
Immobilization of Iron Minerals on a
Layered Silicate for Enhancing its
Solar Photocatalytic Activity toward
H2 Production
Hamza El-Hosainy1,2, Rafat Tahawy1, Mohamed Esmat1, Maged El-Kemary2 and
Yusuke Ide1*

1International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan,
2Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, Egypt

The development of efficient and cost-effective solar photocatalysts capable of producing
hydrogen from formic acid as a hydrogen storage medium is still a challenging issue.
Herein, we report that iron minerals, ferric iron hydroxy sulfates (FHS), immobilized on a
natural layered silicate, magadiite, can be used as a photocatalyst to produce hydrogen
from formic acid under irradiation with solar simulator. The material exhibits the hydrogen
production rate of 470 μmol g−1 h−1, which is considerably higher than that obtained on
other iron minerals and comparable to that obtained on precious metal-based
photocatalyst ever reported. The present result may open a way to design efficient
photocatalyst for hydrogen production from formic acid in an economically and
environmentally friendly way.

Keywords: layered silicate, magadiite, iron minerals, photocatalyst, hydrogen storage, formic acid

INTRODUCTION

Numerous endeavors have been done to develop new strategies that can store and provide
hydrogen, an alternative energy source to non-renewable resources including fossil fuels, at
acceptable costs (Loges et al., 2010; Grasemann and Laurenczy, 2012; Yadav and Xu, 2012; Li
and Xu, 2013; Singh and Xu, 2013). Due to its availability, non-toxicity, and safe handling in
aqueous solutions, formic acid (FA) is one of the most widely investigated hydrogen storage
materials and can generate a molecular hydrogen via dehydrogenation reaction (HCOOH↔H2

+ CO2) (Mori et al., 2013; Bulushev et al., 2016; García-Aguilar et al., 2016; Navlani-García
et al., 2018; Podyacheva et al., 2018; Navlani-García et al., 2019). The catalytic hydrogenation of
FA based on precious metals such as Pt, Pd, and Rh and its alloys have been extensively
investigated because they can be operated under relatively mild conditions (Mori et al., 2013;
Singh and Xu, 2013; Bulushev et al., 2016; Doustkhah et al., 2018; Podyacheva et al., 2018;
Doustkhah et al., 2020). On the other hand, efforts have been recently directed to developing
new catalytic systems that can decrease or replace precious metals used (Flaherty et al., 2010; Yi
et al., 2013).

Photocatalytic FA hydrogenation has been considered to offer an alternative because the reaction
can be done at room temperature using solar energy, available in an unlimited supply. Solids
photocatalysts such as TiO2 and CdS have been used for the reaction after the modification with
precious metals such as Ru, Pd, Au, and Pt (Matsumura et al., 1984; Zhang et al., 2010; Li et al., 2011;
Cai et al., 2013; Zhang Z et al., 2015). Recently, plasmonic photocatalysts like AuPd nanoalloys
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supported on carbon nitride have been reported to show a
relatively high photocatalytic activity for FA hydrogenation
(Zhang et al., 2019). While acknowledging these pioneering
works, the development of precious-metal-free photocatalytic
systems for FA hydrogenation is still challenging.

Here we report that ferric iron hydroxy sulfate (FHS)
minerals, hydronium jarosite and volaschioite (Umetsu et al.,
1977; Biagioni et al., 2011; Najorka et al., 2016), supported on a
natural silicate can be used as a solar photocatalyst for FA
hydrogenation. Although iron minerals and iron (oxyhydr)
oxides materials, including hematite and akaganeite, have
been extensively investigated as photocatalysts toward
different reactions due to its low-cost and biocompatibility
(Bora et al., 2013; Mishra and Chun, 2015; Ide et al., 2016a;
Mani et al., 2018; Ide et al., 2019), to the best of our knowledge,
this is the first report to show the solar photocatalytic activity of
FHS toward FA hydrogenation. We use a natural layered
silicate, magadiite, as the support of FHS because it can be
prepared by a simple hydrothermal reaction and possesses a
significantly larger density of surface silanol groups (for
immobilizing nanoparticles on the surface) than other
silicates (Rojo et al., 1988; Ide et al., 2018; Doustkhah and
Ide, 2020).

EXPERIMENTAL SECTION

Materials and Chemicals
The original (natural) form of magadiite containing sodium
cations in the structure, Na-magadiite was purchased from
Nippon Chemical Industrial Co., Ltd. Fe (NO3)3·9H2O (99%)
was bought from Nacalai Tesque. H2SO4 (97%) and acetonitrile
(99.5%) were obtained from Wako Pure Chemical Corporation.
P25 TiO2 was kindly supplied from Nippon Aerosil Co., Ltd. All
chemicals and materials were used without any further
purification.

Preparation of H-Magadiite
Na-magadiite (Na-mag, 10 g), was mixed with an aqueous
solution of HCl (1,000 mL, 0.2 M) and the dispersion was
stirred for 3 days. After separation of the product by
centrifugation (3,500 rpm, 30 min), the solid was washed with
pure water for several times and then dried under vacuum at
room temperature. The product was named H-mag.

Preparation of Iron Minerals Deposited on
H-mag
H-mag (200 mg) was mixed with acetonitrile solution (60 mL)
containing Fe(NO3)3·9H2O (1800 mg). Water (600 μL) and
H2SO4 (1,320 μL) were added to the mixture and then the
mixture was stirred for 1 h. Subsequently, the obtained
dispersion was transferred to Teflon-lined stainless-steel
autoclave (100 mL) and solvothermally treated at 100°C for
24 h. After the reaction, the solid product was separated by
centrifugation (3,500 rpm, 30 min) and subsequent
decantation, and finally dried at room temperature under

vacuum overnight. The obtaining product was named FHS/
H-mag. A control sample without H-mag (named FHS) was
also prepared by the similar procedure except for adding H-mag.
Likewise, α-Fe2O3 was prepared by the similar procedure except
for adding H-mag and H2SO4.

Characterization
Powder X-ray diffraction (XRD) patterns were taken utilizing a
Rigaku SmartLab diffractometer, with Cu Kα radiation at 40 kV
and 30 mA at a scan rate of 1°min−1. Fourier transform infrared
(FTIR) spectra were measured on a Shimadzu FTIR-4200
spectrometer. UV−vis spectra were recorded with a JASCO
V-570 spectrometer. N2 adsorption/desorption was carried
out at −196°C using a MicrotracBel BELMAX after the
samples had been evacuated at 60°C for 12 h. Field emission
scanning electron microscope (FE-SEM) images were observed
with a HITACHI S- 4800 microscope and a Hitachi SU-8230
microscope equipped with energy dispersive X-ray (EDX)
spectroscopy analyzer. X-ray photoelectron spectroscopy
(XPS) was performed using a PHI Quantera SXM
instrument, operated with Al Kα radiation at 20 kV and
5 mA. The binding energy shift was calibrated using the C1s
level at 285.0 eV.

Photocatalytic Decomposition/
Dehydrogenation of FA
Oxidative decomposition and dehydrogenation of FA was
performed under O2 and Ar atmospheres, respectively, in a
Pyrex glass tube (34 mL) as follows: the powder sample
(15 mg) was added into an aqueous solution (5 mL) containing
formic acid (5 vol%) and then bubbled with O2 or Ar for 30 min.
Subsequently, the mixture was ultrasonicated for 2 min and then
irradiated via a solar simulator (San-Ei Electric, λ > 300 nm,
1,000Wm−2) under stirring. The headspace gas in the glass tube
was withdrawn with a gas-tight syringe and quantified using a
BID gas chromatograph (Shimadzu BID-2010 plus) equipped
with a Micropacked ST column. For apparent quantum yield
(AQY) calculation, a Pyrex glass tube was irradiated with a

FIGURE 1 | (A) XRD patterns and (B) FT-IR spectra of H-mag, FHS and
FHS/H-mag samples.
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FIGURE 2 | (A) SEM images of H-mag and FHS/H-mag and (B) EDS elemental mappings and EDX spectrum of FHS/H-mag.
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monochromated light using an Ushio 500W Xe lamp equipped
with a Bunkoukeiki SM-25 monochromator. The number of
incident photons was determined using a Bunkoukeiki
S1337–1010BQ silicon photodiode. AQY (%) was defined as
[number of H2 evolved] × 2/[number of incident photons] × 100.

RESULTS AND DISCUSSION

FHSminerals, hydronium jarosite and volaschioite with chemical
formulas of (H3O)Fe3(SO4)2(OH)6 and Fe4(SO4)
O2(OH)6(H2O)2, respectively, are metastable phases relative to
hematite and converted to hematite at elevated temperature
(Umetsu et al., 1977; Biagioni et al., 2011; Najorka et al.,
2016). Thus, we had investigated the effect of temperature on
the formation of FHS on H-mag in the reactions of H-mag with
Fe(NO3)3·9H2O solution containing H2SO4. At room
temperature and 50°C, no particles were deposited on H-mag.
In contrast, iron species, which later was confirmed to be FHS,

was deposited on H-mag (FHS/H-mag) when the reaction was
conducted at 100°C.

Figure 1A shows the XRD patterns of FHS/H-mag and
H-mag. FHS/H-mag gave diffractions peaks due to hydronium
jarosite and volaschioite, in addition to those of H-mag. The
position and intensity of the peak due to the basal spacing for
FHS/H-mag observed at around 2θ of 7.5° was not significantly
different from that of H-mag. These results suggest the formation
of FHS phases mainly outside H-mag particles.

FTIR also shows the presence of FHS in the FHS/H-mag
sample (Figure 1B). FHS/H-mag had an absorption band at
447 cm−1 assigned to the vibrations in FeO6 of FHS (Ristić
et al., 2005; Wei and Nan, 2011), in addition to those at 543,
574, and 611 cm−1 assigned to the Si-O-Si bending vibration,
those at 707 and 784 cm−1 attributed to the Si-O-Si stretching
vibration, and those from 1,000 to 1,260 cm−1 assigned to the
Si-O-Si asymmetric stretching vibration (Kooli et al., 2001).
Note that the characteristic absorption band due to the
sulfate (SO4

2-) moiety of FHS, which should be observed
in the range of 900–1,300 cm−1 (Ristić et al., 2005), are
overlapped by the absorption bands due to the silicate
framework. Importantly, FHS/H-mag, moreover, had an
absorption band at 651 cm−1 assignable to the Si-O-Fe
vibration (Szostak et al., 1987). All these results
demonstrate that the FHS phases are immobilized on the
surface of H-mag particles. XRD and FTIR data also
confirmed that a control sample, sole FHS, is composed of
hydronium jarosite and volaschioite.

To investigate the location of the immobilized FHS, SEM-EDX
analysis was performed. As shown in Figure 2A, H-mag is
composed of rosette-like aggregates of large plate-like crystals
with a size of ca. 2 μm. On the other hand, FHS/H-mag is also
composed of similar rosette-like aggregates but their surface is
partially rough and disordered due to the presence of smaller
particles attached. From the EDX elemental mapping of FHS/
H-mag (Figure 2B), Fe and S elements are entirely distributed on
each rosette-like aggregate. Moreover, the EDX spectrum of FHS/
H-mag indicates that the Fe, S, and Si contents in FHS/H-mag is
1.5, 1.4, and 33.5 wt%, respectively. Note that Fe and S were also
detected on particles other than rosette-like aggregates while the
amount of the former particles were considerably smaller than
that of the latter particles.

Nitrogen adsorption-desorption isotherms measurements
further confirmed the morphology of FHS/H-mag. As shown
in Figure 3, FHS/H-mag showed a significantly decreased
external surface area compared to H-mag. This result means
that small FHS segments covers rosette-like aggregates or fill the
angularities of the aggregates. All the results described above
indicate that FHS are immobilized in a highly dispersed state on
the particle outer surface of H-mag for FHS/H-mag.

The optical properties of FHS/H-mag were investigated
(Figure 4). In contrast to H-mag that is white, FHS/H-mag is
light yellow. UV-Vis absorption spectra revealed that FHS/
H-mag had an absorption onset around 550 nm like sole FHS.
We thus expected that FHS/H-mag could be used as
photocatalysts working under solar light irradiation.

FIGURE 3 | N2 adsorption/desorption isotherms of H-mag and FHS/
H-mag.

FIGURE 4 | UV-Vis spectra of H-mag, FHS and FHS/H-mag. Inset
shows the photographs of each powder.
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The photocatalytic activity of FHS/H-mag was firstly
evaluated via the oxidation of FA to evolve CO2, a
representative reaction to check the performance of the
synthesized photocatalysts (Kominami et al., 2010; Ide and

Komaguchi, 2015; Ide et al., 2016b; Saito et al., 2016). As shown
in Figure 5A, the amount of evolved CO2 required for FA
oxidation on FHS/H-mag increased linearly with the
irradiation time, showing the photocatalysis of FHS/H-mag

FIGURE 6 | (A) H2 evolution profiles (B) H2 evolution rates on different materials from a deaerated aqueous solution containing FA under solar simulator irradiation
(C) Durability test for FHS/H-mag and (D) Action spectrum in photocatalytic dehydrogenation of FA on FHS/H-mag.

FIGURE 5 | (A) CO2 evolution and (B) H2 evolution profiles on different materials from an aerated aqueous solution containing FA under solar simulator irradiation.
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toward this reaction. This result, considering that H-mag was
inactive for this reaction, indicates the photocatalytic activity of
the FHS component of FHS/H-mag. Importantly, with the
same sample amount (15 mg), FHS/H-mag, having only
1.5 wt% of the immobilized Fe, showed a high CO2

evolution rate comparable to that of P25, a benchmark TiO2

photocatalyst, and significantly higher than that of a typical iron
mineral, α-Fe2O3 (hematite) and sole FHS. These results
demonstrate the high photocatalytic activity of the
immobilized FHS for FHS/H-mag. Furthermore, to our
surprise, FHS/H-mag produced H2 even in the presence of
O2 as shown in Figure 5B. Generally, the photocatalytic
decomposition of organic compounds, including FA, into
CO2 proceeds efficiently with O2 probably because O2 is
reduced with photoexcited electrons to produce a relatively
stable superoxide radical anion and then electron–hole
recombination is retarded (Nosaka et al., 1997; Ohtani et al.,
2008). FHS/H-mag could reduce FA in competition with O2;
thus, we also expected its high photocatalytic activity toward FA
dehydrogenation (reduction).

As expected, FHS/H-mag showed a high H2 production rate
that is considerably higher than that obtained on P25 and
α-Fe2O3 with the same sample amount (Figures 6A,B). We
could not detect CO at all but CO2, confirming the
photocatalytic FA dehydrogenation ability of FHS/H-mag. To
compare the photocatalytic activity of FHS/H-mag objectively,
we calculated the hydrogen evolution rate as 470 μmol g−1 h−1.
This value was comparable to that reported for Rh-N-TiO2

(750 μmol g−1 h−1), Cu-TiO2 (830 μmol g−1 h−1) and Ru-CdS
supported on a zeolite (540 μmol g−1 h−1) (Zhang et al., 2010;
Halasi et al., 2012; Lanese et al., 2013). The photocatalytic
activity of FHS/H-mag was significantly higher than that of
sole FHS. FHS/H-mag showed the durability against the
photocatalytic reaction by approximately 3 h-irradiation
(Figure 6C).

We investigated the reason for the high activity of FHS/
H-mag. It has been reported that Fe(III)-salen complex
integrated with CdS photocatalytically yields H2 from FA.
The proposed photocatalytic mechanism involves 1) the

adsorption of FA on CdS to produce formate (HCOO−), 2)
the band gap excitation of CdS generates an electron/hole pair
and the photogenerated hole oxidizes formate to produce
CO2

− and H+, 3) the Fe(III) complex rapidly accepts the
photogenerated electron from the excited CdS to produce
Fe(II) species, 4) transfer of another electron from CO2

− to
Fe(II) species produces Fe(I) species which effectively reduce
H+ to yield H2 (Irfan et al., 2020). In the present case, the
immobilized FHS can act as a semiconductor photocatalyst
enabling to both oxidize formate to produce H+ and reduce
H+ to yield H2. This scenario is suggested by the action
spectrum of FHS/H-mag in FA dehydrogenation
(Figure 6D), in which AQY on FHS/H-mag for H2

evolution well-correlated with the photo-adsorption of
FHS/H-mag.

We, moreover, investigated the effect of the hybridization
between FHS and H-mag on the high activity of FHS/H-mag. The
Fe 2p XPS spectra for FHS and FHS/H-mag revealed that the
oxidation state of Fe ions is mainly trivalent (Zhang X et al., 2015)
and the Fe 2p peak for FHS/H-mag appeared at a higher binding
energy region than that for FHS (Figure 7). This result suggests
that Fe(III) sites in the FHS component (Figure 8) of FHS/H-mag
becomes more cationic (Eguchi et al., 2017) and thus the
adsorption of FA (formation of formate) is enhanced, in
addition to that the FHS component is immobilized on the
surface of H-mag particles.

CONCLUSION

We have reported the synthesis of iron minerals, ferric iron
hydroxy sulfates (hydronium jarosite and volaschioite)
supported on a layered silicate, magadiite, via a simple
hydrothermal reaction of the silicate with a solution
containing iron nitrite Fe(NO3)3·9H2O and H2SO4. We
demonstrated that the iron minerals were immobilized in a
highly dispersed state and showed an impressive solar

FIGURE 8 |Crystal structure of hydronium jarosite showing an example of
Fe(III) cites in FHS that can interact with the surface of H-mag. Color coding:
pink � H, red � O, yellow � S, brown � Fe.

FIGURE 7 | Fe 2p-region XPS spectra of FHS and FHS/H-mag samples.
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photocatalytic activity toward FA dehydrogenation comparable
to that obtained on precious metal-based photocatalysts ever
reported. The material design presented here is flexible to design
supported photocatalysts based on different iron minerals. This
paper thus may open a way to create highly efficient precious-
metal free solar photocatalysts for H2 production fromH2 storage
materials.
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