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Hybrid halide perovskites feature mixed ionic-electronic conductivities that are enhanced
under device operating conditions. This has been extensively investigated over the past
years by a wide range of techniques. In particular, the suppression of ionic motion by
means of material and device engineering has been of increasing interest, such as through
compositional engineering, using molecular modulators as passivation agents, and low-
dimensional perovskite materials in conjunction with alternative device architectures to
increase the stabilities under ambient and operating conditions of voltage bias and light.
While this remains an ongoing challenge for photovoltaics and light-emitting diodes, mixed
conductivities offer opportunities for hybrid perovskites to be used in other technologies,
such as rechargeable batteries and resistive switches for neuromorphic memory elements.
This article provides an overview of the recent developments with a perspective on the
emerging utility in the future.
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INTRODUCTION

The development of a new generation of thin-film semiconductors has been propelled by the
emergence of hybrid halide perovskites (Kim et al., 2012; Lee et al., 2012; Jena et al., 2019). These
materials are commonly defined by the ABX3 formula (Figure 1A) that represents the ionic crystal
structure comprised of a central (A) cation, which can be either inorganic (such as Cs+) or organic
(methylammonium (MA, CH3NH3

+), formamidinium (FA, CH(NH2)2
+), etc.), encased by

divalent-metal-halide-based (B � mostly Pb2+ or Sn2+; X � I−, Br− or Cl−) octahedral
framework (Grätzel, 2017). Such versatile ionic systems feature remarkable light-absorption
coefficients as well as a high defect tolerance due to an interplay of electronic and structural
features (Meggiolaro et al., 2020) that can account for exceptional charge-carrier lifetimes (Kim
and Petrozza, 2020) of interest to a number of optoelectronic devices, from solar cells and
photodetectors to light-emitting diodes (Rong et al., 2018; Snaith, 2018). As a result, they have been
proven effective light-absorbers in photovoltaic devices leading to extraordinary performances
that have in just a decade surpassed 25% (Ehrler et al., 2020), along with exceptional light-emission
(Abdi-Jalebi et al., 2018; Lin et al., 2018; Smith et al., 2019) and photodetection capacities (Lei et al.,
2020). Their application has, however, been hampered by the limited stability under the
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jovana.milic@unifr.ch
Moritz H. Futscher

moritz.futscher@empa.ch

Specialty section:
This article was submitted to

Solar Energy,
a section of the journal

Frontiers in Energy Research

Received: 13 November 2020
Accepted: 26 January 2021
Published: 16 March 2021

Citation:
Futscher MH andMilić JV (2021) Mixed
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environmental conditions, such as oxygen and moisture, as well
as due to intrinsic instabilities under the operating conditions of
voltage bias, light, and elevated temperature (Wang R. et al.,
2019). This has been primarily the result of mixed conductivity
and subsequent reactivity of mobile ions (Figure 1B) that is
often associated with the degradation mechanisms during
device operation (Wang R. et al., 2019), as well as the
appearance of the hysteresis in current-voltage
characteristics (Figure 1C), the absence of which does not
imply absence of mobile ions (Tress, 2017; Zhao et al., 2019). A
number of strategies have thus been established to mitigate the
phenomena caused by ion migration (Figure 1D), such as the
use of passivating agents (Milić et al., 2019b; Ferdani et al.,
2019) and low-dimensional materials (Grancini and
Nazeeruddin, 2019; Mao et al., 2019). There has also been a
surge to use mixed conductivity in other emerging
applications, such as rechargeable batteries (Tathavadekar
et al., 2017; Dawson et al., 2018; Li et al., 2020) and
resistive switches (Xiao and Huang, 2016; Choi et al., 2018;
Lv et al., 2020). This article provides a perspective on the
present challenges and opportunities associated with mixed
conductivity of hybrid perovskites, from its phenomenology
and mitigation strategies to utilization.

PHENOMENOLOGY

Halide perovskites are known to be ion conductors since the
1980s (Mizusaki et al., 1983). The recent developments in
hybrid perovskite optoelectronics stimulated an increased
interest in their mixed conductivity (Yang et al., 2015;
Walsh and Stranks, 2018). The ionic conductivity is given
by Eq. 1

σ ion � qnionμion (1)

where q is the charge, nion the concentration and μion the mobility
of mobile ions. Using the Nernst-Einstein relation, the mobility
can be expressed in accordance with Eq. 2

μion �
q

kBT
Dion (2)

where kB is the Boltzmann constant, T the temperature, and Dion

the ionic diffusion coefficient. First principle calculations suggests
halide ions to be the most mobile ion species and that their
migration is facilitated through hopping between neighboring
sites (Eames et al., 2015). This was confirmed bymeasurements of
the ionic conductivity as a function of iodine partial pressure
(Senocrate et al., 2017). Hence, the diffusion coefficient is given by
an Arrhenius relationship defined by Eq. 3.

D � ]0 d2

6
exp( − ΔG

kBT
) � D0 exp( − EA

kBT
) (3)

where ]0 is the attempt frequency of an ionic jump, d the jump
distance, and ΔG the change in Gibbs free energy during the jump
of a mobile ion (Meggiolaro et al., 2019). The diffusion coefficient
describes the probability of an ion overcoming the energy barrier
and is often written with a temperature-independent prefactorD0

and an activation energy EA, which is thus highly temperature-
dependent (Zou and Holmes, 2016; Bruno et al., 2017). Since ions
are charged particles, they drift when subjected to an electric field
(Figure 1B). Hence, the application of a voltage to a perovskite-
based device changes its resistance by the migration of mobile
ions to and from the interfaces. This is often associated with the
occurrence of hysteresis in the current-voltage characteristic
(Figure 1C) and can be observed, for example, in
galvanostatic measurements (Figures 1E–H) (Yang et al.,
2015; Weber et al., 2018). Tracer diffusion and nuclear
magnetic resonance measurements show that I− is the most
mobile ion species in MAPbI3, as opposed to MA+ and Pb2+

that are likely not very mobile. Therefore, the migration of I− is
attributed to these observed changes in resistance (Senocrate
et al., 2017). Photothermal-induced resonance microscopy,
however, revealed migration of MA+ in addition to I−,
evidencing that both cations and halides are able to migrate
through the perovskite bulk (Yuan et al., 2015). These differences
in the obtained characteristics might be the result of variations
in sample fabrication, which could also explain why various
studies report different results on whether I− or Br− has a
higher conductivity in MAPbX3 (Kim et al., 2020; McGovern
et al., 2020). Nevertheless, it is generally accepted that the halide
ions are the fastest mobile ion species. Measured diffusion
coefficients for halide ions in MAPbI3 range from 10–6 to
10–9 cm2/s at room temperature and the spread in values was
shown to follow the Mayer-Nudel rule (Reichert et al., 2020a).
This is much faster than mobile MA+ ions, with typical diffusion
coefficients between 10–10 to and 10–12 cm2/s (Yuan et al., 2015;
Futscher et al., 2019). As a result, it takes mobile halides a few to
hundreds of ms to migrate through the perovskite bulk for typical
perovskite thicknesses (of several hundred nm), with important
implications for manymeasurement techniques that often neglect
ion migration (Almora et al., 2019; Futscher et al., 2020b).

To obtain a complete understanding of the ionic conductivity,
the density of the mobile ions is of crucial importance.
However, no consensus has yet been reached on the density of
mobile ions, with reported values ranging from 1012 to
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1019 cm−3(Birkhold et al., 2018; Moia et al., 2019; Reichert et al.,
2020b; Duijnstee et al., 2021). Commonly used techniques for
quantifying both the diffusion coefficient and the density of
mobile ions include impedance spectroscopy and transient
current and capacitance measurements (Almora et al., 2016;
Bertoluzzi et al., 2018; Wang H. et al., 2019; Futscher et al.,
2019). The advantage of these techniques is that the ionmigration
can be quantified in complete devices. However, these are
indirect methods, which means that theoretical models must
be used for quantification, which leads to a large spread in
obtained mobile ion densities that can vary by several orders of
magnitude depending on the model used (Bertoluzzi et al.,
2020). Moreover, most models assume only a single mobile ion
species, which is not always the case. As a result, there is an
ongoing debate about the mobile ion density and its influence
on the operation of perovskite-based devices (Moia et al., 2019;
Caram et al., 2020; McGovern et al., 2020).

During illumination with photon energies above the band gap,
both the electronic and the ionic conductivity increases (Figures
1G,H), with important implications on photo-induced phase
separation (Brennan et al., 2020). There are a number of
possible effects that can explain this behavior which have been
studied experimentally (Xing et al., 2016; Kim et al., 2018; Motti
et al., 2019) as well as theoretically (Katan et al., 2018; Li Y. T. et al.,

2019; Meggiolaro et al., 2019). Here, we provide a brief overview of
these effects to highlight their impact on ion migration. The density
of mobile ions can be increased by an enhanced defect
concentration, facilitated by interstitial formations due to hole
capture or by non-radiative recombination (Stranks, 2017; Kim
et al., 2020). In addition, the attempt frequency may be influenced
by an enhanced electron-phonon coupling as indicated by first-
principles calculation (Katan et al., 2018). Finally, the jump distance
and the activation energy can be affected due to a change in the local
crystal structure, such as by photostriction or by polaron formation,
which leads to a local lattice deformation (Neukirch et al., 2016;
Zhou et al., 2016;Muscarella et al., 2020). The number of mobile ion
species, their ionic conductivity, and their behavior under
illumination are strongly dependent on the perovskite
composition (Figure 1H) (Kim et al., 2020). In this regard,
further development of suitable models for a more universal
approach to the analysis of hybrid halide perovskites is required.

MITIGATION

Despite the remarkable optoelectronic properties of hybrid halide
perovskites in light-emitting and photovoltaic devices, their
limited stability poses challenges that are in part closely

FIGURE 1 | (A) Structural representation of 3D perovskites defined by the ABX3 formula illustrated by a cubic structure. (B) Illustration of mixed conductivity caused by
ion migration in an electric field. (C) Hysteresis in current-voltage device characteristics that is commonly associated with ion migration. Based on the work published by the
Royal Society of Chemistry (Weber et al., 2018). (D) Schematic of molecular modulation of hybrid perovskites (left) and layered low-dimensional perovskite architectures
(right) based on organicmoieties (red rods) (Graetzel andMilić, 2019). These structures can contribute tomitigating the detrimental effects of ionicmotion, e.g., through
interface, grain, and strain engineering. (E,F) Evolution of potential during a galvanostatic (1 nA) polarization measurement of MAPbI3 in the (E) dark and (F) under light
illumination. Inset shows a simplified circuit model used to representmixed conductivity, including electronic resistance (Reon), ionic resistance (Rion) and chemical capacitance
(Cδ). Adaptedwith permission fromWiley VCH (Yang et al., 2015). (G,H) Electronic (square) and ionic (circle) conductivities under illumination (red) and in the dark (black) upon
(G) iodine partial pressure of MAPbI3 [Adapted from Nature (Kim et al., 2018)] or (H) other perovskite compositions. Adapted from Wiley VCH (Kim et al., 2020).
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related to their mixed conductivity (Wang R. et al., 2019). In
particular, ion migration that is accelerated under the operating
conditions of voltage bias, light, and elevated temperature
contributes to the gradual degradation during operation
(Correa-Baena et al., 2016; Domanski et al., 2018; Akbulatov
et al., 2020; Yan et al., 2021). While some of these processes are
reversible, others lead to irreversible changes that need to be
mitigated (Domanski et al., 2017; Tress et al., 2019). For instance,
elevated temperatures during operation were found to induce ion
migration from the neighboring layers, such as the counter-
electrodes (e.g., Au) as well as dopants of the hole-
transporting material (e.g., Li+), which act as defects in the
active layer (Domanski et al., 2016). Similarly, ion migration
and dopant reactivity are found to induce transformations in the
selective charge-transport layers, such as the hole-transporting
materials (Magomedov et al., 2018; Boldyreva et al., 2020),
whereas electron-transporting layers were also found to affect
the stability of hybrid perovskite devices through various (photo)
redox processes (Akbulatov et al., 2020; Zhidkov et al., 2020).
Moreover, photoinduced halide segregation results in gradual
changes of the optoelectronic properties of the active layer,
thereby affecting the resulting performances (Gratia et al.,
2016; Slotcavage et al., 2016; Barker et al., 2017; Samu et al.,
2017; Yoon et al., 2017).

Therefore, there has been an ongoing effort to suppress ion
migration in the perovskite materials and optoelectronic devices,
which evolved into a number of strategies that are mostly based
on either compositional or interface engineering (Figure 1D)
(Shao and Loi, 2020), such as through molecular modulation (i.e.
passivation and using interfacial blocking layers) (Milić et al.,
2019b; Zhang et al., 2019), partially substituting ions (Ferdani
et al., 2019; Gangishetty et al., 2019; Rybin et al., 2020), as well as
using low-dimensional hybrid perovskites that suppress ion
migration (Rudd and Huang, 2019). In the case of interfacial
engineering, using molecular assemblies (Bai et al., 2019; Milić
et al., 2019b; Zhang et al., 2019) and graphene composites (Arora
et al., 2017; Milić et al., 2018) at the interface of charge selective
transport layers was found to be particularly effective in
stabilizing the perovskite devices (Ehrler and Hutter, 2020).
This is often related to blocking the ions from the neighboring
layers (Domanski et al., 2016), although very few systematic
investigations demonstrate this particular mode of action
(Merdasa et al., 2020; Ruiz-Preciado et al., 2020). Moreover,
using appropriate selective charge-selective extraction layers
can suppress the (photo)redox degradation pathways (Wei
et al., 2020). In addition, the partial substitution of A-site ions,
such as by using guanidinium, or B-site ions, such as via
manganese, have shown promising increases in stabilities by
suppressing ion migration (Ferdani et al., 2019; Futscher et al.,
2020a). The reduction of ion migration may be related to local
distortion leading to a lattice compression, which has recently
shown to increase the activation energy for ion migration,
enabling strain engineering (Hutter et al., 2020). Moreover,
low-dimensional perovskites and their analogs (Connor et al.,
2018; Milić et al., 2019a; Li Y. et al., 2019; Umeyama et al., 2020)
were also found to be effective in suppressing ion migration due
to the ion-impermeable organic spacer layers (Lin et al., 2017;

Rudd and Huang, 2019). In this regard, in-depth analysis is
required to elucidate the mechanisms and establish structure-
property relationships that define guidelines for suitable
molecular design toward addressing the challenges of
controlling ion migration in various hybrid perovskite
compositions. This further involves understanding the
underlying polaronic effects on the properties of various
compositions (Zhou et al., 2019; Meggiolaro et al., 2020) and
dimensionalities (Srimath Kandada and Silva, 2020). Moreover,
since the reported lifetimes of hybrid perovskite devices vary due
to different assessment procedures, rigorous stability testing
protocols are being established (Khenkin et al., 2020) that
allow for a critical assessment of the operating conditions.

UTILIZATION

While ion migration can be detrimental in the case of solar cells
and light-emitting diodes, the mixed ionic-electronic nature of
hybrid perovskites opens up possibilities for other emerging
applications, such as in resistive switches and batteries (Tress,
2017; Zhao et al., 2019; Tress, 2017; Zhao et al., 2019). In
particular, ion migration enable switching devices from a high
resistive state (HRS) to a low resistive state (LRS; Figures 2A–D)
(Zhu et al., 2017; Ma et al., 2020). These resistive switches enable
the fabrication of ‘memristors’, which allows for simultaneous
storage and processing of information with low energy
consumption and high computing power, similar to the
human brain. Such a response resembles biological synapses
with low energy consumption that can be used to develop
novel nonvolatile neuromorphic computing systems (Ma et al.,
2020). We recognize the ongoing debate on the appropriate
distinction between resistive switches and memristors that is
beyond the scope of this article.

A perovskite-based resistive switch from MAPbI3-xClx has
been demonstrated for the first time in 2015, which could be
switched for more than 100 cycles with a ratio of HRS/LRS of 4
(Yoo et al., 2015). This performance has considerably improved
since then to an HRS/LRS ratio of up to 107, stability of more than
103 cycles, low power consumption in the order of pW, and a
retention time up to 105 s (Tian et al., 2017; Zhao et al., 2019). The
mechanism that dominates such a ‘memory’ behavior, is intensely
debated and appears to be strongly dependent on the
composition. For example, in the case of MAPbBr3 the change
in resistance was found to be continuous with the applied voltage,
whereas for MAPbI3 it is abrupt (Guan et al., 2018). Both these
changes can be attributed to a common underlying process that is
the migration of mobile ions due to the application of an external
electric bias (Kim et al., 2019). This increase of ion density at the
interface leads to a linear change in charge-carrier injection
barrier with the applied voltage that is measured (Xiao and
Huang, 2016). In addition, chemical reactions of the ions from
the (e.g., metal) contacts can also lead to a continuous change in
resistance with applied bias (Solanki et al., 2020). In contrast to
these continuous changes, abrupt resistance changes can occur
due to the formation of conductive filaments of halide vacancies
or metal ions within the perovskite (Figure 2A) (Zhu et al., 2017;

Frontiers in Energy Research | www.frontiersin.org March 2021 | Volume 9 | Article 6290744
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Sun et al., 2018). Another possible reason that can lead to
‘memristive’ behavior, which has to the best of our knowledge
not yet been discussed in hybrid perovskites, is the formation of
ferroelectric tunneling barriers (Chanthbouala et al., 2012) that
remain to be explored. Moreover, light illumination can further
suppress and even reverse the resistive switching behavior due to
a reduced halide migration barrier (Figure 2D) (Zhu et al., 2017;
Zhao et al., 2020). This opens the possibility of devices that can be
set, reset, modified, and read out using a combination of electrical
and optical stimuli. This light-tunable synaptic effect allows
perovskite-based memristors to mimic the behavior of many
biological systems, such as those of the dopamine-mediated
synaptic activity (Ham et al., 2019).

In addition, as other ions (such as Li+) can diffuse within
hybrid perovskites, they can also be used in rechargeable batteries.
In a Li-ion battery, energy is stored and recovered by moving Li+

ions between a cathode and an anode via an electrolyte
(Figure 2E). The use of MAPbI3 and MAPbBr3 as anodes in
Li-ion batteries was demonstrated for the first time in 2015 (Xia
et al., 2015). It was found that MAPbBr3 has a much higher
capacity (more than 200 mAhg−1) than MAPbI3 (44 mAhg−1).
This shows that composition plays an important role in storage
performance. While it was initially assumed that Li+ ions
intercalate into MAPbBr3 (Vicente and Garcia-Belmonte,
2017), it was later found that a conversion reaction with Li+ is
most likely responsible for the observed capacity (Dawson et al.,
2017). The capacity of perovskite-based anodes can be further
improved by reducing the dimensionality from 3D to 2D and
from 2D to 1D, due to the better accessibility of Li+ ions to Pb2+

sites to reversibly form LixPb alloys (Figure 2F) (Ramirez et al.,

2018). For 1D C6H9I3NOPb perovskites, capacities of
453 mAhg−1 at 500 mAg−1 were demonstrated for up to 250
cycles, higher than the theoretical capacity of graphite
(372 mAhg−1) (Tathavadekar et al., 2017). Besides anodes,
perovskites can also be used as cathodes (Smith et al., 2017),
which was first demonstrated in 2014 with an open-circuit
voltage of 3.2 V using a lead-free 2D halide perovskite
(Figure 2G) (Jaffe and Karunadasa, 2014). One particularly
interesting feature is that perovskites can act as photoactive
electrodes and thus as a power source to drive Li+ ions to the
anode under illumination, thus converting the irregular solar
power into a stable power supply in rechargeable photobatteries
(Figure 2H) (Ahmad et al., 2018). This opens a new path for the
utility of mixed conductivity of hybrid perovskites that is yet to be
exploited. To achieve this goal, a targeted control of the desired
ion migration process is necessary, and the suppression of other
detrimental ion migration processes that contribute to device
degradation and reduce the lifetime of these devices.

DISCUSSION

Mixed ionic-electronic conductivity of hybrid perovskites has
emerged as one of the defining features of this unique class of
materials (Yang et al., 2015; Tress, 2017). While this poses
challenges to the intrinsic stabilities of light-emitting and
photovoltaic device as a result of accelerated ion migration
during operation, these properties are simultaneously gaining
interest in alternative applications, such as in rechargeable
batteries and resistive switches for memory elements.

FIGURE 2 | Hybrid halide perovskites as (A–D) resistive switches and (E–H) rechargeable batteries. (A) Schematic representation of low resistance states (LRS)
and high resistance states (HRS) as a result of the presence or absence of conductive filaments from the contact electrodes or contributing ion vacancies (VX

+). (B)
Current-voltage characteristics and (C) endurance test for 500 switching cycles of a resistive switch. Adapted from (Solanki et al., 2020). (D) Light-tunable resistance
switch set by an electric pulse and reset by a light pulse. Adapted from (Zhu et al., 2017). (E) Schematic representation of a rechargeable battery. (F) Perovskite-
based anode performance for rechargeable batteries based on different dimensionalities (1D, 2D and 3D). Adapted from (Tathavadekar et al., 2017). (G)
Charge–discharge curves of perovskite-based cathodes. Adapted from (Jaffe and Karunadasa, 2014). (H) Charge–discharge curves of perovskite-based
photocathode. Adapted from (Ahmad et al., 2018).
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Futscher and Milić Mixed Conductivity in Hybrid Perovskites

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


In this regard, a number of strategies has been developed to
address the stabilities of perovskite light-emitting diodes and
solar cells, which primarily rely on interfacial and compositional
engineering and the use of low-dimensional perovskites. To this
end, eliminating the toxic lead toward lead-free and air-stable
perovskites remains a pressing issue. Furthermore, an in-depth
analysis of their operation is required to unravel the underlying
processes responsible for the degradation toward understanding
the structure-property relationships that could guide advanced
material design. For this purpose, further development of
analytical methods is needed, in particular those that can
directly relate the structural and optoelectronic properties,
while monitoring the changes during operation. Methods
based on solid-state NMR spectroscopy (Piveteau et al., 2020)
and photoluminescence mapping (Doherty et al., 2020) that can
be related to the structure at the nanoscale are particularly
promising. These studies should be complemented with
temperature-dependent analysis as well as establishing
appropriate models for the analysis of optoelectronic
properties to further deepen the fundamental understanding of
the coupling between electronic and ionic processes.

Such a critical analysis is further required to pave the way for
realizing the potential of hybrid perovskites in rechargeable
batteries and in resistive switches for neuromorphic computer
systems. Low-dimensional perovskites are of particular interest in
this respect, as their organic and inorganic layers can be
individually adapted to optimize stability, energy storage, and
ion conductivity. Since ion migration in hybrid perovskites is
light-activated, ionic and electronic processes can be coupled
with light, which holds great potential for light-activated

artificial synapses and photobatteries. However, research on
perovskite-based materials for rechargeable batteries and
resistive switches is still at an early stage and further joint
efforts are needed to harness their full potential. In particular,
the underlying mechanisms of resistive switching remain elusive
and are subject of continuous evaluations. Similarly, deciphering
the function of hybrid perovskites for use as cathodes and anodes
in rechargeable batteries and photobatteries stimulates ongoing
investigations. Such developments may benefit from the emerging
field of optoionics, which will further broaden research horizons
(Senocrate et al., 2020).

These research efforts collectively promise to provide critical
level of understanding of hybrid perovskites toward their
applications. We envisage that mixed conductivity of hybrid
halide perovskites will play a key role in the development of
innovative nanotechnologies in the future.
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