
DNN-Based Distributed Voltage
Stability Online Monitoring Method for
Large-Scale Power Grids
Shuaihu Li1,2*, Jie Hou1, Anbang Yang3 and Jie Li1

1School of Automation and Electronic Information, XiangtanUniversity, Xiangtan, China, 2School of Electrical and Information Engineering,
Changsha University of Science and Technology, Changsha, China, 3State Grid Hunan Electric Power Co. Ltd., Changsha, China

With the increase of power load demand and the complexity of power grid structure, the
problem of voltage stability is becoming more serious, and it is urgent to study the
countermeasures. In this paper, a DNN-based distributed voltage stability online
monitoring method for large-scale power grids is proposed. Unlike the traditional load
margin methods, the proposed method uses a local index load impedance modulus
margin (LIMM) index to determine the optimal installation locations of PMUs, which is more
efficiently. Moreover, the DNN is applied to learn the nonlinear relationship between the
power system operation state and its corresponding LIMM. By this way, the
corresponding LIMM value can be predicted through the state variables of nodes from
the installed PMUs. This method can greatly improve the calculation speed of LIMM and
assess the system voltage stability level in real-time, which help the system operator to
judge the operating state and take measures in time. Finally, the proposed method is
tested on the 14-bus system and then on the 118-bus system respectively, and the
simulation results verify the effectiveness and correctness of the proposed method.

Keywords: load impedance modulus, wide area measurement system, PMU position, voltage stability, deep neural
network

INTRODUCTION

With the improvement of intelligent level of the electrical power system and the access of various
distributed generation, the voltage stability problem of power system becomes more serious. This
problem is mainly caused by the inability of transmitting reactive power in a wide range of the large-
scale power grid (Liu et al., 2012; Li et al., 2018). Therefore, an efficient and accurate on-line voltage
stability assessment system (VSA) is particularly important to prevent large-scale blackouts. And one
of the key solutions is to propose a fast, accurate and adaptive voltage stability online monitoring
method. At present, the load margin index evaluation system based on continuous power flow (CPF)
is widely used in VSA. But the calculation of CPF is so complex that cannot meet the requirements of
online application. Moreover, the load margin index is a type of the global index, which cannot give
the weak bus information (Wang et al., 2016; Malbasa et al., 2017). To address this problem, an
artificial neural network (ANN) method is proposed to quickly estimate the load margin of power
system in (Zhou et al., 2010). However, the ANN-based method also requires a large number of CPF
calculations in different cases to form the training sample set, which leads to the low efficiency of the
whole scheme. Therefore, some scholars presented the voltage stability monitoring methods based
on PMU real-time data (Dahal et al., 2014; Jiang et al., 2014; Xie et al., 2014; Cai et al., 2017; Wu and
Xie, 2017; Mahapatra et al., 2018). In (Sunitha et al., 2013), the PMU data and the deep neural
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networks (DNN) are utilized for online static security
assessments. DNNs are demonstrated to have the real-time
computational speed and strong generalization capability in
security assessment of power systems (Wu et al., 2021).
However, this method still cannot give the weak link
information to give valuable guidance for the preventive
control of voltage stability.

Considering above problems, several local voltage stability
indexes were proposed to realize online voltage stability
monitoring, such as line voltage stability index (LVIS),
impedance stability index (ISI) and external voltage stability
index (EVSI) (Hong et al., 1997; Vu et al., 1997; Haque, 2003;
Milosevic and Begovic, 2003; Arya et al., 2008; Althowibi and
Mustafa, 2010). Those local indexes can be calculated in the
Stability monitoring and reference tuning device
(SMARTDevice) by using local information to track the
distance from the current state to voltage instability limit
point. Then, SMARTDevice send the calculation results of
local index to the control center for a global control decision.
Moreover, it can use the index information of nodes to
distinguish the weak areas and key nodes. However, the local
indexes also have their limitations. For example, when the relative
load margin index (RLMI) is close to the limit state of the system,
the nonlinearity of the index is strong. This easily leads to the
parameter drift. Moreover, the delay and noise of the collected
information will seriously affect the accuracy of the evaluation. So
Kalman filter (Li et al., 2019) and other methods have been used
to solve the above problems, but the Kalman filter increase the
analysis time and it is easy to cause information distortion.

In this paper, the load impedance modulus margin (LIMM)
index proposed in (Liu et al., 2013) is selected as the VSM index
for online monitoring. This index can reflect the weak link
information of the system, which can be used to determine
the installation location of PMU. Moreover, LIMM can
evaluate the voltage stability accurately and quickly based on
the local information measured by PMU. In order to make LIMM
more suitable for on-line voltage stability monitoring, this paper
applied DNN to predict LIMM. This method can not only find
the optimal installation location of PMU, but also improve the
calculation speed and accuracy of LIMM. Therefore, it is suitable
for online voltage stability monitoring.

The main contributions of this paper are summarized as
follows:

(1) The LIMM based on-line voltage stability monitoring
method proposed in this paper can identify weak area and
weak buses in power system. According this feature, the
optimal installation locations of PMUs is determined.

(2) DNN-based method can predict LIMM in a short time, and it
solves the parameter drift problem while LIMM calculated by
the traditional numerical calculation method.

The rest of this paper is organized as follows. Load Impedance
Modulus Margin gives a short introduction on LIMM. DNN-
based distributed voltage stability online monitoring method
presents DNN-based distributed voltage stability online
monitoring method. This method is tested on the IEEE 14-Bus

system and IEEE 118-bus system in Case study. Conclusions
summaries the main conclusions of the proposed DNN-based
method.

LOAD IMPEDANCE MODULUS MARGIN

The power system is actually a complex nonlinear system. In
(Devijver and Kitler, 1982), LIMM is a local index for assessing
voltage stability margin, which was derived from Thevenin
equivalent method. When the condition of the power systems
is reaching maximum transmission power, the load equivalent
impedance and the system equivalent impedance has relationship
as follows:

|ZiLD| � |ZiTHEV |, (1)

where |ZiLD| and |ZiTHEV | are the load equivalent impedance and
the system equivalent impedance at the ith node, respectively.
They can be calculated by:

ZiLD � ( _Vi

_Ii
), (2)

ZiTHEV � (d _Vi

d _Ii
) � (d _Vi/dλ

d _Ii/dλ), (3)

where _Vi, _Ii is the ith nodal voltage and current, respectively; λ is
an intermediate variable to obtain |ZiTHEV | (Devijver and Kitler,
1982), because the derivative of bus voltage with respect to load
current cannot be calculated directly in a complex domain due to
the non-analytic property of power system.

Then, the LIMM (ηi) can be defined as follows:

ηi � (|ZiLD| − |ZiTHEV |
|ZiLD| ). (4)

According to the simple equations of Eqs 2,3, LIMM can be
obtained directly with known nodal voltage and current
parameters collected from PMU. The value of the LIMM
ranges from 0 to 1, and ηi � 0 represents the critical point
where Thevenin impedance is equal to load impedance. For
practical application, the LIMM of the pilot node owing the
minimum value of ηi under the base case is used to indicate the
VSM (Haque, 2003). The pilot node is the node which has the
minimum LIMM in the system. Moreover, when the LIMM value
of the pilot node is less than 0.1, the system operators should take
actions.

Although the value of LIMM is easy to get by using the real-
time collected node information, and the analysis speed meets the
online requirements, the practical application of this technology
is limited. As shown in Eqs 3,4, when the system state has no
change or little change, the parameter ZiTHEV is equal to or very
close to 0 since the node voltage difference is 0, which will cause
stability discrimination error. Moreover, when the system is close
to the limit state, the nonlinearity of power system is strong,
which is easy to lead to parameter drift. For example, in Eq. 3, if
the sampling d _Ii is very small, it is easy to cause the LIMM value
to jump in a short time, which cannot truly reflect the stability
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level of the system. In order to improve the above-mentioned
phenomena, this paper proposed a DNN-based distributed
voltage stability online monitoring method, which applied
DNN method to predict LIMM.

DNN-BASED DISTRIBUTED VOLTAGE
STABILITYONLINEMONITORINGMETHOD

Structure of DNN
Among many artificial neural networks (ANN), the most widely
used is the multilayer perceptron (MLP) network, also known as
DNN (Devijver and Kitler, 1982). The structure of the neural
network is shown in Figure 1.

As shown in Figure 1, DNN consists of input layer, hidden
layer and output layer. The circles in the layers represent neurons.
The line between the two neurons represents the weight
relationship. We need to determine the number of neurons
according to the actual input and output features, but the
number of input layer and output layer of DNN is always
fixed as one. Moreover, the number of hidden layers is not
fixed. It should be determined according to the requirements
of practical application and the experiments. Generally, the more
hidden layers, the stronger the nonlinear fitting ability of DNN,
but the increase of hidden layers will also cause the over fitting
problem of DNN. So it is important to choose a suitable number
of hidden layers. Meanwhile, except for the input layer, the inputs
of neurons in each layer are the output of each neuron in the
upper layer. Therefore, in addition to the neurons in the input
layer, each neuron in DNN represents a mathematical
relationship, named forward propagation algorithm. And the
DNN is mainly composed of forward propagation algorithm
and back propagation algorithm (Michael, 2015). By using the
forward propagation algorithm, the output of neural network can
be obtained. And through the back-propagation algorithm, the
output error of DNN can be fed back to the network structure,
and then the network parameters can be optimized to obtain
more accurate prediction results.

Based on the DNN principle mentioned above, this paper
proposes an on-line voltage stability monitoring method for
large-scale power grid. This method obtains power grid data
through PMU in the power grid, and then calculates the LIMM.
Finally, DNN is trained by using the power grid data and the
calculated LIMM values. The trained DNN can estimate the

voltage stability in real-time. Through this DNN model, power
grid staff can get the current voltage stability of power grid online
to prevent voltage instability or collapse. In order to realize the
online monitoring method, it is necessary to choose the optimal
location of PMUs and construct a DNN strategy framework.

Optimal Location of PMUs for Voltage
Stability Monitoring
In the proposed method, the input features of DNN are obtained
by the sample sets of the active and reactive power injections,
nodal voltage and voltage phase angle. Real-time measurement
system requires PMUs and telecommunication infrastructure to
support these data collection. However, installation of PMUs at
all nodes in a power system is not economically in practical.
Therefore, it should find the optimal installation locations of
PMUs. The reference (Sunitha et al., 2013) presented a PMU
location optimal algorithm based on ANN and sequential
forward selection (SFS) algorithm (Devijver and Kitler, 1982;
Piramuthu, 2016). In this method, load margin has been used to
evaluate voltage stability. And an input feature from a pool of
candidate features is selected and the trained ANN is evaluated
using a quality criterion function. The feature that gives the best
value for the quality criterion function is retained for the next
round of selection where the combinations of two input features
are tried, and so on. The SFS algorithm obtains a chain of nested
subsets of features by adding the locally best feature in the set.
According to this method in (Sunitha et al., 2013), if the required
number of features d is known. the total number of searches
required in selecting d features from a set of n is n + (n − 1) + (n −
2) + ... + (n − d + 1). Taken IEEE 39-bus system for example, if
select five PMUs locations, we need to try 39 + 38 + 37 + 36 + 35 �
185 combinations. For large-scale power grid, this method is
obviously not convenient.

This paper presents a new method to get the optimal location
of PMUs based on LIMM. LIMM is more useful than load margin
for the optimal installation locations of PMUs. LIMM can directly
find the weaker nodes of voltage stability, these weaker nodes are
suitable for installing PMUs since the nodes with smaller LIMM
values will be easier to voltage collapse. According to the
proposed method, also take the IEEE 39-bus system as an
example, it needs to select five PMUs locations. We only need
to calculate the LIMM values of all nodes in IEEE 39-bus system

FIGURE 1 | structure of DNN.

FIGURE 2 | Comparison of PMU location algorithms.
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one time, and then sort the size to find the five nodes with the
smaller LIMM values which are the optimal locations for
installing the PMUs. Compared with the traditional method,
the proposed method in this paper is more simple, direct and
efficient. The process comparison of the two PMU location
algorithms is shown in Figure 2.

Framework of DNN Strategy
Design of DNN
For the proposed method, it is necessary to establish a DNN
model which the input features are power grid nodal data and the
output feature is LIMM value. According to the 3.1 in this paper.
The number of neurons in the input layer is the same as the
number of input features, and the number of neurons in the
output layer is the same as the number of output features. So the
number of neurons in the output layer is fixed to one, and the
number of neurons in the input layer must be determined by the
following experiments. On the other hand, the number of hidden
layers and the number of neurons in that layer were determined
experimentally to be two hidden layers with twenty neurons. The
activation function applied in this paper is Relu function. The
research reported in this paper used Python neural network tools.
The network was trained for a maximum of 150 epochs. The
verification split ratio is 0.01. The batch size for one training is 50.
The detailed process is shown in Case study below.

DNN Training Scheme
Figure 3 illustrates the complete process of designing the DNN
based voltage stability margin estimator. The three main steps of
training the DNN are as follows.

(1) A large number of cases with different load levels are
randomly created, the random cases are gathered through
a conventional power flow program to ensure that only the
acceptable cases pass into the next step. This paper uses 1,000
cases which are randomly generated to generate sufficient
training patterns for DNN training algorithm.

(2) LIMM algorithm is used to calculate the LIMM values of
weak nodes as the voltage stability index. This is the target
output of DNN to be trained.

(3) The input features and output index are fed into the DNN
training algorithm.

During the testing process, the trained DNN can be used to
predict the voltage stability index for cases unseen by the DNN.

Preparation of Training Data
In order to obtain enough training data for sample sets, a large
number of power flow cases with different load levels need to be
generated randomly. Then the nodal operating parameters are
collected as the data. the nodal voltage and current parameters are
put into Eqs 2 to calculate the LIMM values. And these nodal data
and LIMM values are used to be the input and output features of
DNN. In order to ensure that all cases have power flow solution, it
is necessary to use continuous power flow program to estimate
the ultimate load level of the power grid, and make sure that the
load levels in all cases are under the ultimate load level.

In this paper, the load proportion coefficient k is used to
control the load level of power grid. The value of k is limited in 0
to kmax (kmax means the ultimate load level). Therefore, the
process of training data preparation is as follows. First a
thousand k values are selected randomly to obtain 1,000 load
flow cases with different load levels, and these k values are
uniformly distributed. Then the data of a thousand random
cases are fed into LIMM algorithm to get 1,000 sets of
training data. Finally, the active power, reactive power, voltage
and phase angle of each node are taken as the input features of
DNN, and the corresponding calculated LIMM value is taken as
the output feature of DNN.

DNN Performance Measures
In this paper, two performance measures are used to evaluate the
performance of the testing data, Root Mean Square Error (RMSE)
in Eq. 5 and Maximum Error in Eq. 6:

RootMeanSquareError% � ⎛⎜⎜⎜⎜⎜⎜⎜⎝ �������������
1
M

∑M
i�1

(yi − y0)2√√ ⎞⎟⎟⎟⎟⎟⎟⎟⎠p100%, (5)

MaxError% � max
∣∣∣∣yi − y0

∣∣∣∣, (6)

where y0 is the target LIMM value obtained by LIMM algorithm
program, and yi is the LIMM value predicted by DNN. M is the
number of data sets used in model training.

CASE STUDY

To evaluate the effectiveness of the proposed method for
monitoring the voltage stability level online, simulations are
conducted on the IEEE 14-bus system and IEEE 118-bus system.

Case1: IEEE 14-Bus System
Firstly, the proposed method is tested on the IEEE 14-bus system
to verify its correctness. The structure of the power grid is shown

FIGURE 3 | DNN training process flow chart.
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in Figure 4. The system consists of 11 load nodes, 2 generator
nodes and 20 transmission lines. After the test, the method will be
put into a larger power grid to prove its practicability in both large
and small power grids.

Optimal Installation Position for PMU
With the local index LIMM, we can judge the stability level of the
whole power grid by the local data information.

Based on Load Impedance Modulus Margin of this paper, we
generate LIMM algorithm in Matlab environment, and calculate
LIMM values of all PQ nodes in IEEE 14-bus grid at the same load
level (k � 1). Then the LIMM values of PQ nodes are show in
Table 1.

In Table 1, k is the load proportion coefficient representing the
current system load level. When the value of k increased, the
power system will be closer to the voltage collapse. LIMM is the
voltage stability index. A smaller LIMM value means that the
node is weaker. Through the comparison of LIMM values under
the same load level, we can find that the node with the minimum
LIMM value is the 14th node. Because IEEE 14-bus system is a
small power grid, we can focus on monitoring 14th node.
Therefore, the PMU should be installed at the 14th node.

Selection of Input Features
There are many different combinations of neural network input
features. In order to determine the best input feature combination
of neural network, this paper tried four different input feature
combinations which are related to LIMM. These include.

(1) net active and reactive power injections;
(2) voltage magnitudes and reactive power;
(3) voltage magnitudes and phase angles;
(4) voltage magnitudes, voltage phase angles and net active and

reactive power injections.

In order to find out which combination of input feature is
better, this paper generates 1,000 random cases through the data
preparation method shown in 3.23. Among them, 900 cases are
divided into training sets and the remaining 100 cases are test sets.
Comparing the performance differences between different input
feature combinations, the better combination will be found out.

Figure 5 compares the accuracy of the estimated LIMM by the
DNNs trained with different input feature combinations. The
graphs plot the “Target LIMM” against the “Forecasted LIMM”
by the DNN, for the 100 unseen test cases. If the target LIMM
completely matches with the forecasted LIMM, all points should
lie on the diagonal line. Table 2 lists the Root Mean Square Error
and Maximum Error for the 100 unseen test cases.

Figure 5 and Table 2 show that the DNN with feature set 4
(voltage magnitudes, voltage phase angles and net active and
reactive power injections) has better performance. The LIMM is
closely related to these four features.

FIGURE 4 | IEEE 14-bus system wiring diagram.

TABLE 1 | LIMM values of IEEE 14-bus system.

k Node no LIMM

1.0 4 0.8136
5 0.8385
9 0.7417
10 0.7387
11 0.7387
12 0.7300
13 0.7308
14 0.7231

FIGURE 5 | Predictive performances of LIMM values for different input
feature sets. (A) Feature set 1: net active and reactive power injections (B)
feature set 2: voltage magnitudes and reactive power (C) Feature set 3:
voltage magnitudes and phase angles (D) Feature set 4: voltage
magnitudes and phase angles and net active and reactive power injections.

TABLE 2 | DNN performance with different input feature sets.

Feature set 1 2 3 4

Max Error 0.1027 0.0584 0.0405 0.0353
RMSE% 6.25 0.89 0.54 0.22
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Case 2: IEEE 118-Bus System
The method proposed in this paper mainly solves the problem of
on-line voltage stability assessment for large-scale power grid.
Therefore, in order to show that the proposed method also has
good performance in large-scale power grid, we test the method
on IEEE 118-bus system. The IEEE 118-bus system is a large
power grid, and the power system with large scale and complex
structure usually adopts partition method to analyze. Generally,
voltage stability problems start from local areas and gradually
extend to other regions, so it is important to determine the weak

areas of power system. In this paper, the IEEE 118-bus system is
partitioned according to the principle of partition in (Ma, 2014),
where each partition represents a regional power grid. The power
grid wiring diagram is shown in Figure 6, where the black dotted
lines are selected as tie lines and the bold red dotted lines are
power grid partition lines. After disconnecting the tie lines, the
system is divided into three regional power grids. The regional
power grid 1 has a total of 35 nodes and 57 lines with a total load
of about 1547 MW; The regional power grid 2 has a total of 48
nodes and 74 lines with a total load of about 1879 MW; The
regional power grid 3 has a total of 35 nodes and 48 lines with a
total load of about 1076 MW.

Based on the Optimal PMU location algorithm in 4.1.1, the
five weaker nodes in IEEE 118-bus system have been found out to
be 29th node, 41st node, 28th node, 115th node and 114th node.
According to Figure 6, these nodes are distributed in regional
grid 1 and regional grid 3. In order to realize the whole area
monitoring of power grid, it is also necessary to monitor 109th
node which is relatively weak in regional grid 2. Therefore, in the
IEEE 118-bus system, six PMUs are installed at these nodes
mentioned above for voltage stability monitoring, as shown in the
red circle position in Figure 6.

Numerical Results
Based on the data preparation method of Preparation of training
data, each node has prepared 1,000 random cases for DNNmodel
training. Among them, 900 cases are training sets and the
remaining 100 cases are test sets. According to 4.2, the input
features of DNN are the voltage magnitudes and phase angles and
net active and reactive power injections of each node. The
simulation results of each node are shown in Figure 7 and
Table 3.

Computation Time
Besides the accuracy, the computational performance is
another advantage of this proposed method, which would
be more obvious in the large-scale power system. We

FIGURE 6 | IEEE 118-bus system partition diagram.

FIGURE 7 | LIMM value prediction performances of different buses of IEEE 118-bus system. (A) Node 29 (B) Node 41 (C)Node 28 (D)Node 115 (E) Node 114 (F)
Node 109.
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compared the CPU time of our method with the CPU time of
traditional CPF method for both IEEE 14-bus system and
IEEE 118-bus system. The simulations were run on a PC with
an Intel Core i5-9500, 3.00 GHz processor and 16 GB of RAM.
The simulation platforms are Matlab and python. The
experiments were conducted on the same PC. Our method
used a sample set of 900 training cases and 100 unseen test
cases. And we also used CPF to calculate 100 cases in the two
systems. The calculation time is accounted, and the results are
listed in Table 4.

As shown in Table 4, the training time of our method for IEEE
14-bus system is 5.749 s. And for IEEE 118-bus system, it takes
12.499 s to train six DNN models for six nodes at the same time.
Moreover, once the DNN training is completed, the margin
estimation of new cases is almost instantaneous. For IEEE 14-
bus system, the calculation time of LIMM value estimation for
100 test cases by trained DNN is less than 0.03 s. For IEEE 118-
bus system, the calculation time of LIMM value estimation for
100 test cases by trained DNN is less than 0.04 s. However, for
IEEE 14-bus system, CPF needs 7.337 s to complete the margin
estimation of 100 test cases. And for IEEE 118-bus system, CPF
needs 38.093 s to complete the margin estimation of 100 test
cases. As mentioned above, compared with CPF method, the
proposed method has a certain improvement in
computation speed.

CONCLUSION

This paper proposes a DNNbased distributed voltage stability online
monitoring method for large scale power grid. In this method, DNN
is used as machine learning technology to realize on-line monitoring
for voltage stability. And the nonlinear relationship between power
system operation state and corresponding LIMM is learning by use
of a large number of historical data. The historical data includes the
active power, reactive power, voltage magnitudes and phase angles
obtained by PMUs. In practice, the number of PMUs is limited. So
an optimal location method based on LIMM for install PMU is
proposed in this paper. From the simulation results in IEEE 14-bus
system and IEEE 118-bus system, the effectiveness of DNN in
voltage stability assessment is verified. Compared with the CPF
method, the proposedmethod is faster thanCPFmethod and has the
function of indicating weak link information, which is significant to
help the system operator to judge the operating state and take
measures in time.
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