
Evaluation Method of Wind Power
Consumption Capacity Based on
Multi-Fractal Theory
Hongzhong Li1, Yao Wang1*, Xinyu Zhang2 and Guo Fu1

1School of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China, 2East China Electric Power Design
Institute Co., Ltd., China Power Engineering Consulting Corporation, Shanghai, China

An analysis model of wind power consumption capacity is established with themulti-fractal
theory. Firstly, the fluctuation characteristics of wind power are described through multi-
fractal parameters, and the correlation between wind power fluctuation characteristics and
consumption capacity are analyzed. Afterwards, the swinging door algorithm (SDA) is
applied to divide the wind power curve in the evaluation period, and the fluctuation process
with similar characteristics is clustered. Further, a functional analysis model to evaluate
wind power consumption capacity is mentioned based on the fluctuation clustering
results. Finally, the effectiveness of the method is verified by an example of a regional
power grid in China, and the influence of adjustable parameters in the model on the
consumption capacity is quantitatively analyzed.
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INTRODUCTION

With the increase of power demands, the proportion of renewable energy in power grid is increasing,
especially the wind power (Qazi et al., 2019). The installed capacity of wind power has reached
210 GW, accounting for 10.4% of the total in China by the end of 2019. The installed capacity is
expected to reach 250 GW by the end of 2020, and the proportion of wind power in the energy supply
system will increase year by year (Global Energy Interconnection Development and Cooperation
Organization, 2020). However, the volatility and randomness of wind power bring severe challenges
to the dispatching and operation of power system.

In recent years, the problem of “wind power curtailment” is becoming more and more serious,
which has caused a waste of power generation resources and brought some economic losses. To
ensure the safety and economy of power system, the reasonable wind power uncertainty model and
unit commitment optimization method are established (Chen et al., 2019; Zhang et al., 2019a; Zhang
et al., 2019b; Chen et al., 2020). In (Zhang et al., 2019a), the optimal unit commitment decision was
obtained by considering the temporal and spatial correlation of wind load uncertainty prediction
error. In (Zhang et al., 2019b), the time autocorrelation of wind power/load forecasting error and
outage probability are considered in the unit commitment optimization method. These models not
only reduce the operation cost of the optimization results, but also ensure the safe operation of the
power system.

On the other hand, aiming at the problem of wind power curtailment, some literature focuses on
how to improve the consumption capacity of wind power. In (Meena et al., 2017), a new bi-level
optimization framework is proposed aim at the optimal configuration and operation management of
wind power generation. To enhance the adaptability and load acceptance of wind power, Wu et al.
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(Wu and Jiang., 2019) considered the joint planning, which
includes installed capacity and location of wind power,
expansion of transmission network, and location and scale of
energy storage system. With the increase of coupling among
multi-energy systems, some scholars also try to increase the wind
power consumption capacity from the perspective of integrated
energy (Wang and Li., 2017; Mu et al., 2019; Ma et al., 2020).
There are different methods to improve the consumption
capacity. However, how to evaluate the wind power quickly
and accurately is the precondition for achieving reasonable
dispatching decision and planning. Only on the basis of
accurate assessment of the consumption capacity, can those
methods be more meaningful.

So far, most of the studies use mathematical optimization
models to evaluate the wind power consumption capacity (Chen
et al., 2017; Koutroumpezis and Safigianni., 2010; Xie, et al., 2016;
Wang, et al., 2018; Wang et al., 2020). Usually, many kinds of
security operation constraints (Abad et al., 2018; Fu et al., 2018;
Torquato et al., 2018; Zhan and Liu., 2019) are considered and
different optimization algorithms are used to obtain the optimal
solution of the objective function. In (Nguyen and Mitra, 2016),
the influence of wind power generation on frequency regulation
ability under different penetration levels is explored. In (Sun et al.,
2018), a multi-objective optimization method for power system
coordination is established, which can be applied to evaluate the
wind power consumption capacity. In (Xie et al., 2016), a wind
power consumption optimizationmodel with security constraints
and flexible demand response is established. Xu et al. (Xu et al.,
2016) calculated the wind power consumption capacity based on
the multi-scenario method in which a variety of constraints were
considered. In (Fu et al., 2018), the system peak shaving capacity
constraints were considered, and the optimization model is
established based on the statistical characteristics of wind
power output. The mathematical optimization method is
complex in modeling, with a large amount of calculation and
limited application. In addition, most of the evaluation models in
the above studies are for a certain moment, only considering the
power grid’s consumption capacity at the extreme moment, but
the wind power output also has strong volatility in other times.
Therefore, the fluctuation characteristics of wind power in the
whole period should be considered in the evaluation model.

On the basis of these studies, it is necessary to analyze the
fluctuation characteristics of wind power from a long time scale,
so as to improve the accuracy and adaptability of the assessment.
Yang et al. (Yang et al., 2017) proposed an analysis method to
divide and express the fluctuation process of wind power, but did
not carry out quantitative analysis on the volatility of wind power.
For the study of volatility, in (Shi et al., 2018), the fluctuation of
wind power output data are analyzed by the probability density
function (PDF) and discrete Fourier transform (DFT) in time and
frequency domain. In (Zhang et al., 2017), fluctuating characters
of the wind power are assumed to obey the versatile distribution.
In (Lamsal et al., 2019; Li et al., 2019), the variation of the
difference between the maximum and minimum power values
within a certain time interval is used to describe the volatility of
wind power.

Since the fluctuation of wind power varies with time, the
fluctuation characteristics of wind power at different levels should
be described by appropriate parameters. Multi-fractal theory
(Harte and David, 2001) is an effective tool for studying the
fluctuation characteristics of stochastic time series, and has been
applied in many fields of power system. In (Teng et al., 2019), a
multi-fractal spectrum is adopted to investigate wind speed
characterizations. Liu et al. (Liu et al., 2014) examined the
feasibility of applying the multi-fractal theory to analyse the
electricity price fluctuation.

Thus, an evaluation method of wind power consumption
capacity based on fluctuation characteristics analysis is carried
out. Firstly, the singularity index of multi-fractal theory is
adopted to describe the fluctuation characteristics of wind
power. The matching degree between wind power and load
curve is represented by the average Euclidean distance. The
correlation between fluctuation parameters, average Euclidean
distance and wind power consumption is verified based on
historical data. On this basis, the fluctuation process is divided
and clustered by the swinging door algorithm (SDA) and
clustering algorithm, respectively. Finally, an evaluation model
is established based on the fluctuation parameters. The method
combines the fluctuation processes with the same fluctuation
characteristics, greatly simplifies the calculation process. The
consumption capacity of the power grid to a given wind
power curve is analyzed, which is helpful for dispatchers to
make reasonable decisions.

KEY INFLUENCING FACTORS

Fluctuation Degree of Wind Power Output
Multi-Fractal Theory
Multi-fractal is a kind of complex fractal structure which divides
the non-uniform distribution area into multiple regions. It is
composed of multiple non-uniform distribution sets with
different singular indexes. The local characteristics of a
system with complex fractals under different scales were
described. Each scale can be represented by different
parameters or dimensions. This series of parameters form a
set, so that all different sets have different scales and fractal
dimensions. Generally, the problems with fractal characteristics
are described qualitatively and quantitatively by multi-fractal
spectrum. The numerical value of each local detail and the
probability distribution in the process of local detail change are
calculated by Legendre transform.

The multi-fractal object is divided into N regions. xi and Pi be
the scale size of each region and the probability of physical
quantity respectively. The relationship between xi and Pi in
different regions is expressed by scale index αi:

Pi � xαii (i � 1, 2, 3, . . .N), (1)

When xi → 0, Eq. 1 is changed into

α � lim
x→ 0

ln P
ln x

, (2)
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where α is the scaling index, which represents the fractal
dimension of the local shape.

Fluctuation Degree
Based on multi-fractal theory, the local regularity of wind power
output curve on different time scales is described by the
singularity index. Wind power series {Pi} with time length T ,
i � 1, 2, 3, . . . ,T , s is the time scale used to divide the series.

pj(s) � Ij(s)∑ Ij(s). (3)

Here, pj(s) is the probability of wind power output in the jth

interval. Ij(s) is the wind power output of the jth interval.∑ Ij(s) is
the sum of wind power output of all sections.

The singularity of wind power fluctuation in the jth interval is
characterized by local singularity index αj, which reflects the
irregularity of wind power in this interval. It satisfies the following
conditions in the scale-free interval.

pj(s)∝ sαj (4)

Since s is smaller than 1 in multi-fractal calculation, αmin and
αmax correspond to the maximum and minimum probability
subsets respectively. The difference between the two
probability is used to describe the fluctuation and stability of
the sequence distribution. Variation of wind power output in a
certain section can be expressed by Δα. The larger the Δα, the
more uneven the wind power output distribution and the greater
the volatility.

Δα � αmax − αmin ∼
ln pmin

ln s
− ln pmax

ln s
� ln(pmax/pmin)

ln(1/s) . (5)

Matching Degree ofWind Power Output and
Load Demand
The consumption capacity is closely related to the fluctuation of
the wind power curve if the unit parameters have been
determined. Wind power will be curtailed if the fluctuation
range of wind power exceeds the regulation capacity of the
unit. However, wind power may fluctuate greatly at both high
and low output, a single fluctuation parameter can not accurately
reflect the wind power consumption capacity. The matching
degree of wind power output and load demand is also a key
factor, which is measured by the similarity between load and wind
power curve. The higher the similarity, the greater the wind
power consumption. To compare the wave processes of different
time scales, the average value of Euclidean distance of all data
points is reflected to the matching degree. The calculation
formula is as follows:

Dav �
��������������∑N

i�1(PW,i − PL,i)2√
N

. (6)

Here, N is the number of sampling points in the fluctuation
duration. PW,i, PL,i are the wind power and load power in the
ith point.

ANALYSIS ON FLUCTUATION
CHARACTERISTICS OF WIND POWER
CONSUMPTION
Correlation Analysis
Taking the data of a district in China in August 2019 as an
example, the correlation between wind power consumption
capacity and fluctuation characteristics is qualitatively analyzed
by Pearson correlation coefficient (PCC). PCC is the most
commonly used method to measure the correlation of series,
and has many application examples in wind power output
prediction (Vallée et al., 2011; Zhou et al., 2019; Wang and
Zou, 2020). The correlation between any two variable
sequences x and y can be calculated by Eq. 7.

r(x, y) � cov(x, y)
σxσy

� E(xy) − E(x)E(y)������������
E(x2) − E2(x)√ ������������

E(y2) − E2(y)√ , (7)

where r(x, y) is the correlation coefficient of x and y; cov(, ) is the
covariance operation; E(·) is the expected operation; σx and σy are
the standard deviations of variables.

Figure 1 shows the calculation results of correlation analysis.
With correlation coefficient r1 � −0.7977, which shows that
fluctuation parameters have strong negative correlation with
wind power consumption, that is, the greater the parameter
value, the smaller the wind power consumption. With
correlation coefficient r2 � −0.8477, similarly, there is a strong
negative correlation between European distance and
consumption.

Division of Fluctuation Process
The division of fluctuation process is the basis of studying the
fluctuation characteristics of wind power output. The swinging

FIGURE 1 | Correlation between volatility parameters, average
Euclidean distance and wind power consumption.
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door algorithm (SDA) proposed in (Florita et al., 2013) is applied
to divide the fluctuation process. The principle is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Du � max(P(t) − P0 − ε

t
)

Dd � min(P(t) − P0 + ε

t
)

t � 1, 2, 3, . . . ,T . (8)

Here, Du and Dd are the up and down swinging door
respectively. ε is the window width. P0 is the wind power at
the initial time. P(t) is the wind power at t time. The up and down
swinging door are calculated from t � 0, and tm satisfying Eq. 9 is
the end time of current fluctuation.

{ tm � mint,
s.t.Du ≥Dd.

(9)

According to the principle of swinging door algorithm, the
next fluctuation process starts from tm, the division is continued
until the wind power data in the whole cycle is traversed. There
may be an inflection point in a continuous and same trend
fluctuation process, which will lead to the neglect of a data
point and errors. Therefore, the traditional swinging door
algorithm is improved.

The fluctuation trend before and after the termination point
should be judged in the iterative process. That is, when each
iteration process of fluctuation division is completed, it is
necessary to judge the relationship between the change trend
of the two fluctuation processes connected with the termination
point. The termination condition of iteration division is changed
from Eqs. 9, 10:

⎧⎪⎨⎪⎩
tm � mint,
s.t.Du ≥Dd ,
[PW(tm + 1) − PW(tm)] · [PW(tm) − PW(tm − 1)]≥ 0,

(10)

where PW(tm), PW(tm+1), PW(tm−1) are the wind power at time
tm, the next sampling time and the last sampling time
respectively.

In Eq. 8, the window width ε affects the identification of
continuous and identical trend fluctuations. Most of the division
results will be small fluctuations if the selection is too small.
Instead, the results will be large fluctuations and small ones
ignored.

Clustering of Fluctuation Processes
The consumption capacity is significantly associated with
volatility parameters and average Euclidean distance. The
fluctuation process of wind power is clustered based on Δα
and Dav. Essentially, the same fluctuation process should have
similar consumption capacity in the clustering results.

A clustering algorithm with breadth first search neighbors
(BF-SN) (Xue et al., 2015) is applied to cluster the fluctuation
process. It is not needed to determine the number of clusters in
advance in the algorithm, and the optimal parameters are easy to
set. The steps are as follows:

(1) Input fluctuation process set, and Δα is the abscissa of each
fluctuation process and Dav is the ordinate;

(2) Input the clustering parameters r and λ. Where r is the
distance parameter to judge whether the two fluctuation
processes are neighbors. Generally, the average distance
between objects in the dissimilarity matrix can be taken as
(Florita et al., 2013). λ is the parameter to judge whether the
fluctuation process can be clustered into one class. λ ∈ [0, 1],
that is, if the fluctuation is joined to a certain class, X must be
neighbors with the original fluctuation process of λ% in this
class;

(3) Solve the similarity matrix. The similarity degree matrix is a
quantitative representation of the similarity of any two
fluctuation processes. Its diagonal elements are 1, and the
non diagonal elements d(Xi,Xj) represent the similarity
between the fluctuation processes Xi and Xj;

(4) Search clustering. A new empty class is created and classified
into this class from any fluctuation process X. All neighbors
of X are searched according to the parameter r and whether
they are classified into the class according to the parameter λ.
When all the volatility processes except X are traversed, the
clustering is completed once;

(5) Repeat step 4)to complete the clustering of all fluctuation
processes.

EVALUTION MODEL

Wind Power Output Model
According to Eqs. 3, 4, there is a one-to-one correspondence
between wind power output PW,i and volatility parameters Δαi in
the ith fluctuation process.

PWi � F(Δαi). (11)

The functional relationship reflects the irregularity and
distribution characteristics of wind power in the process of
fluctuation.

Functional Analysis Model
State Space
The state of the system is judged according to the basic properties
of the ith fluctuation stage. Y represents the state set of the system
in the whole evaluation period.

{Y � y1, y2, . . . , yk
∣∣∣∣y1, y2, . . . , yk ∈ (0, 1)}, (12)

where yk indicates whether the system satisfy the kth constraint.
If the system does not satisfy the constraint, yk � 0, otherwise,
yk � 1.

The constraints are considered in the state space as follows:

Power Balance Constraints

PL,i � PG,i + PW,i + Pline,i. (13)
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Power Output Constraints

PG,min ≤ PG,i ≤ PG,max. (14)

Power Ramp Constraints

{PG,i−1 − PG,i ≤ΔT · Rdown,
PG,i − PG,i−1 ≤ΔT · Rup.

(15)

Tie Line Power Constraints

0≤ Pline,i ≤ Pline,max, (16)

where PL,i, PG,i, PW,i, Pline,i are load demand, the unit output, wind
power output and tie line power of the ith fluctuation process

respectively; PG,min and PG,max are the minimum and maximum
output of the unit; Pline,max are the power limit of tie line; Rdown

and Rup are the climbing speed of the unit.
The proposed evaluation method is mainly used to

calculate the wind power that the system can consume. If
the system does not meet the power balance constraints, there
may be two situations: excess power and power shortage. The
former will lead to wind power being abandoned, and in the
latter case, the system can consume all the wind power.
However, the system will load shedding when the load
demand can not be met. If the system satisfies the power
balance constraints, y1 will be 0; if the power is excessive, y1 is
one; if the power is insufficient, y1 is –1.

Evaluation Model
For each kind of fluctuation process, a functional analysis model
of consumption capacity evaluation is established according to
the state set.

Qi �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫ F(Δαi)dt,
∫[F(Δαi) − C1,i]dt, Y � {0, 1, 0, 1},
∫C2,idt, Y � {1, 0, 0, 0}, {1, 0, 1, 0},

(17)

C1,i � ΔPW,i − ΔPL,i − Δt · Rdown, (18)

C2,i � PL,i − PG,min + Pline·max. (19)

Here, C1,i is the wind power curtailment generated by the
system due to insufficient climbing capacity of the unit. C2,i is the
maximum consumption capacity of the wind power when the
system has excess power. Δt is the duration. The solution flow is
shown in Figure 2.

CASE STUDY

The effectiveness of the proposed method is verified by the actual
power grid data. The grid structure is shown in Figure 3. There
are three wind farms in the system with a total installed capacity
of 350 MW, five thermal power units and the total installed
capacity is 786 MW. The parameters of each generator set are
shown in Table 1. Assuming that all units are in the starting state,
the upper limit of tie line power is 50 MW. Load and wind power
output curve are shown in Figure 4.

Division and Clustering of Fluctuation
Processes
The fluctuation process of wind power is divided by SDA. Window
width ε is taken as 5% of the installed capacity of wind power. A total
of 41 fluctuation processes are obtained and numbered from left to
right. The results of division are shown in Figure 5.

The volatility parameter Δα and average Euclidean distance
Dav of each fluctuation process are calculated. The results are
shown in Table 2. According to the calculation results, the
process is clustered by breadth first search neighbor algorithm.

FIGURE 2 | Flow chart of wind power consumption capacity
assessment.
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Clustering parameters r and λ are 0.8 and 1, respectively, and
seven categories are obtained. The clustering results of each
process are shown in Table 3.

Calculation of Consumption Capacity
Function relationship between the wind power and singularity
index in various wave stages is fitted. The wind power fitting
function of 7 categories is replaced into the evaluation model, and

FIGURE 3 | Grid structure diagram.

TABLE 1 | General parameters of generator set.

Unit number Maximum output/MW Minimum output/MW Climbing rate/(MW/15 min)

G1 300 120 24
G2 300 120 24
G3 100 40 7.5
G4 50 20 5
G5 36 9 4
GK 150 0 \
FQ 100 0 \
YJ 100 0 \

FIGURE 4 | Load curve and wind power output curve. FIGURE 5 | Division results of fluctuation process.
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the consumption capacity in the evaluation period is obtained.
Take category 5 as an example to illustrate the calculation process.
The results are shown in Figure 6.

P5(Δα) � −1.281 × 108 · Δα4 + 7.064 × 107 · Δα3 − 1, 428 × 107

· Δα2 + 1.251 × 106 · Δα − 3.994 × 104.

The state of this kind of fluctuation is Y5 � {1, 0, 1, 0} according
to the basic data of each fluctuation process in Category 5. The
power consumption is 253 MW·h, and the abandoned wind
power is 64 MW·h. Similarly, the wind power consumption
capacity of the whole grid is calculated.

To show the effectiveness of multi-fractal theory in describing
the fluctuation degree of wind power, as a comparison, the
volatility proposed in (Li et al., 2019) is used to describe the

fluctuation degree. The method is recorded as Method 1, and the
calculation formula is as follows:

α′ � Pt+1 − Pt

PC
, (20)

where Pt denotes the output value at time t; PC denotes the rated
capacity of a wind farm.

The consumption capacity of Method 1 is evaluated by using
the same evaluation procedure proposed in this paper.

In addition, the evaluation method used in (Sun et al., 2018) is
recorded as Method 2. Without considering the load regulation
characteristics in different time scales, the wind power
consumption was evaluated with the maximum consumption
capacity as the optimization objective. The results are shown in
Table 4.

The fluctuation degree of wind power in Method 1 is
expressed by the change degree of a certain period of time,
which depends on the size of the time interval used. This may
lead to the irregularity of wind power fluctuations that can not
be well described. By comparing Method 1 with the method
proposed, the relative deviations between the results and the
actual data are 12.54% and 3.16% respectively. The results
show that the multi-fractal theory can reflect the fluctuation
process better and make the evaluation results closer to the
actual data.

TABLE 3 | Clustering results of fluctuation process.

Category Number

1 31, 36
2 13, 25, 29, 37, 40
3 23, 33
4 16, 17, 18, 20, 39
5 4, 5, 7, 30, 41
6 2, 3, 6, 11, 14, 22, 24, 26, 32
7 1, 8, 9, 10, 12, 15, 19, 21, 27, 28, 34, 35, 38

FIGURE 6 | Fitting results of wind power and singularity parameter.

TABLE 2 | Clustering parameters.

Fluctuation process Volatility
parameter Δα

Average euclidean
distance Dav

1 0.12825 345.58
2 0.05803 224.08
3 0.0451 204.97
4 0.09167 233.89
5 0.09478 232.52
6 0.06923 182.69
7 0.16041 262.03
8 0.17606 305.66
9 0.18043 306.28
10 0.10285 304.41
11 0.06132 187.18
12 0.13755 302.49
13 0.08869 264.32
14 0.03097 260.42
15 0.12833 455.5
16 0.02609 289.17
17 0.02436 319.8
18 0.04972 288.12
19 0.11088 470.98
20 0.02389 187.97
21 0.12598 480.24
22 0.0945 338.6
23 0.18394 462.61
24 0.04178 318.74
25 0.08378 369.78
26 0.08797 332.22
27 0.25408 494.15
28 0.10617 380.34
29 0.02135 319.8
30 0.18068 446.74
31 0.16982 295.2
32 0.11103 298.69
33 0.17981 409.48
34 0.11198 391.09
35 0.1415 397.37
36 0.19435 301.14
37 0.08028 342.69
38 0.17825 325.26
39 0.08754 238.87
40 0.11569 290.05
41 0.17497 348.14
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The wind power consumption is calculated by the
optimization problem in Method 2, the result is closest to the
actual data, and the relative deviation is 1.12%. Compared with
the optimization problem of long time scale, although there are
errors between the proposed method and Method 2, the
deviation between them is within the acceptable range of
engineering application. The evaluation method proposed
takes the fluctuation process as the unit for evaluation. Once
the type of fluctuation process is determined, the current
consumption can be evaluated according to the proposed
functional model and the state space. It simplifies the
calculation process of wind power energy consumption
evaluation and reduces the amount of calculation, and has a
wider applicability.

Analysis of Sensitive Factors of
Consumption Capacity
Transmission Power Limit of Tie-Line
The results of wind power curtailment ratio of regional power
grid are illustrated in Figure 7when the output power of tie line is
(0, 200) MW. If the limit of transmission power is less than
100 MW, the wind power curtailment ratio is negatively
correlated with Pline. The increase of Pline is equivalent to
increasing the maximum consumption space of wind power,

i.e. PL + Pline − PGmin, so that the system can consume the
power curtailed at the low load. When Pline is greater than
100 MW, the ratio basically remains unchanged, which is
caused by the insufficient climbing capacity of the unit.

Peak Regulation Depth of Unit
The calculation results of wind power curtailment ratio are shown
in Figure 8when the unit peak load regulation depth is (30, 50%).
The curtailment ratio is positively correlated with the peak
shaving depth. If the peak shaving depth is less than 35%, the
curtailment ratio does not change, the wind power transmission
is blocked due to the transmission power of tie line reaching the
upper limit. The influence principle of unit peak regulation depth
on the consumption capacity is the same as that of tie line power
upper limit, both of which can improve the maximum
consumption space of wind power.

CONCLUSION

To guide the development of new energy such as wind and reduce
the abandonment risk of wind, a functional analysis model of
wind power consumption capacity assessment is established,
which takes the singularity parameters of wind power as
independent variables, and simplifies the calculation process of

TABLE 4 | Calculation results of consumption capacity.

Loadcapacity (MW · h) Consumptioncapacity (MW · h) Proportion
of consumption (%)

Wind power curtailment
ratio (%)

Actual data 16085 4014 24.96 3.57
Method 1 16085 3510 21.82 6.77
Method 2 16085 3969 24.67 3.92
Proposed method 16085 3887 24.17 4.48

FIGURE 7 | Wind power curtailment ratio with different transmission
power limit of tie-line.

FIGURE 8 | Wind power curtailment ratio with different peak
regulation depth.
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wind power consumption assessment. Through the analysis of an
example, the correctness and effectiveness of the refined
consumption model proposed are proved. Moreover, the
influence of the transmission power limit of tie-line and peak
regulation depth of unit on wind power consumption capacity is
analyzed quantitatively. The results show that the wind
curtailment rate can be reduced to a certain extent by
changing these two variables. Relevant research results can
provide guidance for new energy development planning and
construction.
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