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In water energy utilization, the damage of fault occurring in the power unit operational
process to equipment directly affects the safety of the unit and efficiency of water power
conversion and utilization, so fault diagnosis of water power unit equipment is especially
important. This work combines a rough set and artificial neural network and uses it in fault
diagnosis of hydraulic turbine conversion, puts forward rough set theory based on the
tolerance relation and defines similarity relation between samples for the decision-making
system whose attribute values are consecutive real numbers, and provides an attribute-
reducing algorithm by making use of the condition that approximation classified quality will
not change. The diagnostic rate of artificial neural networks based on a rough set is higher
than that of the general three-layer back-propagation(BP) neural network, and the training
time is also shortened. But, the network topology of an adaptive neural-fuzzy inference
system is simpler than that of a neural network based on the rough set, the diagnostic
accuracy is also higher, and the training time required under the same error condition is
shorter. This algorithm processes consecutive failure data of the hydraulic turbine set,
which has avoided data discretization, and this indicates that the algorithm is effective and
reliable.
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INTRODUCTION

With the continuous expansion in the scale of wind power, hydroelectric power, and other clean
energy types, the hydraulic power generation system structure is also becoming increasingly
complex, and the power generation unit of the hydropower station develops towards large scale
and automation (Duy and Ozak, 2014; Liu and Packey, 2014). Hence, once a fault occurs, both power
generation efficiency and unit safety will be affected, which will have harmful effects on the national
economy and cause significant economic loss. The likelihood of malfunctions increases as the
complexities of systems grow (Gokmen et al., 2013). The occasional occurrence of fault during the
daily operation of hydropower units requires increasingly high reliability and safety of unit operation
(Tang et al., 2010; Gao et al., 2016) The fault-diagnosis technology is also increasingly valued by
people and has developed to be one comprehensive interdiscipline. Generally, the fault-diagnosis
method consists of creating a real fault into the physical system and evaluating its effect on different
measured variables (Attoui and Omeiri, 2014). In the current hydropower unit fault prediction and
diagnosis, expert-system fault-diagnosis technology has been widely applied to the actual system, and
excellent effects have been achieved (Lu et al., 2016a; Lu et al., 2016b). However, the inherent defect
of the symbol information processing mechanism on which the expert system is based causes many
traditional expert-system problems.
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Scholars and engineering technicians put forward many
technologies and methods of power system fault diagnosis to
quickly and accurately recognize fault and judge the location and
type of faulty components under various complicated conditions.
The diagnoses are mainly including expert systems, optimization
algorithms, fuzzy set theory, and multiagent technology (Pawlak,
1982; Chen et al., 2006; Clark et al., 2014; and Clark et al., 2015).
Rough set theory has been widely applied in artificial intelligence,
decision support, rule extraction, data mining, machine learning,
etc., due to its strong capacity to handle uncertain information. In
hydraulic power generation system fault diagnosis, to judge faulty
components or areas based on actuating signal of protection and
circuit breaker, it is possible to express the fault phenomenon and
component state by pattern classification. It is appropriate to
utilize the decision table method of rough set theory for this
purpose (Pedrycz et al., 2008). However, in hydraulic power
generation system fault diagnosis, fault-diagnosis rules of the
power system correspond to attribute reduction of rough set
theory. Therefore, in the case of a power system fault diagnosis
with the rough set method, it is necessary to reduce the rough set
decision table, which is an NP-complete problem (Wang et al.,
2012). The work of Wang et al. (2013) and Cerrada et al. (2015)
combine rough set theory and clone algorithm; the work of
Foithog et al. (2012) and Hu et al. (2010) applied a self-
adaptive genetic algorithm in attribute reduction of the rough
set. The studies mentioned above mainly focus on rules extraction
after using rough set theory; however, attribute reduction of the
rough set itself is an NP problem.

This paper will utilize the rough set theory and neural
network. The advantage of this methodology is to gain
knowledge from data or input and output of living
examples, and it does not require knowing the mathematical
description of input and output. An artificial neural network is
a model based on the human brain. It has a neuron system
composed of many neurons, which has the advantages of
massive parallelism, distributed processing, self-organization,
and self-learning. Among these models, the BP neural network
is currently the most popular neural network model in
application. It has the universal advantages of all neural
networks, self-learning and self-adaptive ability, nonlinear
mapping ability, and high fault-tolerance rate (Yang et al.,
2019). The BP algorithm’s main idea is to divide the
learning process into two stages; the first stage is the
forward propagation process. The given input information is
to pass through the input layer and subject to the hidden layer
node process and calculate the actual output value of every
element. The second stage is a backward process; if the expected
output value is not obtained at the output layer, it is necessary
to carry out the recursive calculation of the difference between
the actual output value and expected output value layer by layer
to adjust the weight value based on the error.

This article establishes two kinds of neural network models
under a rough set and fuzzy set. One model is the rough neural
network, using a rough set to handle front-end data of neural
network input and using rough set mining rules to replace the
conventional adaptive-network-based fuzzy inference system
(ANFIS). Utilizing this algorithm to handle the hydraulic

power generation unit’s continuous fault data, ultimate results
show the effectiveness of this algorithm.

GLOBAL SIMILARITYMEASUREMENT AND
ATTRIBUTE REDUCTION ALGORITHM
Improved General Discrimination of
Attribute
Definition 1: a decision-making and information system
S�(U,A,V,f) is given, where A � C∪{d},C refers to the
condition attribute set, and d refers to the decision attribute.
Ud � d1,d2,. . .,drd, ∀a∈C, and the general importance degree of
attribute a is defined as

σg(a) �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 − 1
C2
r(d)

∑r(d)
i≠ j
i,j�1

a(di)∩a(dj)
maxcross[a(d)] other

∀i, j, a(di)∩a(dj) � Φ
, (1)

where C2
r(d) refers to the combination with 2 taken out from r(d)

numbers, a(di)∩a(dj) ⊂ V represents the intersection between
the subset of the attribute value of decision value di relevant to
attribute a and subset of the attribute value of relevant decision
value dj relevant thereto, and maxcross[a(d)] ⊂ V indicates the
maximum interval encircled by all intersections of subsets of
attribute values of two decision values relevant to attribute a,
degree of general importance and measurement of the attribute.
The general importance of the attribute measures indicates the
global decision-making ability, rather than the impact of certain
decision elements.

Suppose a decision table of absolute value, as shown in
Table 1, with six objects.

U/d � {d1, d2, d3} � {{x1,x2}, {x3,x3}, {x5,x6}}.
1) Subset interval of the attribute value of decision di relevant to

attribute a1 is [1.5,2.1], [1.8,3.3], and [2.0,2.7], respectively.
The degree of importance of its general attribute calculated
according to Eq. 1 is as follows:

σg(a1) � 1 − 1
C2
3

∑3
i≠ j

a(di)∩a(dj)
[2.0, 2.7]

� 1 − 1
3
([1.8, 2.1] + [2.0, 2.1] + [2.0, 2.7]

[2.0, 2.7] ) � 0.479.

TABLE 1 | Decision table of absolute value.

U a1 a1’ a2 a3 d

x1 1.5 0.0 0.4 5.6 1
x2 2.1 2.1 0.5 6.7 1
x3 1.8 1.8 0.4 5.1 2
x4 3.3 8.0 0.5 4.6 2
x5 2.0 2.0 0.5 6.8 3
x6 2.7 2.6 0.6 7.3 3
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2) Subset interval of the attribute value of decision di relevant to
attribute a1, is [0,2.1], [1.8,8], and [2.0,2.7], respectively, and
the degree of importance of its general attribute is as follows:

σg(a′1) � 1 − 1
C2
3

∑3
i≠ j

a(di)∩a(dj)
[2.0, 2.7]

� 1 − 1
3
([1.8, 2.1] + [2.0, 2.1] + [2.0, 2.7]

[2.0, 2.7] ) � 0.479.

Although, attribute a1 and attribute a′1 are different in terms
of subset interval of the attribute value of decision di, since

a1(d1)∩a1(d2) � a′1(d1)∩a′1(d2) � 0.3,
a1(d1)∩a1(d3) � a′1(d1)∩a′1(d3) � 0.2,
a1(d2)∩a1(d3) � a′1(d2)∩a′1(d3) � 0.9, and

maxcross[a1(d)] � maxcross[a′1(d)] � 0.9.

Therefore, they are identical in terms of the degree of
importance of general attribute, namely, σg(a1) � σg(a′1). For
attribute a1, its degree of influence on

a1(d1)∩a1(d2)
[1.6,2.2] � 0.3

0.6 � 0.5, and

the degree of influence of a1 on d1 is
a
1′(d1)∩a1′ (d2)

[0,2.2] � 0.3
2.2 � 0.136.

Accordingly, for different subset intervals of the attribute
value, the intersection between the subset of di relevant to a1
and a′1 and the subset dj relevant to it has different degrees of
influence on the respective attribute subset interval.

Consequently, the concept about the degree of importance
of improved general attribute is put forward, with the
influence of intersection between subsets of attribute value
on the respective attribute subset interval taken into
consideration.

Definition 2: given the decision-making system
S � (U ,C∪d,V , f ),U/d � {d1, d2, . . . dr(d)}, ∀a ∈ C, an
improved general discrimination of attribute a is defined as follows:

∑
g

(a) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
C2
r(d)

∑r(d)
i�1

∑r(d)
i≠ j
j�1 φ1[a(di), a(dj)]

|a(dimax) − a(dimin)| , (dimax)≠ a(dimin)

1 − 1
C2
r(d)

∑r(d)
i�1

∑r(d)
i≠ j
j�1 φ2[a(di), a(dj)]

|a(dimax)| , (dimax) � a(dimin)

,

(2)

where

φ1[a(di), a(dj)] � a(di)∩a(dj)
|r(d) − 1| ,

φ2[a(di), a(dj)] �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a(dj)
|r(d) − 1|, a(dimax) ∈ a(dj)

a(dimax) ∉ a(dj)
.

C2
r(d) represents the combination with 2 taken out from r(d)

numbers, a(di)∩a(dj) ⊂ V refers to the intersection between the
subset of the attribute value of decision value di di relevant to

attribute a and subset of the attribute value of decision value dj
relevant thereto, and a(dimax) and a(dimin) are the maximum and
minimum of decision value di relevant to attribute a, respectively.
According to the calculation based on formula, σg(a1) �
0.6827, σg(a′1) � 0.8171.

Global Similarity Measurement of the
Attribute
Definition 3: given a decision-making system S �
(U ,A,V , f ) ∀a ∈ A, x, y ∈ U , different similarity relations
may be defined for different attributes, and this work defines
the similarity of attribute a for objects x and y as follows:

SIM(x, y) � 1 −
∣∣∣∣a(x) − a(y)∣∣∣∣
|amax − amin| , (3)

where amax and amin are the maximum and minimum of attribute
a, respectively.

Given a decision-making system S � (U ,A,V , f ) for attribute
subset P4A, ∀x, y ∈ U in case that they satisfy the following
formula:

∑a ∈ PkpSIMa(x, y) + (1 − k)pσg(a)
|P| ≥ τ, (4)

where k ∈ [0.5, 1] and then (x, y) ∈ SIM(x, y)p,τ , which is the
global similarity threshold. It gives the global similarity degree of
the similarity class to take not only the similarity of the object but
also the global decision-making ability of the attribute into
consideration.

Definition 4: SIMp,τ � {y ∈ U
∣∣∣∣(x, y) ∈ SIMp,τ intolerance class.

Definition 5: tolerance class of object x ∈ U and lower
approximation (PτX) and upper approximation (PτX) of
tolerance relation object set X are defined as follows:

PτX � {x∣∣∣∣SIMP,τ(x)4X},
PτX � {x∣∣∣∣SIMP,τ(x)∩X∅}.

They are referred to as the lower approximation of SIMP,τ and
upper approximation of SIMP,τ of X, respectively.

Definition 6: if P,Q4A, then p (positive threshold) POSp(Q)
and the degree of dependence kτ of Q are defined as follows:

POSP,τ(Q) � Ux4U |QPτX,

kτ(Q) � cP,τ(Q) �
∣∣∣∣POSP,τ(Q)∣∣∣∣

|U | . (5)

Attribute Reduction Algorithm Based on the
Tolerance Relation
Attribute reduction of an information system often starts from
the calculation of the attribute set to save much time (Min and
Liu, 2009; Sun et al., 2017) since positive threshold change based
on the global similarity relation is irregular; therefore, it is
advisable to add the current foremost attribute from the
empty set. The initial range of system threshold is [τ, 0.99]
with threshold reduced by 0.01 from 0.99 every time to
calculate the degree of dependence of the condition attribute
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set on the decision attribute set till the degree of dependence is
unchanged (Sun et al., 2019).

Input: information system S � (U ,C∪D,V , f ), and the
number of condition attributes is n

Output: reduced set of the attribute of S

APPLICATION ANALYSIS

To analyze various performance indexes of hydropower unit
operation at the hydropower station and monitor the state of
the hydropower unit during the operation process, the power
plant explores the dependency relationship between equipment
in various unordered measured data by record and statistics of
equipment operating data of the power generation unit.
Knowledge discovery means the method of finding a
dependency relationship between variables from these data
and reporting the model found to the user in the form of a
function or rule (Peng et al., 2011; Grbovic et al., 2012; Shang
et al., 2017). Production rules are widely applied in knowledge
representation because they are simple in form and are easy to
understand by the user.

Haa and Xu (2001) provide water turbine fault-diagnosis data
of a hydropower station, as shown in Supplementary Table SA1
in the appendix. Based on the fault-diagnosis system of the rough
set, this work takes certain hydropower station data in western
China as an example to carry out an experimental simulation
study of fault diagnosis. Firstly, using the fuzzy membership
function to disperse data with an equal-width discretization
method, the membership function parameters generate
automatically according to the given fuzzy membership grade.
This method has good self-adaptability, and the fuzzification can
be omitted in the ANFIS system (Tabakhi et al., 2014; Zhang and
Min, 2016; Zhang et al., 2016). In this example, the membership
grade is 4. Then, a rough set is utilized to prehandle data to obtain
the core attribute, namely, the minimum attribute set {5, 6, 9},
determine the hidden node number of the BP network, repeat the
training 10 times with consideration of network training time and
the sum of squared errors (SSE), and get the average value of all
training by giving the same training step.

With an increase in the hidden layer node number, network
convergence error is reduced, but the training time is lengthened
(Raileanu and Stoffel, 2004; Shi et al., 2015). The hidden node
number is taken as 17 with comprehensive consideration of these
two factors. When directly constructing a neural network without
rough set handling, 12 input nodes are needed, and more hidden
layer nodes are needed for network convergence. The same
method is used to find the optimum hidden node number of
original data free from dimensionality reduction.

Table 2 compares the differences between the two kinds of
networks (general neural network and rough neural network). As
it is clear, the rough neural network has advantages over those of
general neural networks. The two kinds of the network are respectively
applied to bearing fault-diagnosis examples. The diagnosis data are
shown in Supplementary Table SA2 in the appendix.

It can be seen from Table 2, that the rough neural network
has advantages over the general neural networks from network
structure, training time, and diagnosis results. But, the two
kinds of diagnosis results are not complete in Table 2, and only
relying on two reasons may cause the incompleteness through
analysis. One reason may be that training samples exclude the
“model” of tested samples, namely, that faulty reasoning is
made about samples not tested. The other reason may be that
the noise-resistance capacity of the neural network is not
strong enough. More training samples are required for the
former one to make a network cover sample space as much as
possible (Klepaczko and Materka, 2010; Moradi and Rostami,
2015). But, in most cases, fault data information is pretty little,
and normal formation is more, or in tests, it takes high risks to
get fault data, so sometimes, an immune algorithm is adopted
to diagnose the fault, namely, fault diagnosis by studying
pretty much normal data to have immunity to abnormal
data. For the latter one, it can be considered to utilize a
fuzzy neural network to improve the corresponding noise-
resistance capacity. The ANFIS diagnosis process is briefly
introduced in the following part of this section. Rough set
mining rules are utilized to obtain 10 rules, as shown in
Table 3. The last item is rule support, namely, the rule
repeatability rate in training samples: the higher the
repeatability rate is, the more important the rule is.

The full connection method is adopted in general fuzzy neural
network construction. For three-input and four-membership
grade, 43 � 64 nodes are needed for expression at the rule

TABLE 3 | Rule table of rough set mining.

No. of rule Condition
attribute

Decision attribute Rule support

5 6 9

1 1 — — 1 22
2 — 3 — 1 6
3 — — 3 1 7
4 3 — 2 0 4
5 — 1 — 1 13
6 — 4 — 1 5
7 2 2 — 0 16
8 2 — 1 0 2
9 4 — — 1 1
10 — — 4 1 2

TABLE 4 | Diagnosis comparison of the rough neural network and ANFIS.

Type of network Network
structure

SSE Training
time

Diagnosis
result

Rough neural
network

3-16-1 0.047 0.913 15 ∕ 16

ANFIS 3-12-10-10-1 0.047 0.561 16 ∕ 16

TABLE 2 | Diagnosis results of the two kinds of network.

Type of network Network
structure

Training
time

Diagnosis
results

General neural
network

11-21-1 2.242 14 ∕ 16

Rough neural
network

3-16-1 0.913 15 ∕ 16
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input layer. The ANFIS system in this work uses rough set mining
rules to replace original rules, which reduces its connection
weight, and it can be seen from the table that rules include
irrelevant items. The complexity of this example with 13
connection weights and 10 nodes via this connection is greatly
reduced when compared with the general network with 44 � 256
connection weights and 64 nodes. Rules obtained with a rough set
are used to replace the original rule represented by full connection
by modifying the source code of the genfis function provided by
the Matlab fuzzy logic toolbox (Aquil and Banerjee, 2008;
Grzymala-Busse, 2008). Function anfis is utilized for training
in the aspect of network training.

It can be seen from Table 4 that ANFIS based on a rough set
further improves the accuracy of fault diagnosis. Under the same
SSE conditions, the training time is shortened, which is attributed
to the operation adopted in the intermediate layer. Also, certain
noise-resistance capacity is possessed due to the adoption of the
fuzzy method.

CONCLUSION

1) A rough neural network and self-adaptive neural-fuzzy
inference system (ANFIS) are established by combining a
rough set, neural network, and other methods to diagnose
hydropower unit fault. The rough neural network has a
simpler structure, shorter training time, and higher
diagnostic accuracy than the general neural network by
comparing their diagnosis results.

2) The hydropower unit fault-prediction and -diagnosis system
during the hydroenergy conversion process based on rough
set data overcome the problem of traditional expert-system
knowledge acquisition bottleneck. In the rough set method,
knowledge discovered is described directly, and it is very easy
to convert the knowledge into useful rules.

3) A reduction algorithm based on rough classification rules is
put forward, and good effects are achieved. Also, a
hydropower unit fault-prediction and -diagnosis system
based on rough set data mining is enabled. The system is

capable of giving an output of high confidence, possesses
strong fault-tolerance capability, and deserves a promotion.
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