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Aiming at the problem of insufficient accuracy and timeliness of transmission line
parameters in the grid energy management system (EMS) parameter library, a dynamic
optimization method of transmission line parameters based on grey support vector
regression is proposed. Firstly, the influence of operating conditions and
meteorological factors on the changes of parameters is analyzed. Based on this, the
correlation quantification method of transmission line parameters is designed based on
Pearson coefficient, and the influence coefficient value is obtained. Then, with the influence
coefficient as the constraint condition, a method for selecting strong influence
characteristics of line parameters based on improved Elastic Net is proposed. Finally,
based on the grey prediction theory, a grey support vector regression (GM-SVR)
parameter optimization model is constructed to realize the dynamic optimization of line
parameter values under the power grid operation state. The effectiveness and feasibility of
the proposed method is verified through the commissioning of the reactance parameters
of the actual local loop network transmission line.

Keywords: transmission line parameters, strong influence feature selection, parameter correction, grey support
vector regression, elastic net algorithm

INTRODUCTION

Overhead transmission lines are the main components of the power grid. Various advanced
calculations of the power system, such as grid modeling, state estimation, power flow
calculation, and relay protection settings, require accurate transmission line parameters
(Bendjabeur et al., 2019). In the calculation of the actual transmission line parameters, most of
the power system operators use electrical equipment to artificially apply a certain voltage after the
transmission line is erected and not put into operation, and calculate the double-ended electrical
parameters of the line through precision measuring instruments (Xiao et al., 2016). However, when
the transmission line is energized and operated, affected by the operating conditions of the
transmission network, line environment, seasonal changes and other factors, there are certain
differences between the actual line parameters and the parameter values originally calculated
(Asprou et al., 2018; Yu et al., 2018). The transmission line parameter error will seriously
reduce the calculation accuracy of the state estimation in the local grid area, then affect the
accuracy of the calculation results of various advanced applications based on the state estimation, and
seriously interfere with the analysis and control of the power system by dispatchers (Liu et al., 2020).
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Therefore, studying the accuracy and dynamic modification of
transmission line parameters has important theoretical and
practical significance.

For a long time, in order to improve the accuracy of
transmission line parameters, domestic and foreign experts
have carried out many related researches on transmission line
parameter estimation and parameter optimization, which can be
divided into two main categories:

1) Based on power grid state estimation, expand calculations from
different angles, such as augmented state estimation method
(Xue et al., 2014), normal equation estimation method (Tang
et al., 2018), Kalman filter estimation method (Wang et al.,
2019c) and residual sensitivity analysis method (Su et al.,
2019). Among them, the literature (Wang et al., 2019a;
Kong et al., 2020) proposed a method to generate suspicious
lines by calculating measurement deviation and line balance
state, and used variable step integration method to estimate the
parameter correction value of suspicious lines. Literature (Xue
et al., 2019) proposed a comprehensive method based on PQ
decoupling combined with augmented state estimation and
sensitivity methods to achieve line parameter error correction.
Literature (Viafora et al., 2019) proposes a two-step state
estimation algorithm that takes into account line
temperature. However, these methods generally face the
problem of ill-conditioned coefficient matrix. In particular, a
large range of line parameters can be extended to state values to
achieve the solution of parameter values, which results in too
high matrix dimensions, seriously affected state estimation
results, and the calculated parameter values cannot meet the
basic accuracy requirements of various advanced applications
of power grid energy management system.

2) Based on the measured value of the transmission line section,
the parameter optimization based on artificial intelligence
algorithm includes particle swarm optimization method (Qu
et al., 2018; Zhu et al., 2020), genetic algorithm (Shi et al.,
2009; Li et al., 2020) and Tabu search method (Dai, 2020).
Among them, the literature (Huang et al., 2019) proposed a
method for estimating line parameters of distribution
network based on radial basis function neural network,
which can obtain accurate line parameters by using the
measured values at both ends of the line. In literature (Ren
et al., 2019; Dutta et al., 2020), multi-time SCADA and PMU
measurements of a single line are respectively used for
parameter estimation. Simulation results can effectively
estimate the impedance parameters of the line. Literature
(Ghiasi et al., 2019) trained and learned a large number of
multi-section active power data, the sparsity of the line
parameter difference and the practical lasso algorithm are
used to correct and solve the suspicious line. This type of
method has become the mainstream research idea, which
provides important reference and theoretical guidance for
subsequent research.

Based on the above research on various optimization methods,
the current transmission line parameter estimation or
optimization method has two shortcomings in the solution

calculation: ① The effective influence of the line operation
mode on the parameters is not considered and calculated,
resulting in the lack of precision of parameter values. ②The
calculation of transmission line parameters in the revised scheme
cannot be combined with the state data of the latest line operation
mode. Only historical data is used to calculate line parameter
values, and the generated parameter values are not real-time, and
it is not appropriate to be applied to advanced real-time
calculations of various power grids.

Transmission line parameters such as resistance (R), reactance
(X) and susceptance (B) are the prerequisites for modern power
system operation, control and planning research (Salam, 2020).
In this paper, by analyzing the internal and external factors that
interfere with the line parameters during the operation of the
transmission line, the relevant influencing factors reflecting the
operating conditions of the line and the natural environmental
parameters are initially determined, and the degree of influence is
quantified. Then, a strong-influence feature selection model
based on the constraint of the influence coefficient is
constructed to break the limitation of the specific input
quantity of the traditional electrical calculation model. More
comprehensive line parameter influence characteristics are
considered as parameter optimization considerations. Based on
grey prediction theory, a grey support vector regression (GM-
SVR) parameter optimization model is constructed to achieve
dynamic adjustment of line parameter values under power grid
operation.

RELATED INFLUENCING FACTORS AND
QUANTIFICATIONOFTRANSMISSION LINE
PARAMETERS

Analysis of Related Influencing Factors of
Transmission Line Parameters
The transmission grid will generate heat during long-distance
transmission (Zhang et al., 2019). As the demand on the load side
of the transmission grid changes, the line operationmodemust be
adjusted as needed, which will cause the heat generation of the
line to change. At the same time, the air convection heat flow and
solar radiation in the natural environment around the line will
also cause the line to generate heat. Since the transmission line is a
metal conductor, which is a good conductor of heat, there is
obvious thermal expansion and contraction. With the
temperature change caused by internal or external factors of
the line, the resistivity and sag of the line will change, which will
cause the line length and cross-sectional area to be different from
the initial parameter values (Wang et al., 2019b; Beňa et al., 2020).
In addition, the transmission lines are affected by severe weather
(Sony and Chettiar, 2020), the geometric uniform distance of the
three-phase conductors and the geomagnetic field in special areas
are also different from the original parameter calculation
scenarios (Zhu et al., 2018; Qu et al., 2019).

Therefore, for different transmission lines erected in different
scenarios, the leading factors that affect line parameter values
are different, but through in-depth impact analysis of the line’s
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multi-period historical operation data and meteorological
environment data, there are still traces to follow. Based on the
measurement of the supervisory control and data acquisition
system (SCADA) of the grid, the paper extracts the internal
operating mode factors that affect the parameter changes such as
active power, reactive power, current, and voltage amplitude at
both ends of the line. Based on the monitoring of the National
Meteorological Data Center, the external natural environmental
factors that affect the change of parameters such as temperature
and wind speed in the area where the line is located are extracted.

Quantification of Related Influencing
Factors Based on Pearson Coefficient
This paper analyzes the correlation between measured data and
transmission line parameters, and designs a method for
quantifying the correlation of parameter influencing factors
based on Pearson coefficients to quantify the degree of
influence between each influencing factor and line parameters.

The specific quantitative method steps are as follows:

Step1: Extract the SCADA measurement characteristic data at
both ends of the line through the transmission line ID. At the
same time, in the process of considering the operation mode of
the line, the influence of the natural environment of the line on
the parameters itself is further considered, and meteorological
environmental data in the area where the line is located are
extracted.
Step2: Fuse the extracted line operation mode and
meteorological environment data based on time series to
construct a complete dataset of influencing factors:

DataSet � {Pic � {x1, x2, . . . , xn}
Pv � {y1, y2, . . . , yn} . (1)

In the Eq. 1: Pic and Pv respectively represent the set of
influencing factors of line parameters and the set of line
sequence parameters.

Step3: In order to accurately measure the degree of influence of
transmission line parameter influence characteristics on each
parameter value, a correlation quantification function based on
Pearson correlation coefficient is designed:

rab � cor(x, y) � cov(x, y)
ηxηy

� ∑n
i�1(xi − x)(yi − y)/n − 1													∑(xi − x)/n − 1

√
·

													∑(yi − y)/n − 1
√ . (2)

In the Eq. 2: ηx , ηy and cov(x, y) respectively represent the
standard deviation of sample x, the standard deviation of sample
y, and the covariance between samples. ab represents Pic, Pv the
number of the correlation calculation vector in the set. rab
represents the quantized influence coefficient value, rab ∈ [−1, 1].

Step4: Impact trend analysis. Analyze the closeness and
influence trend between variables according to the
magnitude and the sign of rab.

STRONG INFLUENCE FEATURE
SELECTION METHOD BASED ON
IMPROVED ELASTIC NET
The purpose of strong influence feature selection is to lay the
foundation for establishing an optimal route parameter
optimization model. Excluding redundant influence features,
only the independent variables that have a strong influence on
the parameter value are included in the training data set, which
effectively alleviates the computational cost caused by high-
dimensional training features.

The principle of the Elastic Net (Zhao et al., 2020) algorithm is
to add two penalty items on the basis of least squares. It is often
used to process sample data with multi-collinearity, especially
when there is a high degree of correlation between data features.
However, the double shrinkage of traditional Elastic Net leads to
low efficiency and high bias in the selection of strong influence
features. In order to correct this effect, the quantized value
Pearson influence coefficient is eliminated as the constraint
condition, and the quantized value rab between each feature
and the line parameter is weighted to l1 and l2 to realize the
re-calibration of the secondary partial penalty coefficient. The
line parameter strong influence feature selection model based on
ElasticNet-r is constructed to screen out the features that have a
strong influence on the line parameters, and provide an effective
set of influence characteristics for the optimization of
transmission line parameters.

The solution process of Elastic Net influence characteristic
coefficients is divided into three stages:

First, the Ridge regression coefficient is determined, and then
the lasso shrinkage coefficient is used. λ1‖ω‖1 + λ2‖ω‖22 is the
penalty term of Elastic Net algorithm, which is a convex
combination of Lasso and Ridge penalty terms.

Then, let θ � λ1 + λ2, λ � λ1/λ1 + λ2, then the specific principle
of strong influence feature selection is:

EN r(r, λ) � arg min
ω

⎛⎝ 1
2n

∑n
i�1

⎛⎝yi − ∑p
j�1

xijωj
⎞⎠2

+ θλ∑p
j

rj
∣∣∣∣ωj

∣∣∣∣
+ θ(1 − λ)

2
∑p
j

rjω
2
j
⎞⎠.

(3)

In the Eq. 3: r is the influence coefficient of parameter
influence characteristic xa and this kind of parameter yb. The
value of θ determines the proportional relationship between lasso
regression and ridge regression, which is determined by iterative
calculation during the solution process. λ is a non-negative
regularization parameter. n represents the number of data
samples in the constructed transmission line section dataset. ω
represents the influence characteristic coefficient.
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Finally, after establishing each influencing feature coefficient,
the strong influencing feature selection with line parameters can
be obtained by Eq. 4:

features � {Fi|ω≠ 0, 1< i< p}. (4)

DYNAMIC OPTIMIZATION OF
TRANSMISSION LINE PARAMETERS

The entire optimization process in this paper consists of two
parallel stages. The first stage uses the multi-dimensional
feature time series data in the transmission line parameter
strong influence characteristic dataset to construct a single
characteristic grey model to dynamically predict the next time
section strong influence characteristic value. The second stage
uses the strong adaptability and fault tolerance of support
vector regression (Cao et al., 2017), and trains the support
vector regression (SVR) parameter optimization model based
on the complete and strong impact feature dataset, and sets
the parameter deviation coefficient and deviation floating
factor constrained optimization relationship to ensure that
the optimization result is within the acceptable accuracy
range. At the same time, the real-time strong influence
characteristic value of grey prediction is used as the input
of the parameter optimization model, and the iterative
calculation completes the solution of the optimization
model line parameters.

Prediction Model of Strong Influence
Eigenvalues Based on GM (1,1)
As a forecasting method that adapts to systems with uncertain
factors, the grey forecasting method is predicted by observing the
future value of historical data series (Hu et al., 2020). Aiming at
the characteristics of weak randomness on the load side during
the operation of the power system. Use discrete random numbers
to evolve time series data with strong influence characteristics
into generated numbers. The randomness of the generated
number sequence is significantly weakened and contains
characteristic operation laws. Furthermore, a dynamic model
in the form of grey differential equations is established to
complete the accurate prediction of the eigenvalues of strong
influence in real-time conditions.

It is known that a certain transmission line parameter strongly
influences the characteristic element sequence data:

f (0)i � (f (0)i (1), f (0)i (2), . . . , f (0)i (n)). (5)

Where fi represents a certain feature in the strong influence
feature dataset. f (0)i represents the original data sequence of the
characteristic. Although the data sequence has a complex
appearance, it reflects the operating state of the power system
as a whole, so it must contain some inherent law.

Construct the GM (1,1) transmission line parameter strong
influence characteristic grey prediction model, and dynamically
calculate the predicted value.

f (0)i (k) + αz(1)i (k) � δ, (6)

Where f (0)i (k) is the model grey derivative, which α represents
the trend coefficient of the strong influence feature. z(0)i (k) is the
model whitening background value, which δ represents the
amount of grey effect.

The time response sequence of the grey prediction model with
strong influence characteristics of transmission line parameters is:

f
�(1)
i (k + 1) � [f (1)i (0) − δ

α
]e−αt + δ

α
. (7)

According to the originally selected method of generating the
grey sequence of the strong-influence feature value, it is restored
to the original feature sequence, so as to obtain the predicted
value of the next time section during the operation of the
transmission line accordingly.

f
�(0)
i (k + 1) � f

�(1)
i (k + 1) − f

�(1)
i (k). (8)

Dynamic Optimization Algorithm of
Transmission Line Parameters Based on
GM-SVR
The strong-influence eigenvalue prediction model realizes the
prediction of the operating conditions and meteorological
conditions of the transmission line, and integrates it into the
transmission line parameter SVR predictor, designs the dynamic
optimization algorithm of the transmission line parameters based
on GM-SVR, and dynamically solves the parameter optimization
The specific execution steps are as follows:

Step 1: Organize the training dataset of strong influence

features T � {( f→1, y1), ( f
→

2, y2), . . . , ( f
→

t , yt)}. Among them

TF � { f→1, f
→

2, . . . , f
→

t}T represents the set of strong
influence characteristic sequences of massive historical

sections, f
→

i including the strong influence characteristic
value under the current time section, the time section index
i � 1, 2, . . . , t.

TF �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (1)1 , f (2)1 , . . . , f (n)1

f (1)2 , f (2)2 , . . . , f (n)2

...
f (1)t , f (2)t , . . . , f (n)t

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (9)

The transmission line parameters of the corresponding time
section during the steady state operation of the power system
TY � {y1, y2, . . . , yt}T are Eq. 10, yi including the resistance (R),
reactance (X), and susceptance(B) parameter values under the
current time section.

TY �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

R1,X1,B1

R2,X2,B2

...
Rt ,Xt ,Bt

⎫⎪⎪⎪⎬⎪⎪⎪⎭. (10)
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Step 2: The kernel function of the optimization model is
determined. From the input space to the feature space, the
traditional mapping method will lead to an explosive increase
in dimensionality. The radial basis kernel function has the
characteristics of strong locality and stability. It is widely used
in the regression analysis process of massive samples and is
effective Reduce the calculation amount and storage space of
the parameter optimization model.

K( f
→

i, yi) � exp(−(���� f→i− yi
����2/β2)). (11)

In the Eq. 11, K( f→i, yi) return the calculated result value of
the sample after dimension transformation. f

→
i, yi represents the

data sample of transmission line parameter section.
������� f→i − yi

�������
represents the norm of the vector. β is the only hyperparameter in
the kernel function, which realizes the search for an optimal
balance point between the accuracy of the parameter correction
model and the generalization ability.

Step 3: Set the parameter optimization coefficients of the
transmission line, and establish the cost function.

funcos t � min
1
2
‖ξ‖2 + C∑l

i�1
(ρi + ρpi ). (12)

Most of the parameter deviations are within the scope of the
grid standards, it will not affect the follow-up power system state
estimation and other related advanced applications,More attention
should be paid to the excessive deviation of the parameters caused
by the real-time changes of the transmission line operating
conditions and meteorological conditions, so the optimization
coefficient value is to ensure that the parameter value is
constrained within an acceptable accuracy range.

s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
yi − (ξT f

→
i + b)< ε + ρi,

(ξT f
→+ b) − yi < ε + ρpi ,

ρi, ρ
p
i ≥ 0,

(13)

Where ε is the optimization coefficient of transmission line
parameters. ρ indicates the deviation factor, for the excessive
deviation parameters, the soft boundary method is adopted, and
the upper and lower deviation floating factors are adopted, ρi, ρ

p
i

will effectively improve the generalization ability of the parameter
optimization model.

Step 4: Establish the dynamic optimization relationship of line
parameters, namely SVR regression model, to fit the
relationship between the strong influencing characteristic
variables and the transmission line parameter variables.

Model(T) � ∑m
i�1
(μ�i − μi) f

→T

i T + b. (14)

The constraints Model( f→i) − yi − ε − ρi � 0 and yi −
Model( f→i) − ε − ρ

�
i � 0 cannot be established at the same

time, the deviation of the transmission line parameters will
only be larger or smaller than the current actual parameter
values. Therefore, at least one of μi and μ

�
i is zero.

Step 5: In order to realize the dynamic prediction of the
optimization model and further improve the accuracy of the
tuning results, the strong influence characteristic value
f (1)k+1 , f

(2)
k+1 , . . . , f

(n)
k+1 of the transmission line parameters predicted

by GM (1,1) is introduced as the input of the correction model.
Calculate the corresponding transmission line parameters
Model( f→k+1), and further determine the optimized value.

When
∣∣∣∣∣∣∣Model( f→k+1) − yk+1

∣∣∣∣∣∣∣> ε, return to step 3 to recalculate

the cost function value. When
∣∣∣∣∣∣∣Model( f→k+1) − yk+1

∣∣∣∣∣∣∣≤ ε, the

parameter optimization value is considered accurate and the
optimization algorithm ends.

EXPERIMENTAL ANALYSIS

In this paper, a local loop transmission network in a province is
taken as an example, and the method proposed in the article is used
to optimize and debug the loop network reactance parameters.
Figure 1 shows the simulation topology connection of the ring-
type power grid system based on Matlab/Simlink (In the Figure 1,
the red component represents the power node, the blue component
represents the 220 KV plant node, and the green component
represents the transmission line).

The historical measurement data of the ring network area within
1 year were extracted from the SCADA database of the Provincial
Dispatching Center and the database of the National Meteorological
Center. By weighing the transmission line parameter optimization
accuracy and the computational cost caused by the model learning
long-time section dataset, the training dataset is diluted on the
premise that the parameter optimization accuracy meets the actual
application. The time section interval is set to 3 h, including
Measurement of 2,920 moments. According to the analysis of
electrical mechanism, after the characteristics irrelevant to
parameter correction of line cross-section features are
preliminarily screened out, there are still as many as 10
associated attributes in the section dataset extracted and constructed.

Solving the Influence Coefficient of
Transmission Line Parameters
In order to reduce the interference of low-impact features in the
historical section dataset to the later model training, the correlation
between transmission line parameters and each impact feature was
analyzed and quantified. In this stage, considering that there is little
difference in significant influence rules between different circuits in
the same local ring network area, and in order to avoid weakening the
influence relationship betweenmeasurement features and parameters
over a long time span. Statistical experimental analysis was carried out
around the concentration time of the Zhenxin line in May. Quantify
the influence of the measurement characteristics of the first and last
ends of the transmission line and the meteorological measurement
characteristics on the reactance value.
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Through correlation analysis and quantitative results, it can be
found that the absolute value of the Pearson correlation
coefficient of the transmission line’s first-end active power (P),
first-end current (I) and ambient temperature and reactance
parameter (X) are greater than 0.7. It shows that the five
transmission line measurement characteristics have a strong
influence on the parameter values under the time sequence
state, and they are not negligible characteristics when training
the reactance value correction model.

Strong Influence Feature Weight
Calculation
Using the complete dataset of influence factors of transmission
line parameters constructed to verify the advantages of
ElasticNet-r based strong influence feature selection method in
this paper. The Ridge algorithm, Lasso algorithm, Elastic
Net algorithm and this algorithm are used to compare the
selection simulation results and model performance. Specific
experiments are as follows:

FIGURE 1 | Network topology connection.
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Verify the filtering effect of different algorithms in strongly
influencing feature selection. The initial alpha of each algorithm is
set to 0.1, and max_iter is set to 10,000. Elastic Net algorithm and
ElasticNet-r algorithm’s L1_ratio is set to 0.5. In the process of
model training, the value of the super-parameter is iteratively
adjusted, and the feature selection result under the optimal state
of different algorithms is strongly influenced, as shown in Figure 2.

From Figures 2A–D, it can be seen that each algorithm uses
model training on a complete dataset of transmission line parameters
to determine the corresponding weights for different features, and
then achieves the retention and elimination of influencing features.

Circuit Reactance Parameter Tuning
Taking the selected line “Head end active power,” “Head end
current,” “Terminal active power,” “Terminal current,” and

“Environment temperature” as input characteristics, and the
optimized value of transmission line parameters as output.
Establish a dynamic optimization model for GM-SVR
transmission line parameters, the result of tuning the reactance
parameters of the experimental loop network is shown in Table 1,
and it is compared with the tuning result of the engineer combining
the least square method and his own experience.

Table 1 shows that the method in this paper can be adapted to
different transmission lines and has a certain generalization
ability. At the same time, comparing the least square method
of each line and the results of manual tuning, the accuracy value
cannot meet the accuracy requirements of the reactance
parameter value of the transmission line, and it is highly
dependent on the experience of the engineer, resulting in the
timeliness of the optimized parameter result value, which

FIGURE 2 | Comparison of the selection results of different algorithms with strong influence.

TABLE 1 | Dynamic optimization of transmission line parameters.

Line number Line name Original reactance parameters Manual tuning Algorithm optimization

Parameter value optimization Remarks

1 NewDa Jia Line 1.0473 1.04 1.3563 Small change
2 NewDa Yi Line 1.0473 2.09 1.2943 Small change
3 ZhenXin Line 0.5484 2.31 2.0013 Increase
4 ZhenXing Line 1.0478 1.04 1.0478 Constant
5 BaiDa Line 2.8128 2.81 2.8128 Constant
6 Xingqiao Line 1.0600 1.06 1.0600 Constant
7 QiaoBai Line 2.1831 1.27 1.3498 Decrease
8 BaiTao Line 3.1040 2.86 2.4350 Decrease
9 TianTao Jia Line 0.4483 0.44 0.4659 Small change
10 TianTao Yi Line 0.4483 0.44 0.4659 Small change
11 TianQiao Jia Line 1.3901 1.01 0.6996 Decrease
12 TianQiao Yi Line 0.6996 1.01 0.6996 Constant
13 TianZhen Line 2.5043 2.50 2.4424 Small change
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cannot be long-term Maintain the accuracy of the power system’s
advanced calculation results such as state estimation. The method
in this paper only parameter optimization models trained and
learned through historical datasets, without manual experience.
The parameter optimization results can meet the accuracy
requirements of reactance parameters, and as long as the
training sample coverage is long enough Time section, the
parameter tuning results are sufficient to have good timeliness.

Validation Verification of Transmission Line
Parameter Optimization Method
In order to verify the effectiveness of the algorithm optimization
parameter values, the transmission line parameter values
optimized by the algorithm are filled into the state estimation
program simulation module of a provincial smart grid
dispatching technical support system, and the results of the
transmission line state estimation are observed. Figure 3A is
the state estimation result using the original parameters:

China power grid stipulates that the state estimation
qualification threshold for the active power measurement of
220 kV grid lines is 6.1 MW. Figure 3A uses the original
parameters for state estimation. The results show that the
residual error of seven lines exceeds the threshold, which
exceeds 50% of the total number of lines in the local ring
network.

It can be seen from Figure 3B that only two lines (ZhenXin Line
and TianZhen Line) have residuals exceeding the qualified
threshold, and the state estimation active residuals of the
remaining lines are all small, and the overall residuals are
significantly smaller than when the original parameters are used.
The pass rate of state estimation has been significantly improved.

CONCLUSION

This paper proposes a new method for dynamic optimization of
transmission line parameters based on grey support vector
regression (GM-SVR), which effectively improves the accuracy
and timeliness of transmission line parameters in the grid energy
management system (EMS) parameter library. The time series
changes of transmission line parameters are affected by the
operating conditions of the power grid and the complex
meteorological environment. The strong influence feature
selection model of the proposed method can accurately screen
out features that have a strong impact on transmission line
parameters. The limitation of specific input quantity is broken
when solving line parameter values based on electrical
mechanism modeling.

The analysis and verification results of actual engineering
examples show that the optimized transmission line
parameters of this method can significantly improve the pass
rate of power grid state estimation. It is of reference significance
for the accurate monitoring of power grid operation status and
the safe dispatch of power system. However, this method still has
shortcomings in considering the influence of parameters such as
the geomagnetic field and the geometric distance between lines in
special areas. This will be a subject to be studied in depth in the
next stage.
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FIGURE 3 | Using original parameters (A) and optimized parameters (B) for state estimation.
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