 0

]

(4d)

Their interpretation is as follows: 50% of the observations
exhibited a relative forecast error ei between Q1 and Q3. If
ei is positive, it means that the forecast overestimated the
quantity; if it is negative, the quantity was underestimated.
Consequently, the quantity will be greater than the forecast
with the same frequency that the forecast underestimated the
quantity in the past; the upper extent of the confidence band
is thus defined by Q1. Symmetrically, the quantity is expected
to be smaller than the forecast with the same frequency the
forecast overestimated the quantity; meaning that the lower
extent of the confidence band is defined by Q3. Combined, the
quantity is expected to fall in the resulting confidence band
with a likelihood of 50%. The same argument applies for the
calculation of the 75% confidence level based on the 12.5 and
87.5% octiles O1 and O7, as shown in Equations (4a) and (4d).
For obvious reasons, the confidence band is limited by the
installed maximum power of the PV system at hand and 0
W, respectively.

Frontiers in Energy Research | www.frontiersin.org 4 May 2021 | Volume 9 | Article 639346

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Stüber et al. Physics-Based/Data-Driven PV Forecast Quality

When comparing PV performance forecasts to power
measurements for several days, it can be seen that the forecast
quality differs depending on the environmental conditions:
forecasts tend to be best on perfectly sunny days and worst on
days with highly varying conditions; absolute errors are obviously
largest around noon; etc.

In order to account for this and improve the accuracy of the
confidence band, it is thus desirable to clustermodel performance
depending on the environmental conditions with the aim of
identifying conditions for which similar forecast performance
was achieved. Candidate variables for clustering include angle
of incidence and time of the day; clearness or clear sky indices;
and more elaborate estimation schemes of irradiance variability
as proposed by Schroedter-Homscheidt et al. (2018).

For this work, the instantaneous clear sky index 1 −
kc (Equation 5) based on the forecasts for global horizontal
irradiance and the calculated clear sky irradiance was selected for
clustering forecast performance. Reasons for this are that unlike
time of the day or angle of incidence, it does not hide seasonal or
daily effects; in contrast to cloud cover, it is available in the same
temporal resolution as irradiance forecasts; and its calculation
is much less involved than the classification scheme suggested
by Schroedter-Homscheidt et al. (2018). For calculation of the
clear sky irradiance irrcs,ghi, the algorithm suggested by Ineichen
and Perez (2002) in its implementation in version 0.7.2 of pvlib
(Holmgren et al., 2018) was used.

1− kc =

{

NaN if irrcs,ghi < 10

1− irrglobal
irrcs,ghi

otherwise
(5)

The value of 1 − kc is 0 for perfectly sunny conditions and 1 for
total cloud cover. Negative values for 1− kc are possible if clouds
that are still in sunlight after the sun has sunk below the horizon
increase the brightness beyond the level that would have been
present had there been no clouds. In order to avoid unphysical
very large negative values, 1 − kc is set to NaN if the clear sky
irradiance is below 10 W/m2.

2.3. Data Sets
There were three data sets available, which enabled the analysis
of the forecast quality.

First, power measurements taken in a 15-min interval of
two PV plants located in Saarlouis were provided by the
Saarlouis utility company. In addition to the measurement data,
information about themodules used, their total number, the exact
location, and their orientation and tilt angles were provided.

Second, measured climate data and the forecast runs of the
COSMO-D2 numerical weather prediction model were available
since February 2, 2018. Since 2017, the German National
Meteorological Service (abbreviated DWD for “Deutscher
Wetterdienst”) is required by law to provide most of its data
as open data1. This includes both climate data measured at
many weather stations as well as the results of different forecast
models. Of these forecast models, the so-called COSMO-D2

1https://www.dwd.de/EN/ourservices/opendata/opendata.html

numerical weather prediction model2 provides the highest
temporal and spatial resolution, but also the lowest forecast
horizon. Specifically, forecasts for the next 27 h with a temporal
resolution of 60 min (15 min for some quantities such as
irradiance; +45 h at 3 o’clock UTC) are provided every 3 h. The
grid spans Germany and some neighboring areas with a spatial
resolution of approximately 2.2 km.

For creating the forecasts using the physics-based PV array
performance model (section 3.1), the forecasts for direct and
diffuse irradiance in the horizontal plane; air temperature at 2
m above ground; and wind speed at 10 m above ground at the
grid point closest to the site of interest were used. For creation
of the data-driven forecasts, the proprietary SolarForecast-API
provided by Meteotest3 was used instead.

3. MODELING

The PV system under investigation consists of 87 modules with
a total surface area of 127 m2, tilted at 17◦ and oriented toward
east, and 268 modules tilted at 30◦ and oriented toward south,
with a surface area of 391 m2. Data sheets state an efficiency of
17% under reference conditions for both module types installed.
The system is in operation since 2010 and there is no shadowing
throughout the entire day.

Below, it is summarized how this system is represented
using the different modeling approaches. Additionally, their
requirements with regard to input data, model creation, and
model instantiation are outlined.

3.1. PV Array Performance Model
The physics-based PV array performance model under
investigation calculates the power trajectory over time based
on direct and diffuse irradiance in the horizontal plane, air
temperature and wind speed, and the sun’s position relative to
the system’s location.

Below, the major effects taken into account and the equations
used are summarized, but a full description of the model is
beyond the scope of this article. Refer to the repository on
GitHub4 for details. Note that the model does not constitute an
original contribution; it is merely an implementation of existing
models in the Modelica language and largely based on Jonas et al.
(2018) and the description of the modeling steps provided by the
Performance Modeling Collaborative (2020).

To summarize, the model calculates the power generated by
the PV array as the product of the global irradiance in the plane of
array (POA), the total area of the PV panels, the efficiency of the
PV module under reference conditions, and a factor accounting
for the varying efficiency of the conversion depending on the loss
effects of incidence angle, irradiance, and PV cell temperature.
The effects of DC and mismatch losses, DC/DC MPPT, snow
cover, shading, and soiling or aging effects are not represented in

2https://www.dwd.de/EN/ourservices/nwp_forecast_data/nwp_forecast_data.

html
3https://meteotest.ch
4https://doi.org/10.5281/zenodo.4392848
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TABLE 2 | Parameters for the calculation of the varying efficiency factor and their

default values.

Symbol Description Default

n Refraction index of the cover glass 1.526

K Glazing extinction coefficient 4 1
m

L Glazing thickness 0.002m

a Parameter of irradiance dependency of PV efficiency −0.0000109m2

W

b Parameter of irradiance dependency of PV efficiency −0.047

c Parameter of irradiance dependency of PV efficiency −1.4

β Power temperature coefficient 0.0043 1
K

U0 Heat loss coefficient of the PV module 25 W
m2∗K

U1 Wind dependent heat loss coefficient of the PV module 6.84 W∗s
m3∗K

the model. DC/AC conversion losses are accounted for by means
of a constant efficiency factor.

The weather forecast only provides values for diffuse and
direct irradiance in the horizontal plane. Since PV modules are
typically tilted, a conversion to the plane of array is necessary.
First, the angle of incidence, the angle between the surface normal
and the sun beam, is calculated as a function of the sun’s position
relative to the system (Reda and Andreas, 2008) in terms of solar
zenith angle and solar azimuth angle and the tilt and azimuth
angle of the PV array. Second, direct and diffuse irradiance
in the horizontal plane are converted to the plane of array. A
simple geometrical formula is used for the direct irradiance, but
conversion of diffuse irradiance requires a more elaborate model.
In this case, the anisotropic model by Perez et al. (1987) is used,
which also calculates the irradiance reflected from the ground.
Finally, the global irradiance in the plane of array is the sum of
direct, diffuse, and reflected irradiance.

Reflection losses, irradiance-dependentmodule efficiency, and
temperature dependency comprise the effects accounted for by
the varying efficiency factor. The reflection losses are modeled by
a physical model for the incident angle modifier in the corrected
version presented in Performance Modeling Collaborative (2020,
section “Physical IAM Model”) and originally published by
De Soto et al. (2006, section 3). The decreased efficiency of
the module with lower global irradiance at 25◦C is modeled as
suggested by Heydenreich et al. (2008, Equation 3) and scaled
to different module temperatures as suggested in the following
equation in that paper, using the power temperature coefficient of
the PV cells. To calculate the module temperature as a function
of ambient temperature and wind speed, the model by Faiman
(2008, Equation 5) is used.

The parameters necessary for calculating the overall varying
efficiency factor as well as their default values5 are listed in
Table 2.

For analysis of the forecast quality, a model instance for both
the reference module and the system of interest were instantiated
using the parameters shown in Table 3 and the default values for
the calculation of module efficiency are shown in Table 2. The
parameter values that are not determined by the setup at the site

5Compare Jonas et al. (2019, Table 2).

TABLE 3 | Model parameters per site.

Site-Id Latitude/◦ Longitude/◦ Orientation Tilt/◦ Area/m2

eugene-hit05667 44.05 −123.07 South 44 1.26

swsls-sw 49.319986 6.746344 East 17 127

49.319986 6.746344 South 30 391

were taken from data sheets. In the remainder of the paper, the
identifier modelica is used for the physics-based parametric PV
model described in this subsection.

3.2. Data-Driven Forecast Models
Due to the non-linear and time-varying characteristics of the
PV output generation, machine learning approaches like neural
networks (Hossain and Mahmood, 2020) or ensemble learning
techniques (Ahmad et al., 2018) such as random forest are
suitable for developing models to learn and forecast the solar
power generation day-ahead and intraday based on the available
weather forecast data. The weather forecast features data, and
the real power data are provided on a 15 min interval basis.
Each plant is trained separately. The training is based on
historical weather forecasts and power productionmeasurements.
The considered meteorological features are global radiation,
diffuse and direct radiation, temperature, relative humidity,
precipitation, and wind speed. Additionally, corresponding
temporal features such as time, day, and month are also taken
into account.

The dataset is roughly partitioned into 70% training set, 10%
validation set, and 20% test set. Specifically, we use data from
2013 to 2018 for training and validation and data from 2019 as
a test set.

Figure 2 illustrates the development process of the forecasting
models based on historical weather forecasts and historical power
production measurements. The process can be summarized in
the following steps:

1. On the collection of the data follows a preprocessing step
consisting of cleansing the data, in order to detect and clean
missing data and extreme outliers in the measurements and
weather forecast, to take into account the throttling time
due to scheduled work on the PV plant, etc. At that stage,
many strategies can be employed, for example, ignoring the
extreme outliers, filling through extrapolation the gap caused
by missing data, etc. Through this preliminary analysis of the
raw data, the quality of the data set to be used is enhanced.
The following feature engineering consists of extracting from
the dataset the most relevant features that have an influence in
the forecasting. The dataset is then normalized and split into
training, validation, and test set.

2. Choose a model type (feed forward neural network, bagging
method, etc.), specify the parameters and train and validate
the defined model.

3. If the resulting model is acceptable, then evaluate with new
data (test set) and save the model for future use.
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FIGURE 2 | Flow diagram of the development process of the data-driven photovoltaic (PV) power forecasting models.

4. If not, then (a) adjust themodel-specific hyper-parameters, for
example, number of trees, size of the feature set, etc. for the
tree-based models or number of hidden layers and number of
neurons per layer for the models based on neural network and
(b) repeat the training and validation steps.

5. Further models can be developed with the same procedure.

From a technical perspective, the model implementation relies
on Python and the TensorFlow and scikit-learn frameworks, all
of which are available under free/libre and open-source licenses.

3.2.1. Approaches Based on Neural Networks

The two first data-driven forecasting models are based on neural
networks, as described as follows.

• Feed Forward Neural Networks (FFNN) (Ramsami and Oree,
2015) are characterized by unidirectional connections, from
input to output. A feed-forward coupled network represents
actually a directed acyclic graph. In this architecture, the
neurons are organized in layers. We have being developing
several models using several layers. In practice, the number
of layers varies from 4 to 5, including an input layer, an
output layer, and two or three hidden layers. In FFNNs,
each layer is full connected with the successive layer. The
input layer contains as many neurons as the size of the input
space corresponding to the time elements and meteorological
parameters, and the output layer contains a single neuron

for the forecast value. In sum, we use two hidden layers.
ReLU activation function and adam optimizer are set for
the training of the network structure. To get the forecasting
for the whole day, the results of the 96 quarter hours are
eventually concatenated.

• Long Short-Term Memory (LSTM) (Gao et al., 2019) represent
a specific kind of recurrent neural networks. They are suitable
for the processing of problems where temporal aspects or
sequences need to be explicitly considered, for example, in
language processing.

3.2.2. Approaches Based on Ensemble Machine

Learning

Ensemble machine learning refers to a supervised learning
technique based on the idea that combining a large number
of so-called weak learners results in much better performance
than the individual performance of these weak learners, as their
errors compensate each other (Ahmed Mohammed and Aung,
2016; Ahmad et al., 2018). The process consists of two steps:
(1) design and training of basic learners; (2) a combination of
the results of the basic learners to a single prediction by using
assembling techniques such as averaging, voting, and weighted
combination. When basic learners of the same type are used, the
approach is referred as homogeneous ensemble model and when
the basic learners are built of different algorithms, it is called
heterogeneous ensemble method.
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FIGURE 3 | Fusion process according to the ensemble learning principle.

• Bagging (BAG) (Choi and Hur, 2020) regressors help to
improve model performance by training in parallel each
basic learner on a random subset of the training dataset and
averaging the resulting single forecasts.

• Boosting (XGB [for Extreme Gradient Boosting]) is like bagging
but runs sequentially. The idea behind it is that each basic
learner should learn from the errors of the previous ones.

• Random Forest (RF) builds several basic learners, e.g.,
regression trees, by (1) training each single learner on a
different random subset of the available dataset (as in bagging),
(2) but also by selecting for each basic model a random
combination of the features, and (3) finally aggregating them
to get a more accurate and more robust result. As decision
and regression tree tend to overfit, RF often yields good
generalization.

We combine the five ML approaches described above to
build a final forecast by applying ensemble machine learning
techniques such as stacking or voting by averaging or even
weighted averaging. Figure 3 shows the different steps. Using
this technique of combining a small set of heterogeneous
learners generally performs better, because it helps overcome
the limitations of the individual learners by “averaging out” the
various error of the respective models (Gashler et al., 2008).
The fusion is built by a model trained from the five described
methods and realizing an ensemble learning approach as shown
in Figure 3. We implemented several fusion models. However,
in the illustrating example shown in Figures 6–8, the fusion is
based on balanced voting, which results in this case in averaging
the individual forecasts.

4. RESULTS

Next, find a characterization of the observed forecast quality for
key quantities of the weather forecast and the power output of the
PV plant under investigation in terms of the graphical analysis
and metrics outlined earlier, accompanied by a textual summary
of the findings.

4.1. Forecast Quality of the Weather
Prediction
The availability of both historical weather forecasts as well as
measured climate data enables the evaluation of the weather
forecasts’ performance. Below, said performance in the time
between summer solstice and winter solstice 2018 is evaluated
at DWD station 10704 (near Saarlouis/Germany, located at
an approximate distance of 8 km to the PV plants under
investigation) for some of the quantities that are typically used as
an input for PV performance forecasts, namely diffuse horizontal
irradiance, air temperature, and wind speed. Additionally, the
forecast quality for the global horizontal irradiance is evaluated
because it is used for calculating the instantaneous clear sky index
as outlined in section 2.2. Unfortunately, no measurements of
direct horizontal irradiance are available and the forecast quality
could therefore not be evaluated.

Scatter plots and histograms for global and diffuse horizontal
irradiance shown in Figures 4A,B, respectively, reveal a wide
spread of residuals and a tendency of the COSMO-D2-model
to underestimate global and direct irradiance. The distribution
of residuals for global horizontal irradiance is skewed toward
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FIGURE 4 | Forecast quality of the COSMO-D2 weather forecast at DWD

station 10704 from 2018-06-21 – 2018-12-21: global horizontal irradiance

(A), diffuse horizontal irradiance (B), air temperature, (C) and wind speed (D).

negative values; in other words, forecast values are typically lower
than measured values, especially for higher absolute values. The
residual ranges from 543 to 413W/m2, with amean of−62W/m2

and a standard deviation of 97 W/m2.
Forecasts for air temperature (Figure 4C) and wind speed

(Figure 4D) are much better: temperature forecasts show a
standard deviation of only 1.42 K and a maximum residual of 8
K. Forecasts for wind speed closely follow the expected normal
distribution, which has a standard deviation of 1.32 m/s. The
scatter plot indicates that higher wind speeds are much less

common than wind speeds below 10 m/s. Also, forecasts seem
to mostly underestimate higher wind speeds.

4.2. Overall Forecast Quality
Despite the general validity of the model, the uncertainty of the
weather forecasts already suggests that the comparison between
power forecast andmeasurements will show residuals that spread
widely and can occasionally become large.

In Figures 5, 6, scatter plots of forecast and measurement
over measured power and the histogram of residuals including
a normal distribution with the same standard deviation as
reference are shown for all forecast methods. Figure 7 shows
forecasts for three perfectly sunny days in June to illustrate model
deviations in absence of clouds.

For the physics-based PV array performance model, the
scatter plot shows two clearly distinguishable clusters: one in the
lower left-hand corner and one above the reference line in the
top right. The first merely is a result of the fact that even after
excluding all data points below 10W, about 43% of the measured
values fall in the bin from 10 to 9,275 W, which is the same for
all forecast methods. The second cluster indicates that the model
tends to overestimate the power produced above approximately
45 kW, which is reflected in a histogram that is clearly skewed
to the right. One possible cause for this is panel aging, as the
PV system under investigation has already been operational for
9 years in 2019.

For forecasts based on LSTM and FFNN, residuals follow
the expected normal distribution more closely, but they are
lightly skewed to the left. With the help of run plots on
sunny days, the pattern resembling a hysteresis in the scatter
plot can be interpreted: forecasts overestimate the power in
the morning, and mostly underestimate the power around
noon and in the afternoon. For higher wattages, the power
is underestimated more often than it is overestimated (more
accentuated for FFNN).

The identifier fusion denotes the forecast created by averaging
all data-driven forecast methods. The averaging results in less
widely spread residuals and a more symmetrical distribution
of the residual closely following the normal distribution. When
looking at run plots for sunny days, it becomes apparent that the
averaging logically also extends to the strengths and weaknesses,
which become less accentuated, which is good when strengths
of some models increase average performance, but bad when
weaknesses worsen average performance.

The scatter plot reveals that bagging had a tendency to
overestimate the power output for low wattages, but rarely
exceeded the measurements for high wattages above 55 kW. The
distribution is slightly skewed to the right. Run plots for sunny
days reveal that the model typically overestimates the power in
the morning, but underestimates it in the afternoon; therefore,
there is no accentuated skewedness of the histogram as both
positive and negative residuals occur with similar rates.

The forecasts based on RF and XGB both underestimated high
wattages above 50 kWmuch more often than they overestimated
them, with XGB even showing a cluster at around 60 kW,
indicating a limit of some sort. The run plots also show a
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FIGURE 5 | Forecast quality of the power forecast for site swsls-sw for 2019: physics-based (A), LSTM (B), and FFNN (C).

significant overestimation in the morning and a consistent
underestimation in the afternoon for sunny days.

Table 4 summarizes the findings of the residual analysis in
terms of the metrics s and mm. In addition to the results for
the forecasts of the power generated by the PV system, the
weather forecasts and the results of the model validation are also
included to provide additional context for interpretation of the

values of s andmm. However, remember the differences between
the different sites: for eugene-hit05667, the physics-based
model was fed with about 3 months of measured environmental
conditions to verify the validity of the model; for weather station
10704, weather forecasts of the numerical weather prediction
model (NWP) COSMO-D2 were compared for half a year; and
the forecast quality of the overall power forecast based onweather
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FIGURE 6 | Forecast quality of the power forecast for site swsls-sw for

2019: fusion (A), BAG (B), RF (C), and XGB (D).

forecasts that were created at 21 UTC on the day before is
evaluated for the year 2019 for swsls-sw.

Figure 8 combines the information presented in Figures 5, 6
and Table 4 to render a graphical comparison of the different
forecast methods. Each boxplot shows the distribution of
the residuals: The boxes show the interquartile range (IQR)
extending from Q3 to Q1, with the median value shown as
white line inside the box. The whiskers indicate all values within
1.5*IQR above or below Q1 and Q3, respectively. The circles
show values outside this range, which are considered outliers. For

ranking, the metric mm was selected due to its emphasis on the
similarity of the values’ magnitudes.

5. DISCUSSION

In the previous section, the overall forecast performance for the
AC power generated by a PV power plant was analyzed over
the course of a year by means of residual analysis and selected
metrics. Next, the results’ implications are discussed.

5.1. Post-processing
First, the gained information on the accuracy (or lack thereof)
of the forecasts in the past was used to quantify the uncertainty
of newly created forecasts based on the assumption that the
distribution of residuals remains about the same.

In Figure 9, a boxplot of the relative error for the physics-
based PV array performance model in percent is shown for
both the entire data set and each group of irradiance variability
as estimated by the instantaneous clear sky index 1 − kc. In
this figure, the whiskers extend from the octile O1 to O7; all
relative errors that fall in the first and last octile are omitted from
the graph.

Based on this information, Figure 10A shows the forecast
for June 7, 2019, amended by a confidence band indicating the
50% (darker blue) and 75% (light blue) confidence level. Here,
the confidence band is constructed from the overall relative
residual. The forecast is visualized as a dashed line in dark blue;
measurements are indicated by a line plot in dark gray. The
plot indicates that while there is a specific forecast, the actual
generated power will fall into the darker area with a likelihood of
50% and in the lighter area with a likelihood of 75%. Of course,
measurements will still fall outside the confidence band, as can be
seen in the beginning, in the early afternoon and in the evening
on this exemplary day.

Second, as shown in Figure 10B, the observed variability in
the relative error clustered by 8 bins of the clear sky index 1 − kc
was used to construct the confidence band instead, as proposed
by Meilinger et al. (2020). The symbols overlaid on the forecast
encode the group in which the forecast clear sky index falls in at
this time instant.

As a result, the confidence band narrows for groups in
which better forecast performance was observed and widens
for those with worse performance; moreover, it moves down
if the forecasts predominantly overestimated the quantity and
vice versa—as an example, consider the time before 10 a.m. in
Figure 10. Theoretically, this should increase the accuracy of
the information contained in forecast and confidence band. But,
since the forecast of 1−kc logically exhibits its own uncertainties,
it is unsure in how far this apparent improvement translates
to the real world (compare Böök and Lindfors, 2020, section
4.2).

In addition to specifying the uncertainty of a forecast,
information about the past performance could also be used
to improve the forecast itself, for example by multiplying the
forecast by 1

1+Q2
to correct a bias if there is one.

Böök and Lindfors (2020) instead suggest to adjust the forecast
by “daily sets of independent adjustment coefficients CN for
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FIGURE 7 | Forecasts and measurements for 2019-06-26 to 2019-06-28: physics-based, LSTM, and FFNN (A) as well as BAG, RF, XGB, and fusion (B).

FIGURE 8 | Boxplots of residual distribution for all methods; ranked and sorted by metric mm.

each hour N,” which are calculated from the 90th percentiles
of observed and forecasted power output in a sliding window
of 30 days before the current date. This approach can, to
some extent, compensate systematic errors not accounted for
in the model, such as shadowing, inaccurate site metadata
or systematic deviations in the environmental conditions at
the site from the corresponding NWP. However, it might
also be a viable way to further improve the forecast methods
used in this work, as all of the data-driven models showed a
consistent tendency to underestimate the output in the afternoon
and the physics-based model instance constantly overestimated
high wattages. Therefore, the presented approach presents an
interesting opportunity for further work, but has not been
explored yet.

5.2. Concluding Observations
In section 3, the underlying principles of the presented
modeling approaches as well as their prerequisites were
outlined: the physics-based model selected for this study is

parameterized by five mandatory parameters, namely location,
azimuth and tilt angle, total area and efficiency under
reference conditions, and additional parameters for which
default values can be used. In addition to the parameters
(obtainable from data sheets or straightforward one-time
measurements at the site), a model implementation and the
means to simulate it are required; free and open-source
implementations exist.

On the other hand, all data-driven forecasting approaches
require measurements of the power output as well as historical
weather forecasts used as input to the model. Provided these
are available, the developed models are adaptable to other PV
plants, according to the process shown in Figure 2. The models
are applicable to small PV panels but also to large-size PV plants.
In the context of smart grids, many small PV panels could
be gathered virtually (for example in city quarters) to provide
flexibility options. Gathering a large amount of small PV panels
helps overcome the single forecasting limitations and provides a
more robust generalized model.
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TABLE 4 | Forecast performance for 2019 in terms of s and mm.

Site-Id Model Quantity s / 1 mm / 1

eugene-hit05667 modelica Power 0.07 0.95

DWD Station 10704 COSMO-D2 Global Irradiance 0.37 0.73

DWD Station 10704 COSMO-D2 Diffuse Irradiance 0.66 0.91

DWD Station 10704 COSMO-D2 Temperature 0.18 1.0

DWD Station 10704 COSMO-D2 Wind Speed 0.65 0.69

swsls-sw modelica Power 0.5 0.72

swsls-sw LSTM Power 0.59 0.66

swsls-sw fusion Power 0.59 0.65

swsls-sw FFNN Power 0.59 0.65

swsls-sw BAG Power 0.6 0.65

swsls-sw RF Power 0.61 0.65

swsls-sw XGB Power 0.63 0.63

FIGURE 9 | Forecast performance of the physics-based model in terms of the

relative residual; overall and per bin of 1− kc.

For the scenario investigated in this work, all approaches
showed similar performance in the same order of magnitude.
Based on the selected metrics s and mm, the physics-based
model performed best. However, it also resulted in the largest
residuals and high wattages were consistently overestimated. The
data-driven approaches based on neural networks, LSTM and
FFNN, showed the second-best performance with less residuals
considered outliers, but a clearly distinguishable tendency
to underestimate the power output in the afternoon. The
methods based on ensemble machine learning almost always
underestimated wattages above 60 kW and less frequently
resulted in small residuals. Additionally, the power output was
consistently overestimated early in the morning.

With the availability of the system parameters shown in
Table 3 and the lack of shadowing, the analysis performed
suggests that the physics-based modeling approach is the first
choice for a user that needs forecasts for small-scale PV
systems that are connected to the low voltage grid or part of a
microgrid. However, if these parameters do not exist and there
is access to measurements of the power output and historical
weather forecasts for training, FFNN and LSTM are viable
approaches, too.

This result contrasts the findings of Ogliari et al. (2017), who
concluded that physics-based models should be used for newly
installed systems, followed by a hybrid modeling approach based
on neural networks as soon as sufficient data becomes available,
but both studies only considered one system, which relativizes the
conclusions drawn.

From the perspective of local utility companies, it is more
likely to readily have access to the measurements of power fed
into their grid than it is to know the parameters necessary for the
physics-based approach. Additionally, data-driven approaches
suggest themselves in case there are shadows on the PV modules
that are caused by immobile objects such as adjacent buildings.
As long as the shadowing occurred in the training data, the
methods will account for it. Adding a shadowing model to the
physics-based model used in this work is possible, but severely
complicates the finding of appropriate parameter values.

Because shadows are a reality on many systems, and
because all approaches showed some degree of systematic errors,
post-processing the created forecasts suggests itself. In this
paper, the application of knowledge about the past forecast
quality to specify the uncertainty of a forecast was discussed.
Additionally, the suggestion by Böök and Lindfors (2020)
represents another sensible post-processing step that could
mitigate both shortcomings of the forecast method used as well as
effects not accounted for in the model, such as shadowing, panel
aging, soiling, or imprecise parameters.

6. CONCLUSION

In this work, a qualitative and quantitative analysis of the forecast
performance for the entire year 2019 of different physics-based
and data-driven forecast models for the power output of a 82
kWp PV system that is not subject to shadowing is presented.
The data-driven models are trained on 5 years worth of data;
the physics-based model is parameterized using non-optimized
values measured on-site or obtained from data sheets.

The results show similar performance for all methods with
a slightly better performance of the physics-based approach,
suggesting that this method represents the first choice if the
needed parameter values can be obtained. Since this requirement
can likely not always bemet in reality, data-driven approaches are
also necessary, which in turn require measurements of the power
generated and the historical weather forecasts for the training
period. Both approaches create their forecast based on the output
of numerical weather prediction models.

The work presented here shows the forecast quality to
expect in similar situations and outlines how information
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FIGURE 10 | Physics-based forecast, error bands and measured power for June 7, 2019; extent of the confidence band based on overall performance (A) and bins

of 1− kc (B).

about past forecast quality can be used to amend newly
created forecasts by information about their inherent
uncertainty. Possible areas for improvement include the
optimization of the forecast methods themselves, the use
of a more robust estimator for identifying classes of similar
forecast performance, and the application of additional
post-processing steps to further increase the accuracy of
the forecasts.
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