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Lithium-sulfur (Li-S) and lithium-selenium (Li-Se) batteries are both facing the cathode
issues of low Coulombic efficiency and unstable cycling stability due to the severe
shuttle effect of lithium polysulfides or lithium polyselenides. Simultaneously inhibiting
polysulfides/polyselenides dissolution in organic electrolytes and propelling them to
conversion via introducing polar, catalytic materials has been proven as an effective
strategy to enhance the durability of Li-S and Li-Se batteries. In this mini review, we
systematically introduce various metal atom-decorated carbon nanomaterials to
determine how to enhance the electrochemical performances of Li-S and Li-Se
batteries by inhibiting the polysulfides/polyselenides shuttle phenomenon as well as
catalyzing them toward quick redox conversions. We also briefly include the
drawbacks and bottlenecks of this kind of material when used in Li-S and Li-Se
batteries
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INTRODUCTION

The expanding electric vehicle market and the popularization of smart grids has triggered the urgent
demand for energy-storage devices with long-cycle life and high-energy density (Ma et al., 2020b;
Sheng et al., 2020). Li-S and Li-Se batteries have been commonly regarded as appealing choices for
high-energy storage technology as they demonstrate high theoretical energy density (2,600Wh kg−1

and 2,800Wh L−1 for Li-S battery; 1,160 Wh kg−1 and 2,600Wh L−1 for Li-Se battery) as well as
acceptable low costs (Gu and Lai, 2019; Jin et al., 2020).

However, there are still many technical challenges, from the electrolyte to the anode as well as the
cathode, for Li-S/Se batteries that need to be tackled (Chen et al., 2019a; Yan et al., 2019; Liu et al.,
2020b). In terms of the cathode, Nazar’s group first employed the CMK-3 as the sulfur host to
effectively inhibit polysulfide shuttling (Ji et al., 2009), since then scientists have spent a significant
portion of time and energy on how to inhibit the serious shuttle phenomenon of Li polysulfide (LiPS)
and Li polyselenide (LiPSe) intermediates during the charge/discharge process. From the very
beginning the physical adsorption of porous carbon (Gu et al., 2015b), to the chemical adsorption of
heteroatoms doped in a carbon framework (Gu et al., 2015a; Gu et al., 2016b; Gu et al., 2018; Gu et al.,
2020b), until now the stronger chemical adsorption by employing various carbon/metal compounds
(Gu et al., 2016a; Gu and Lai, 2017; Gu et al., 2020a), the LiPS and LiPSe shuttle phenomenon has
been significantly alleviated. Without doubt, a carbon host was the most popular choice to address
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the problems of Li-S and Li-Se cells during the past decades as it
had high conductivity and good adsorption force with LiPS and
LiPSe (Zeng et al., 2017; Zheng et al., 2019; Li et al., 2020b; Han
et al., 2020).

However, recent research found that if the sluggish redox
kinetics, with increased internal resistance cause low S/Se
utilization and poor Coulombic efficiency (CE) did not
address (Gu and Lai, 2019; He and Manthiram, 2019; Lim
et al., 2019; Song et al., 2019; Ruan et al., 2020) the cathode
problems of Li-S/Se batteries, these problems would be
impossible to solve completely even if the immediate shuttle
effect was effectively restrained using various carbon-based hosts.
Therefore, researchers around the world are gradually focusing
on how to improve redox kinetics and limit the shuttle effects of
LiPS/LiPSe simultaneously (Zhang et al., 2019f; Hong et al.,
2020).

Interestingly, nano-sized catalysts including single-atom
catalysts recently demonstrated excellent catalytic properties
compared to conventional catalysts (Liu, 2016; Cao et al.,
2018; Cui et al., 2018; O’Connor et al., 2018; Zhang et al.,
2019b). However, scientists also found that single-atom
catalysts were not easily prepared. An effective strategy is to
deposit the ultra-small metal nanoparticles on the carbon surface
or dope the metal atoms in the carbon framework to produce a
so-called single-atom-like catalyst (Gawande et al., 2020; Ren
et al., 2020). As expected, the single metal atom-decorated
(deposited/doped) carbon catalysts illustrated excellent
catalytic performances on oxygen reduction reaction (Wang
et al., 2020b; Ren et al., 2020), oxygen evolution reaction (Hou
et al., 2019; Wang et al., 2020b), hydrogen evolution reaction
(Zhang et al., 2019d; Ren et al., 2020), CO2 reduction reaction
(Wang et al., 2019a; Lu et al., 2019; Yang et al., 2019), and
nitrogen electroreduction (Chen et al., 2018b), etc.

As the metal atom-decorated carbon materials not only
have an excellent catalytic property that could effectively
catalyze the polysulfides conversion during the charge/
discharge process, but also provide strong chemical
adsorption on polysulfides due to the polar metal atoms/
heteroatoms. Therefore, an increasing number of
investigations reported the simultaneous use of metal atom-
decorated carbon materials as catalysts and shuttle inhibitors
for LiPS and LiPSe. And this mini-review has summarized how
the performances of Li-S and Li-Se batteries could be improved
by these various kinds of metal atom-decorated carbon
nanomaterials.

METAL ATOM-DECORATED CARBON
NANOMATERIALS FOR ENHANCING LI-S
BATTERIES PERFORMANCES
Reducing particles size to nanometers or even to an atomic scale
has emerged as a promising route to extend the reactivity of
materials. In this part, nano-metal atoms including single metal
atom-decorated carbonmaterials for enhancing Li-S batteries will
be introduced in detail.

Noble Metal Atom-Decorated Carbon
Materials
The noble metals, such as Au (Babu et al., 2015; Zhang et al.,
2020), Pt (Al Salem et al., 2015; Qu et al., 2018; Liu et al., 2019),
and Pd (Ma et al., 2019), etc., when combined with the conductive
carbon substrates, commonly demonstrate superior catalytic
properties on LiPS redox reactions.

In 2015, Arava’s group first proposed an electrocatalysis
concept in non-aqueous polysulfides redox reactions (Babu
et al., 2015). They found that coating Pt or Ni on Al foil as
the electrocatalytic current collectors could enhance both cycle
life and reaction kinetics of the Li-S battery. Before long they
reported that dispersed Pt nanoparticles on graphene layers could
enhance the specific capacity by 40% over pristine graphene due
to the excellent catalytic property of Pt nanoparticles, and such a
Pt/graphene can also contribute to sulfur cathode stability cycling
over 100 cycles with a Coulombic efficiency of 99.3% at a current
rate of 0.2 C (Al Salem et al., 2015). Interestingly, in this work,
Arava et al. also found that the Pt/graphene host could improve
more performances for Li-S batteries compared to the Ni/
graphene as shown in Figures 1B,C. Zhang et al. reported a
nanoscale polysulfide reactor achieved by a chemical Au−S
interaction as shown in Figure 1D (Fan et al., 2015). The Au
NPs with high conductivity can significantly control the
deposition of the trapped LiPSs, contributing to the uniform
distribution of sulfur species upon charging/discharging.
Recently, Liang et al. reported a yolk–shell Au@microporous
carbon nanosphere with the synergistic advantages of a hollow
nanosphere and functional Au nanoparticles (Zhang et al., 2020),
which also contributed to a high specific capacity, and good
electrochemical activities and reaction kinetics of Li-S batteries.
While Zuo’s group skillfully imbedded palladium nanoparticles
in hollow carbon spheres as the sulfur host. The Pd nanoparticles
acted not only as electrocatalysts to accelerate the redox reaction
kinetics of LiPS but also chemically trapped LiPS via the moderate
Pd-S bonding.

The present investigations have proven the efficient catalytic
function of LiPS by introducing noble metal atoms into the
carbon, however, as shown in Table 1, the enhanced
performances of Li-S batteries are not ideal, particularly on
long cycling performances with higher sulfur loading.

Iron Series Metal Atom (Fe, Co, Ni)-
Decorated Carbon Materials
Due to the high prices of noble metals, in recent decades,
scientists have been devoted to developing noble-free catalysts,
in which the iron series metal-carbon materials are regarded as
one of the most promising catalysts. And there are large numbers
of literature on this kind of catalyst application in different fields.
Taking into account the good conductivity, good physical/
chemical adsorption ability, and redox of LiPS, iron series
metal atom-decorated carbon materials have begun to pique
the interest of Li-S batteries researchers in the last three years
(Li et al., 2016; Li et al., 2019f; Zhang et al., 2019g; Jin et al., 2019).
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Cobalt-nitrogen doped carbon materials as the sulfur/Li2S
host are most frequently reported (He et al., 2016; Zhong
et al., 2018; Hu et al., 2019; Li et al., 2019a; Li et al., 2019d;
Wu et al., 2019; Yu et al., 2019; Liu et al., 2020a; Shao et al., 2020;
Wang et al., 2020a; Wang et al., 2020c; Wang et al., 2020e; Yao
et al., 2020). In 2017, Dong et al. reported a honeycomb-like Co@
N−C composite that served as the sulfur host as shown in
Figure 2A (Li et al., 2017). The cellular flake with a large
surface area and honeycomb architecture could encapsulate

much more sulfur, leading to high sulfur content (93.6 wt%
and 7.5 mg cm−2 in an electrode) and the Co-N-C
coordination center served as a bifunctional electrocatalyst to
facilitate both the formation and the decomposition of Li2S in the
discharge and charge process as shown in Figure 2B. The
S/cellular Co−N−C composites exhibited excellent rate
performance up to 10 C (3.6 mg cm−2) and great cycling
stability as shown in Figure 2C. Huang’s group implanted
atomic cobalt within the skeleton of mesoporous carbon via a

FIGURE 1 | (A) Schematic illustration of electrocatalyst-anchored graphene nanocomposite preparation and its interaction with PS during the charge/discharge
process of the Li−S battery (B) voltage vs specific capacity profile and (C) galvanostatic charge/discharge behavior and Coulombic efficiency of pristine and
electrocatalyst-anchored graphene electrodes vs Li+/Li at 0.1 C rate in the potential range of 1.5–3.0 V. Reproduced with permission from Al Salem et al. (2015).
Copyright © 2015 American Chemical Society (D) The function mechanism of the CB-S-Au cathode. Reproduced with permission from Fan et al. (2015). Copyright ©

2015 American Chemical Society.
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supramolecular self-templating strategy (Xie et al., 2019). The atomic
cobalt sites with high polarity exhibited strong interactions with
polysulfides and consequently enhanced the kinetics of the sulfur
redox reactions (Xie et al., 2019). More importantly, they
systematically evaluated the sulfur redox reaction via CV, EIS,
Tafel slope, and a potentiostatic nucleation test, which provided a
general evaluation criterion of the metal atom-decorated carbon
materials for catalyzing the sulfur redox reaction. While Wu’s group
and Shen’s group focused on the function of the Co-N-C bond in Li-
S batteries (Du et al., 2019; Xiao et al., 2019). In Wu’s work, they
employed a combination of operando X-ray absorption
spectroscopy and first-principles calculations to reveal that the
Co−N−C coordination center served as a bifunctional
electrocatalyst to facilitate both the formation and the
decomposition of Li2S in the discharge and charge processes,
respectively (Du et al., 2019). The operando XANES experiment
(Figures 2D,E) revealed the formation of Li2S at the initial stage of
discharge. This early formation of Li2S, together with the relative
electrochemical characterizations, demonstrated the improved
electrochemical kinetics during the phase change between the
soluble LiPSs and insoluble Li2S2/Li2S on the Co-N/G support.
And the DFT calculation in Figures 2F–H show that the
formation of Li2S from Li2S2 was the rate-limiting step in the
whole discharge process as this step had the largest positive
Gibbs free energy. The lower Gibbs free energy on Co−N/G
(0.71 eV vs. 1.21 eV) for the reduction of Li2S2, indicated that the
reduction of S was thermodynamically more favorable on Co−N/G
than on the N/G substrate. In Shen’s report (Xiao et al., 2019), they
found during the annealing process that the cobalt atoms will
coordinate with N atoms to form Co4N. Because the electron
transferred from Co to the doped N in the carbon matrix, this
caused a larger polarization of Co in Co4N. This synergistic effect
between Co and dopedN can contribute to increased binding energy
between Co4N and polysulfides (Xiao et al., 2019). Moreover, using
the Co-decorated carbon materials as an interlayer or to modify the
separator has also been widely reported (Chen et al., 2018a; Zhang
et al., 2019c; Li et al., 2020d; Jiang et al., 2020; Song et al., 2020).

Compared to the cobalt-decorated carbon materials, there
have been few reported iron and nickel-decorated carbon

materials (Yao et al., 2018; Jiang et al., 2019; Li et al., 2019e; Ye
et al., 2019; Zeng et al., 2019). Niu et al. prepared a kind of Ni–N4

structure via doping single nickel atoms on nitrogen-doped
graphene (Ni@NG) and then employed them to modify the
separators of Li–S batteries (Zhang et al., 2019e). The oxidized Ni
sites of the Ni–N4 structure acted as LiPS traps, efficiently
accommodating polysulfide ion electrons by forming strong
Sx

2−···Ni–N bonding as well as catalyzing the LiPS redox
conversion as shown in Figure 3A. As a result, the Li–S battery
based on this Ni@NG modified separator illustrated excellent rate
performance and stable cycling life with only 0.06% capacity. Hou
et al. created a holey Fe, N co-doped graphene (HFeNG) to promote
the cycle stability and rate capacity of Li–S batteries (Wang et al.,
2019b). Via the X-ray absorption spectroscopy and density
functional theory calculations, they first confirmed that the Fe
atoms were anchored by 4 N atoms (Fe–N4 moiety) or 2 N
atoms (Fe–N2 moiety) localized on the graphene sheets and edge
of holes, respectively. The Fe–N2 moiety at the edges could provide
stronger adsorption forces on LiPS (Figures 3B,C) and the holey
structure could promote the mass transportation of Li+ as well as
prohibit the transportation of LiPS (Figure 3D). Accordingly, the as-
obtained S/HFeNG delivered a high rate capacity of 810mAh g−1 at
5 C and a stable cycling performance with a capacity decay of 0.083%
per cycle.

Except for one kind of metal atom-decorated carbon material,
binary or ternary metal atom-decorated carbon materials have also
been reported for enhancing the performances of Li-S batteries
(Chen et al., 2019b; Jing et al., 2019; Li et al., 2019c;Ogoke et al., 2019;
Zhang et al., 2019a). For instance, Chen’s group reported a CoNi-
carbon nanofiber@carbon fabric heterostructure (CoNi-CNF-CF,
Figure 3E) as the interlayer for Li-S batteries. The weaving
carbonaceous scaffold with vertically rooted CNF tentacles
facilitated both short- and long-range electrical conduction as
well as the efficient exposure of active sites, while the multiple
adsorptive and catalytic sites enabled strong sulfur confinement
and expedited sulfur conversion. And in this work, they confirmed
that the CoNi-CNF@CF showed a stronger current response with
a higher deposition capacity as well as a smaller onset potential
at around −0.45 V and larger oxidation current compared to

TABLE 1 | Various noble metal atom-decorated carbon materials for enhancing the performances of Li-S batteries.

Composite name Roles
in Li-S

batteries

Sulfur content
(wt%) in the
electrode

Sulfur loading in
the electrode (mg

cm−2)

Capacity
performance
(mAh g−1)

Cycle
number

Test currents (C,
1C = 1,675 mA g−1)

References

Pt nanoparticles on
graphene

Catalyst – 1.21 789 100 0.2 (Al Salem et al.,
2015)

Platinum and nitrogen dual-
doped ordered mesoporous
carbon

Sulfur host 67.5 2.0 505.5 100 0.2 (Qu et al.,
2018)

C@PtNi Sulfur host 60 1.2–1.5 600 300 1 (Liu et al.,
2019)

Carbon black-Au Sulfur host 50 1.3 641 160 0.5 (Fan et al.,
2015)

Au@microporous carbon
nanospheres

Sulfur host 50 0.5 664 40 0.1 Zhang et al.,
2020)

Palladium nanocrystal-
imbedded mesoporous
hollow carbon spheres

Sulfur host 74.6 5.88 885 100 0.2 (Ma et al.,
2019)

Frontiers in Energy Research | www.frontiersin.org March 2021 | Volume 9 | Article 6265964

Gu et al. Metal Atoms Decorated Carbon Nanomaterials

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


TABLE 2 | Various Fe/Co/Ni-decorated carbon materials for enhancing the performances of Li-S batteries.

Composite name Roles
in Li-S

batteries

Sulfur content
(wt%) in the
electrode

Sulfur loading in the
electrode (mg cm−2)

Capacity
performance
(mAh g−1)

Cycle
number

Test currents (C,
1C = 1,675 mA g−1)

References

Co-MOF-derived carbon
superstructure

Sulfur host 48.0 1.4 400.86 610 0.5 (Jin et al.,
2019)

Reduced graphene
oxide/C–Co

Sulfur host 43.4 1 949 300 0.18 (Li et al.,
2016)

B,N co-doped carbon
nanotubes loaded with Co
nanoparticles

Sulfur host 56.9 1.8 1,008 400 1 (Wang et al.,
2020e)

Cobalt clusters in nitrogen-
doped porous carbon

Sulfur host 52.8 1.8 780 500 1 (Wang et al.,
2020c)

Cobalt-embedded N-doped
CNTs

Sulfur host 53.2 1.3 428 500 0.6 (Shao et al.,
2020)

Carbon nanotube-intercalated
Co-N-C

Sulfur host 55.8 0.62 428.3 500 1 (Liu et al.,
2020a)

Co embedded N-doped
graphitic carbon

Sulfur host 2 556.9 500 2 (Yu et al.,
2019)

Cobalt-B, N co-doped-
graphitic carbon polyhedrons

Sulfur host - 1.3 877 500 0.5 (Li et al.,
2019d)

Cobalt-coordinated
framework porphyrin on
graphene

Sulfur host 63.0 2.8 850 300 1 (Li et al.,
2019a)

Cobalt−nitrogen−carbon
nanotube array

Sulfur host 40.0 2.0 814.0 1,000 1 (Hu et al.,
2019)

Co/N-doped carbon
nanosheet

Sulfur host 51.2 1.3 694 600 1 (Zhong et al.,
2018)

Honeycomb-like Co@N−C Sulfur host 84.2 3.6 514 850 2 (Li et al.,
2017)

Atomic cobalt within
mesoporous carbon

Sulfur host 1.2 837.3 300 0.5 (Xie et al.,
2019)

Cobalt atoms embedded in
nitrogen-doped graphene

Sulfur host 67.5 2.0 681 500 1 (Du et al.,
2019)

Co/nitrogen-doped carbon
nanosheets/CNT

Sulfur host 64.0 5 522.1 500 1 (Song et al.,
2020)

Co/N-doped carbon Sulfur host and
separator
modification

64.7 1.5 711.2 1,000 1.0 (Jiang et al.,
2020)

Co-N-C/reduced graphene
oxide

Separator
modification

77.8 1–1.2 615.9 500 0.5 (Chen et al.,
2018a)

Cobalt-embedded carbon
nanofiber

Current
collector

- 4.6 730 300 0.5 (Li et al.,
2019f)

Cobalt decorated nitrogen-
doped carbon nanofibers

Current
collector

- 4.74 938.0 300 0.2 (Yao et al.,
2020)

Co4N nanoparticle/N-doped
carbon

Current
collector

- 1 745.0 400 1 (Xiao et al.,
2019)

Cobalt-anchored nitrogen-
doped carbon nanosheets

Interlayer 44.8 1.0 787 100 0.5 (Li et al.,
2020d)

Fe-nitrogen-doped graphene Separator
modification

4.5 891.6 750 0.5 (Zhang et al.,
2019c)

Fe−N co-doped carbon Sulfur host 70.0 1.5 565 1,000 2 (Ye et al.,
2019)

Hierarchical porous Fe/
N-doped carbon nanofibers

Sulfur host 60.0 3.5 1,092 500 0.5 (Jiang et al.,
2019)

Holey Fe, N co-doped
graphene

Sulfur host - 2 866.7 300 0.5 (Wang et al.,
2019b)

Porous carbon nanofibers
assembled with nickel

Sulfur host 72 1.5 910 500 0.2 (Li et al.,
2019e)

Ni/G composites Sulfur host 48.3 1–1.5 830 500 0.2 (Yao et al.,
2018)

Single nickel atoms on
nitrogen-doped graphene

Separator
modification

- - 965.8 200 1.0 (Zhang et al.,
2019e)

CoNi-Embedded nitrogen-
enriched porous carbon

Sulfur host 52.5 2 ≈550 200 0.2 (Li et al.,
2019c)

(Continued on following page)
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Co-CNF@CF. However, why CoNi-CNF@CF could exhibit
such superior performances was not clear. While Wu and
his co-workers reported a ternary metal atom (Fe, Co, Ni)-
decorated graphene nanotube (GNT) material as the sulfur
host for Li-S batteries (Ogoke et al., 2019). Compared to Co
and CoNi, ternary FeCoNi yielded the largest diameters and
the thickest wall of tubes, which increased surface areas and
pore volumes with dominant mesopores that benefited from
the incorporation of S into the GNT hosts. Moreover, the
addition of Fe likely further improved the capacity retention of
S@M-GNT cathodes (Figure 3F) through providing more
favorable graphitic N and active atomic FeN4 sites,
therefore enhancing electrochemical reaction kinetics and
chemically/physically encapsulating the sulfur active material.

In addition, a combination of metal atoms andmetal compounds
to modify the carbon materials is another strategy to construct an
effective catalyst and anchor substrate for LiPS (Li et al., 2019b; Li
et al., 2020a; Li et al., 2020c; Tan et al., 2020). For example, Yuan et al.
reported nitrogen-doped graphene nanoribbons@Co/CoOOH as an

integrated sulfur host as shown in Figure 3G (Tan et al., 2020). Due
to the exceptional electronic conductivity of nitrogen-doped
graphene, the strong chemical adsorption and high catalytic
activity of Co/CoOOH, the resulted S/nitrogen-doped graphene@
Co/CoOOH cathode illustrated an excellent long-duration cyclic
performance even with high areal S loading (∼3.9 mg cm−2).

Finally, our conclusions about these various Fe/Co/Ni-decorated
carbonmaterial applications in Li-S batteries are listed inTable 2. As
can be seen, these iron series metal atom-doped carbon materials
indeed enhance the electrochemical performances of the batteries via
strong chemical trapping and excellent catalyzing even at a very high
sulfur loading amount.

Other Transition Metal Atom-Decorated
Carbon Materials
In addition to the above two categories of metal atom-decorated
carbon materials, in recent years, some other transition metal
atom-decorated carbon materials as the sulfur host have been

TABLE 2 | (Continued) Various Fe/Co/Ni-decorated carbon materials for enhancing the performances of Li-S batteries.

Composite name Roles
in Li-S

batteries

Sulfur content
(wt%) in the
electrode

Sulfur loading in the
electrode (mg cm−2)

Capacity
performance
(mAh g−1)

Cycle
number

Test currents (C,
1C = 1,675 mA g−1)

References

CoFe-Prussian blue
analogues derived carbon

Sulfur host 18 - 447.4 500 1 (Jing et al.,
2019)

Ni−Fe−P/N-doped Carbon
nanobox

Sulfur host 57.6 1.2–1.5 454.6 300 1.0 (Chen et al.,
2019b)

FeCoNi-Graphene nanotube Sulfur host 48 1.0 554.4 500 1 (Ogoke et al.,
2019)

NiCo-CNF@CF Interlayer 56.8 2.1 ≈810 1,000 1 (Zhang et al.,
2019a)

Nitrogen-doped graphene
nanoribbons@Co/CoOOH

Sulfur host 51.7 3.9 516.7 1,000 0.5 (Tan et al.,
2020)

Co/CoP@nitrogen-doped
carbon

Sulfur host 53.1 2.5 567 1,000 2 (Li et al.,
2020c)

Co–TiO2 nanoparticles
anchored in porous carbon

Sulfur host 58.9 1.0 698 200 0.2 (Li et al.,
2020a)

Cobalt-doped porous carbon
polyhedrons@TiO2

nanostructure

Sulfur host - - ≈530 200 0.5 (Li et al.,
2019b)

TABLE 3 | Other transition metal atom-decorated carbon materials for enhancing the performances of Li-S batteries.

Composite name Roles
in Li-S

batteries

Sulfur
content (wt%)
in the electrode

Sulfur loading in the
electrode (mg cm−2)

Capacity
performance
(mAh g−1)

Cycle
number

Test currents (C,
1C = 1,675 mA g−1)

References

Samarium-doped carbon
aerogel

Sulfur host 61.3 2.3 866 300 0.2 (Sheng et al.,
2019)

Cadmium-doped carbon
aerogels

Sulfur host 80.2 2.4–2.6 871 300 0.5 (Ma et al.,
2020)

Te-decorated ketjen black Sulfur host 64.45 1–1.2 656 1,000 3 (Xu et al.,
2018)

Porous
vanadium–nitrogen–carbon

Sulfur host 70 1.0 392.6 500 1 (Fan et al.,
2020)

Vanadium single atoms on
nitrogen-doped graphene

Sulfur host 80 2.0 485 200 0.5 (Zhou et al.,
2019)
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used to simultaneously accelerate the LiPS redox reaction and
chemically trap the LiPS adsorption (Sheng et al., 2019; Fan et al.,
2020; Ma et al., 2020).

For example, Cui’s group first used the DFT calculation to
calculate the decomposition barrier of various metal atoms (Fe,
Mn, Ru, Zn, Co, Cu, V, and Ag) on N-doped graphene materials
and discovered that vanadium single atoms on N-doped
graphene (SAV@NG) showed the smallest decomposition
barrier (1.10 eV) as shown in Figure 4A (Zhou et al., 2019).
Reducing the decomposition barrier of Li2S can greatly increase
the utilization of active materials, decrease the formation of dead
Li2S, and achieve a long cycling life. Additionally, they also
calculated the binding energy of Li2S6 on a different substrate.
It showed that the SAV@NG also had the strongest binding
energy as shown in Figure 4B, indicating the strongest chemical
interaction between the SAV@NG and polysulfides, which means
the shuttle effect can be effectively inhibited. Based on this
guideline, they synthesized large-scale single atom vanadium
catalysts deposited on graphene to load as high as 80 wt%
sulfur content and the resulted SAV@NG achieved fast
kinetics, i.e., a capacity of 645 mAh g−1 at 3 C rate.

Shen et al. reported a samarium-doped carbon aerogel as a
polysulfide anchor for high-performance Li-S batteries (Sheng
et al., 2019). Both the anchoring of polysulfides to uniformly
doped Sm and the influence of the carbon aerogel structure could
effectively prevent polysulfides escaping from the cathode, while
also suppressing the shuttle effect and enhancing the utilization of
sulfur. As a result, a CA/S/Sm electrode delivered an initial
discharge capacity of 1,212 mAh g−1 at 0.5 C and a reversible
capacity of 866 mAh g−1 after 300 cycles. Recently, Ding et al. also
reported a cadmium-doping carbon aerogel for high-
performance Li–S batteries (Ma et al., 2020). And the relative
DFT calculation and experiment results have proved that Cd
doping played a vital role in effectively entrapping the
polysulfides.

Apart from iron series metal atom-decorated carbon
materials, other transition metal atom-decorated carbon
materials are also good candidates to enhance the long-
cycling performances of Li-S batteries with high rate and
high sulfur loading as shown in Table 3. They show more
promising applications compared to the noble metal atom-
decorated carbon materials.

FIGURE 2 | (A) Schematic illustration of the step-by-step synthesis strategy for the cellular Co@N−C composite (B) the schematic illustration of the cellular Co@
N−C composite which catalyzed the formation and the decomposition of Li2S in the discharge and charge process (C) Rate performances of the 90 S/cellular Co@N−C
at different current rates. Reproduced with permission from Li et al. (2017). Copyright © 2017 American Chemical Society (D) Evolution of S K-edge XANS during
electrochemical cycling (E) evolution of the intensities of peak B (2,469.0 eV, representing concentration of LiPSs) and peak D (2,474.7 eV, representing Li2S
concentration) during electrochemical cycling (F) Energy profiles for the reduction of LiPSs on N/G and Co-N/G substrates, energy profiles of the decomposition of the
Li2S cluster on N/G (G) and Co-N/G (H). The black, yellow, green, pink, and dark blue balls represent C, S, Li, N, and Co atoms, respectively. Reproduced with
permission from Du et al. (2019). Copyright © 2019 American Chemical Society.
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FIGURE 3 | (A) The catalytic and chemically trapping mechanism of the LiPS on the surface of Ni@NG in the electrochemical process. Reproduced with permission
from Zhang et al. (2019e). Copyright © 2019 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. Optimized configurations for the binding of Li2S to (B) Fe–N4 and (C)
Fe–N2 moieties on graphene (Li2S binding energies and selected bond distances are indicated in images) (D) Schematic illustration of the confinement of sulfur and
polysulfides in the layer structure and the additional ionic diffusion pathways (purple arrow line) through the holey structure (the black sheets). Reproduced with
permission fromWang et al. (2019b). Copyright © 2018WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim (E) Designing strategy of NiCo-CNF@CF interlayer for Li-S
batteries. Reproduced with permission from Zhang et al. (2019a) Copyright © 2019 Elsevier Ltd (F) Capacity retention between S@Co-GNTs, S@CoNi-GNTs, and S@
FeCoNi-GNTs at 1 C. Reproduced with permission from Ogoke et al. (2019). Copyright © 2019 The Royal Society of Chemistry (G) The schematic of 1D high-content
N-doped graphene nanoribbons@Co/CoOOH high-yield and in-situ fabricated as an integrated host for Li-S batteries and the long cycling performance. Reproduced
with permission from Tan et al. (2020) Copyright © 2020 The Royal Society of Chemistry.

FIGURE 4 | (A) Decomposition barriers of Li2S (B) binding energy of Li2S6 on the graphene, NG, SACo@NG, SAV@NG, SAFe@NG, SAMn@NG, SARu@NG, and
SAZn@NG, respectively. Reproduced with permission from Zhou et al. (2019). Copyright © 2019 American Chemical Society.
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METAL ATOM-DECORATED CARBON
MATERIALS FOR ENHANCING LI-SE
BATTERY PERFORMANCES
Although a large number of literature have suggested using
heteroatom doping carbon materials and metal compounds as
selenium carriers for enhancing Li-Se battery performance (Li and
Yin, 2015; Yi et al., 2015; Jin et al., 2017; Lv et al., 2017; Choi et al.,
2018; Gu et al., 2018;He et al., 2018; Yang et al., 2018; Zhao et al., 2018;
Gu et al., 2019; Gu and Lai, 2019; Du et al., 2020), there are few reports
about metal atom-doped carbon materials simultaneously catalyzing
LiPSe redox reaction and chemically trapping LiPSe.

In 2017, He’s group first reported a 3D porous N-doped
graphitic carbon-Co scaffold (C-Co-N) derived from metal-
organic frameworks (as shown in Figures 5A,B) as a
conductive Lewis base matrix to host selenium for the Li-Se
battery (He et al., 2017). They employed the DFT calculation to
calculate the adsorption energy of LiPSe (Figure 5C) on this
C-Co-N material, which indicated that the C-Co-N matrix had
excellent chemical confinement for LiPSe. As a result, the resulted
C-Co-N/Se electrode demonstrated excellent cycling stability
(capacity fading of only 0.07% per cycle) and rate capabilities
(196.9 mAh g−1 at 10 C, 1C � 675 mA g−1) as shown in
Figures 5D,E.

FIGURE 5 | (A) Schematic illustration of the synthetic process for C-Co-N/Se (B) SEM images of C-Co-N/Se composites (C) The calculated absorption energy
values of lithium polyselenides species in C-Co-N (D) cycling stability of the C-Co-N/Se cathodes at 0.1°C for 200 cycles (E) rate performances at various C-rates of the
C-Co-N/Se cathodes. Reproduced with permissions from the ref (He et al., 2017). Copyright © 2017 Elsevier Ltd.

FIGURE 6 | SEM images of (A) Co-N-C and (B) Co-N-C/SeS2 composites. The TEM image of a single Co-N-C/SeS2 polyhedron (C) and the corresponding
elemental mapping images of (D) C (E) S (F) Se (G) Co, and (H) N (J) Cyclic stability of the SP/SeS2, SP-Co/SeS2, and Co-N-C/SeS2 cathodes at 0.2 C for 200 cycles.
Reproduced with permissions from the ref (He et al., 2018). Copyright © 2018 the Royal Society of Chemistry.
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METAL ATOM-DECORATED CARBON
MATERIALS FOR ENHANCING LI-SESX

BATTERIES PERFORMANCES
The SexSy cathodes own the advantages of both Se and S, such as
low cost and high reversible capacity, etc. But they also face the
same issue as pure S and Se cathodes. Thus, in recent years,
researchers also utilized the metal atom-decorated carbon
materials to address the challenges of Li-SeSx batteries (He
et al., 2018; Wang et al., 2020d; Jin et al., 2020).

For example, He et al. used a cobalt- and nitrogen-doped porous
carbon (Co-N-C) polyhedron to encapsulate the SeS2 and
investigated its electrochemical performances as shown in
Figure 6 (He et al., 2018). As can be seen from the SEM, TEM,
and corresponding element mapping images, the SeS2 have been
encapsulated into the unique hollow of the cobalt- and nitrogen-
doped porous carbon, and were distributed homogenously. As a
result, the Co-N-C/SeS2 composite with a high loading (66.5 wt%)
of SeS2 delivered a reversible capacity of 1,165.1 mAh g−1 and an
84.1% capacity retention of the initial capacity (970.2 mAh g−1)
with a nearly 100% Coulombic efficiency after 200 cycles, which
were superior to that of the Super P/SeS2 (SP/SeS2) and Super
P-Co/SeS2 (SP-Co/SeS2) composite cathodes.

CONCLUSION

In terms of the cathode problems of Li-S and Li-Se batteries, the
sluggish redox reaction kinetics as well as the easy solubility of
intermediates are major causes for the shuttle effect of LiPS/
LiPSe. Therefore, it is indispensable to incorporate catalytic
materials with strong adsorption and catalysis toward LiPS/
LiPSe.

Metal atom-decorated carbon materials exhibited
multifunctional roles, i.e., enhancing the electrode
conductivity, accommodating high loading and volume
expansion, adsorbing the LiPS/LiPSe, and overwhelmingly
accelerating the reaction rate, which are beneficial to promote
battery performance, and has shown great potential as the
advanced materials for state-of-the-art energy storage devices.

Current investigations have demonstrated that metal atom-
decorated carbon materials, particularly the single metal atom
doping carbon, exhibited high activity on the adsorption-
diffusion-conversion of LiPSs. According to previous reports,
the noble metal atom-decorated carbon materials did not
improve the electrochemical performances of Li-S batteries
compared to the iron series metal atom-decorated carbon
materials, even though they have been verified to have
excellent catalytic properties in the fields of HER, OER, and
CO2 reduction, etc. In contrast, other transition metal atom-
decorated carbon materials, such as vanadium and samarium-
decorated carbon materials, demonstrated great potential on
improving the electrochemical performances of Li-S batteries.
However, we should pay attention to the fact that the roles of
metal atom-decorated carbon materials on LiPSe still need

investigating. Future investigations could pay more attention
to constructing suitable transition metal atom-decorated
carbon materials for Li-Se batteries.

What is more, an in-depth understanding of the chemical
scission of S-S or Se-Se bonds induced by these catalysts is still out
of reach. In order to clearly understand the conversion process of
sulfur/selenium redox, the in-situ characterizations, i.e., in-situ
Raman/X-ray absorption spectroscopy/TEM, are suggested to
observe and trace the full chemical reaction.

Another problem that cannot be ignored is the safety of the
lithium anode, as it is well known that the lithium anode suffers
from severe lithium dendrite problems during reduction (Ju et al.,
2020). Recently, quite a few studies have reported that building
lithium alloys could effectively inhibit lithium dendrite growth
(Yan et al., 2016; Xue et al., 2018; Zhu et al., 2018; Wan et al.,
2020). Thus, using active metal atoms in decorated carbon
materials to react with lithium, form lithium alloys, and then
incorporate them into the carbon framework would be a
promising strategy.

Finally, for commercial application, the cost should be taken
into consideration too. Low-cost and large-scale production of
metal atom-decorated carbon materials are highly recommended.
Presently, it is undeniable that this kind of material, especially
single metal atom-doped carbon materials still cannot realize
large-scale production, and the cost is still high due to the
complex synthesis process. Therefore, the design structure of
cost-effective metal atom-decorated carbon materials needs to be
carefully considered. Anyhow, metal atom-decorated carbon
materials are still promising and worth looking forward to.
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