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Buildings account for a large proportion of the total energy consumption in many countries
and almost half of the energy consumption is caused by the Heating, Ventilation, and air-
conditioning (HVAC) systems. The model predictive control of HVAC is a complex task due
to the dynamic property of the system and environment, such as temperature and
electricity price. Deep reinforcement learning (DRL) is a model-free method that utilizes
the “trial and error”mechanism to learn the optimal policy. However, the learning efficiency
and learning cost are the main obstacles of the DRL method to practice. To overcome this
problem, the hybrid-model-based DRLmethod is proposed for the HVAC control problem.
Firstly, a specific MDPs is defined by considering the energy cost, temperature violation,
and action violation. Then the hybrid-model-based DRL method is proposed, which
utilizes both the knowledge-driven model and the data-driven model during the whole
learning process. Finally, the protection mechanism and adjusting reward methods are
used to further reduce the learning cost. The proposed method is tested in a simulation
environment using the Australian EnergyMarket Operator (AEMO) electricity price data and
New South Wales temperature data. Simulation results show that 1) the DRL method can
reduce the energy cost while maintaining the temperature satisfactory compared to the
short term MPC method; 2) the proposed method improves the learning efficiency and
reduces the learning cost during the learning process compared to the model-free
method.

Keywords: deep reinforcement learning, model-based reinforcement learning, hybrid model, heating, ventilation,
and air-conditioning control, deep deterministic policy gradient

INTRODUCTION

Improving the energy efficiency of commercial buildings is a critical task in many countries for
energy-saving, cost-saving, and environmental protection (Paone and Bacher 2018). The target of the
Heating, Ventilation, and Air-conditioning (HVAC) system is to minimize the energy/CO2
consumption while maintaining users’ comfort and the HVAC system is the major energy
consumer in the building (Belic et al., 2015). Improving the efficiency of the HVAC system
contributes to greater energy savings within the building (Zhao et al., 2009). Therefore,
balancing the indoor satisfaction of users and energy consumption is a critical issue.
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The HVAC control is complex due to the cooperation of sub-
systems in the system and the thermal dynamic of buildings.
Researchers in past years majorly focused on the model predictive
control methods, which use the model of system and process to
obtain control signal with certain objections and constraints
(Afram and Janabi-Sharifi 2014; Xie et al., 2018; Afram et al.,
2017; Gomez-Romero et al., 2019). The advantage of MPC is its
flexibility and ability to consider different kinds of constraints.
However, the performance of MPC methods majorly influenced
by the accuracy and complexity of the model. The control
efficiency of the MPC method performs unsatisfactorily under
complex building thermal dynamics (Amasyali and El-Gohary,
2018). The temperature dynamic is hard to track for the system
may change in various conditions. For example, the energy
consumption prediction model is hard to predict, which is
related by many factors such as weather conditions, occupancy
schedule, thermal properties of materials, etc. This promotes the
idea to use the model-free method in practice.

Reinforcement learning (RL) (Sutton and Barto 2018) is a
model-free method and the agent utilizes “trial and error” to learn
the optimal policy without the requirement of the system and
process prior knowledge. Compared to MPC methods, RL shows
the ability to obtain the building dynamic in real-time, less
environmental parameters required, and more efficiently
control results. Most of the existing papers prefer to use
Q-learning for HVAC control. Fazenda et al. (2014) verified
the Q-learning based method for the bang-bang heater and
setpoint heater in the HVAC system considering both tenant
and thermal zone changes. Barrett and Linder (2015) comprise
the Bayesian approach to model room occupancy and the
Q-learning method to learn a control policy for the thermostat
unit. Vázquez-Canteli et al. (2017) proposed batch Q-learning for
the heat pump control. Chen et al. (2018) proposed a Q-learning
method to control both window and HVAC systems, which
trying to fully utilize natural ventilation and coordinate its
operation with the HVAC system.

Deep reinforcement learning (DRL) (Mnih et al., 2015)
improves the RL with deep learning method and utilize deep
neural networks to approximate the value function and policy
function. The DRL largely extends the ability of RL to the larger
state-action space in many different areas (Zhang et al., 2018;
Zheng et al., 2018; Ye et al., 2019; Yan and Xu 2020; Yan and Xu
2019). Inspired by the advantage of the quick on-line decision-
making process in the large-scale solution space, many methods
are applied to HVAC control in recent years. In (Wei et al., 2017),
Wei et al. proposed a Deep Q-Network based method to reduce
energy cost while maintaining room temperature within the
desired range. Gao et al. (2019) extended the problem to a
continuous action space with the deep deterministic policy
gradient (DDPG) method. In Yu et al. (2020a), proposed a
multi-agent DRL method with the attention mechanism to
minimize energy cost in a multi-zone building. In building
energy. Zou et al (2020) applied DDPG in the data-based
Long Short Term Memory (LSTM) environment model. Ding
et al (2019) proposed a Branching Dueling Double Q-Network to
solve the high dimensional action problem for four building
subsystems, including the HVAC, lighting, blind, and window

system. In Yu et al. (2020b), utilized DDPG to minimize the
energy cost of a smart home with the HVAC and energy storage
system. We may find a trend to solve the problem of the HVAC
subsystem and cooperate with other systems.

In practice, these methods may take a long time to converge to
a stable policy in the HVAC control problem and cause
unpredictable learning costs during the learning process. A
naive way is to train the agent in the simulator first and then
apply it to the real environment. For example, in Zhang et al. (2019),
a practical framework is proposed with the Asynchronous
Advantage Actor-critic (A3C) algorithm that the agent learning
in the simulator first and then deploy to the real environment.
However, the agent may overfit the simulator and lead to
unsatisfactory performance. In the sub-area of RL, the traditional
way is to improve data efficiency by the model, which is called
model-based RL. Model-based RL uses the log data to create and
update the environment model (Sutton, 1990), which the agent can
freely and unlimitedly interact with. The PILCO (Deisenroth and
Rasmussen, 2011) employs non-parametric probabilistic Gaussian
processes for the dynamic model. The PETS (Chua et al., 2018)
combines uncertainty-aware deep network dynamics models with
sampling-based uncertainty propagation. Based on these ideas, we
proposed a hybrid model-based RL framework for the HVAC
control problem.

The contributions of this paper are summarized as follows.
Firstly, we formulate the HVAC control problem to a specific
MDPs that the reward function contains energy cost, temperature
violation, and action violation. The continuous constraint action
space is considered in the paper. Secondly, a hybrid-model-based
DRL (HMB-DRL) framework is proposed for HVAC control,
which utilizes the knowledge-driven model in the pre-training
process. Also, the knowledge-driven model and data-driven
model are both utilized in the online learning process. The
HMB-DDPG algorithm is proposed based on the framework,
which can increase the training efficiency and reduce low learning
cost periods comparing to DDPG. Lastly, the protection
mechanism and adjusting reward methods are proposed. The
protection mechanism utilizes the knowledge-driven model to
avoid low reward action during the online learning process, and
adjusting reward changes the parameter value of the action
violation item to accelerate the learning process between the
pre-training process and the online learning process.

MATERIALS AND METHODS

Problem Formulation
The target of the HVAC system is to minimize the energy cost
and keep the zone temperature within the comfort range. We
consider the HVAC system with Variable Air Volume (VAV)
unit and constant air temperature supply. The zone temperature
in the next time step is decided by current zone temperature,
ambient temperature, and HVAC system (2)–(5). The power
model Pf of VAVwith fan efficiency kf is defined by (2), where fz, t

(kg/s) is the airflow rate at zone z time t, ∑N
z�1

fz, t is the total airflow

rate into all zones at time t, and z is the zone index which is from 1
to N. The internal and external heat gains and losses cause the
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temperature increase or decrease in the zone. Suppose the effect
of all walls on the zone temperature are the same, the modified
zone model in a discontinuous time step is given by the rate of
change of heat in the walls Hw,z,t (kW) and in the HVAC system
Hh,z,t (kW) in zone z at time t (3)–(5), where Uw (kW/m2Co) is
the heat transfer coefficient of walls, Aw (m2) is the total area of
walls, Ta, t (Co) is the ambient temperature at time t, and Tz, t (Co)
is the zone temperature at time t. The Ca (kJ/kg Co) is the specific
heat of air, fz,t is the control variable in Eq. 2, and Ts is the supply
air temperature, which is a constant. The Δt is the time interval,
Vz (m3) is the volume of the zone, and ρa (kg/m

3) is the density of
air. Therefore, the target of the HVAC system to minimize the
long-term energy cost is as follows,

min
az,t

E⎛⎝∑T
t�1

ctPf ,tλt⎞⎠ (1)

s.t. Pf ,t � kf⎛⎝∑N
z�1

fz,t⎞⎠
2

(2)

Hw,z,t � UwAw(Ta,t − Tz,t) (3)

Hh,z,t � fz,tCa(Ts − Tz,t) (4)

Tz,t+1 − Tz,t � Δt(Hw,z,t +Hh,z,t)/(VzρaCa) (5)

Tmin
zone <Tz,t <Tmax

zone (6)

Ta,t+1 � Fa(Ta,t) (7)

λt+1 � Fλ(λt) (8)

fz,t � az,t p f
max
z ; az,t ∈ [0, 1] (9)

where c is the discount factor, λt is the electricity price at time t,
Tmax
zone and Tmin

zone are the maximum and minimum acceptable zone
temperature respectively, f max

z is the maximum airflow rate and
az,t is the continuous control variable at time t, which is between
[0, 1]. Fa and Fλ are the dynamic model of ambient temperature
and electricity price. With known Fa and Fλ, this problem can be
solved by dynamic programming. However, the ambient
temperature and electricity price dynamics are hard to
accurately model and the HVAC system parameters may be
inaccurate. Also, the constraint and continuous action space
make the problem hard to calculate. All these factors cause an
unsatisfactory result.

As a model-free method, the RL perfectly solve the above
challenges. The agent interacts with an environment and
iteratively improves the policy without requiring the
knowledge of the environment. The first step is to reformulate
the problem as a Markov Decision Processes (MDPs). The key
components of MDPs are reformulated as follows.

State: TheHVAC system controls the air volume ofmultiple zones
in the building. Considering the target of the system, the following
observations are chosen as the state, including all zones temperature
Tz,t

∣∣∣∣∀z ∈ N , ambient temperature Ta,t , electricity price λt , and time
index in the day t’, i.e., st � (Tz,t |∀z ∈ N ,Ta,t , λt , t’)

Action: The action is defined as the power percentage of the
VAV units in all zones az,t , which is a continuous action space
and should between [0, 1]. When the action is defined as a
continuous action space, many new issues meet. The most serious
one is how to constraint the action in the resalable range during

the learning process. For example, the action az, t can only between
[0, 1] in this framework and any real number out of this range
cannot be executed physically. The general approach is mapping the
out of range action value to the feasible range during the learning
process and give punishment according to the level of the violation.

Reward: The target of the HVAC system is to minimize the
energy cost and keep the zone temperature within the comfort
range. A normal way to deal with constraint is to use the violation
as a punishment in the reward function. Combining the action
constraint, the reward function contains three components. The
first item is the energy cost of the HVAC system C1,
i.e., C1,t � Pf ,tλt . The second item is the violation of zone

temperature C2, i.e., C2,t � ∑N
z�1

([Tz,t − Tmax
zone]+ + [Tmin

zone − Tz,t]+).
The [x]+ means to choose the larger value of x and 0, i.e.
max(x, 0). The third item is the violation of action C3, i.e.

C3,t � ∑N
z�1

([az,t − 1]+ + [0 − az,t]+). Using different coefficient α

to represent the importance, the reward R is equal to the
negative weighted sum of these three items, i.e. Rt � −C1,t −
α1C2,t − α2C3,t .

Hybrid-Model-Based Reinforcement
Learning Framework
The hybrid-model-based RL framework is designed for the
HVAC control and the main periods can be divided into the
pre-training process and the online learning process. The pre-
training process is very necessary and important in practice. The
target of pre-training is to obtain a basic agent with a certain
ability. The pre-training process can be divided into two main
classes. One tendency is to learn the initial policy through
imitation learning or supervised learning. These methods
generally assume learning object’s policy is optimal and the
reward function is unknown. The other tendency is to build a
‘world model’ to simulate the environment and the RL agent can
freely interact with the model to learn the basic policy. Then, the
agent applies the basic policy in the real environment and learns
the optimal policy. In the HVAC control problem, the electricity
price dynamic is hard to capture, yet the physical model of
building thermal can be easily built. Also, solving the optimal
control result in all conditions is time-consuming. The latter one
is chosen as the pre-training process.

Although the pre-training may obtain a close optimal policy,
the online learning process is still necessary since the model
cannot perfectly simulate the environment. To accelerate the
learning process, model-based reinforcement learning methods
are often used. However, the data-driven model may be
inaccurate in some range due to the lack of previous data and
lead to a high-cost action. The good generalization of the
knowledge-driven model can solve the problem well. Here, we
suppose there exists an explicit expression of the real
environment and the expression is Mr . Due to measurement
error, estimation error, and unknown relationship, the
knowledge-based model of the real environment is built as Mk,
which is a trustworthy baseline model. As the online data size
increase, the data-driven model is built as Md .
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Based on the above ideas, the hybrid-model-based
reinforcement learning (HMB-RL) framework is proposed and
shown in Figure 1. The first period is the pre-training process.
The knowledge-driven model is built based on the measurement
parameters and the RL agent interacts with the knowledge-driven
model to learn the basic policy. Then, in the second period, the
agent starts the online learning process from the basic policy.
Similar to the model-based RL, the data-driven model is built
when the online dataset size is large enough. Between two
episodes, the agent can interact with the data-driven model to
do learning. The knowledge-driven model still provides
simulation results, but the results are no longer used for
learning. The knowledge-driven model simulation results are
used to ensure the low learning cost of the RL action.

This framework is similar to the framework in Zhang et al.
(2019), which also focuses on the practice of RL methods in the
HVAC problem. It is worth mention that our proposed
framework utilizes model-based RL in the online learning
process. And both data-driven model and knowledge-driven
model are used to accelerate the learning process and reduce
high learning costs. This is why we call the framework as the
hybrid-model-based RL framework.

Hybrid-Model-Based Deep Deterministic
Policy Gradient Method
Although the agent learns the basic policy in the pre-training
process using the reliable knowledge-driven model, the
performance of the pre-trained policy in the environment is
still uncertain. Therefore, the pre-trained policy is not suitable
to directly apply to the real environment without the online
learning process. Since the pre-training process is executed in the
knowledge-driven model, the learning cost can be regarded as
zero if we ignore the computational cost. On the other hand, in
the learning period, the agent needs to consider the learning
efficiency and learning cost.

Based on the HMB-RL framework and DDPG algorithm, the
hybrid-model-based DDPG (HMB-DDPG) algorithm is
proposed and shown in Algorithm 1. After initializing all the
networks and replay buffer, the agent interacts with the
environment to do online learning. The RL action arl,t is
generated according to the current state and a small noisyNt .
The protector (PM) generates the execution action ae, tusing
knowledge-driven modelMk, threshold Rt , arl,t , and st . The
detailed information is introduced as the protection
mechanism in the next section. Then the action decided by
the protection mechanism is executed in the environment. The
agent observes the reward rt and next state st+1 to save the
information into the replay buffer. After that, just like
Algorithm 1, the data-driven model is updated and the agent
interacts with the model to update the Q network and policy
network. At the end of the episode, the target Q network and
target policy network are updated.

Protection Mechanism and Reward
Adjusting
In the online learning process of the real environment, judging
the performance of action before executing the action is a direct
way to avoid the high learning costs. The model-free RL
constraint the policy divergence between each update to avoid
the high changing rate of policy updating. However, these
methods focus on safe exploration instead of low learning
costs. On the other side, the model-based RL can directly
utilize the model to accelerate the learning process and partly
achieve this target. The normal model-based RL utilizes data-
driven models and the accuracy of the data-driven model highly
depends on the training data. Therefore, the data-driven model
may be inaccurate sometimes and not stable to be the referee. In
previous work, the knowledge-driven model was utilized as both
protector and simulator in the wind farm control problem and
provide simulation results during the learning process (Zhao
et al., 2020). In that research, the knowledge-driven model
contributed more to the beginning of the learning process.
However, in the proposed framework, the pre-training process
exhausts the potential of the knowledge-driven model as a
simulator. The only contribution of the knowledge-driven
model in the online process is to work as a protector.

Figure 2 shows the protection mechanism using the
knowledge-driven model. Whenever an RL action needs to be
executed in the real environment, the knowledge-driven model
predicts the reward for the action. If the predicted reward is
acceptable, i.e., Mk(arl,t , st)>Rt , the RL action is executed in the
real environment. If the predicted reward is not acceptable, the
MPC result is calculated in the knowledge-driven model,
i.e., aMPC, t � argmaxMk(a, st). Then the MPC action is
combined with arl,t to generate an acceptable action for the
agent. Therefore, the worst case in the learning process can be
limited. The mechanism is concluded as Eq. 10.

ae,t � { arl,t , If Mk(arl,t , st)> k pRt

βparl,t + (1 − β)aMPC,t , else
(10)

FIGURE 1 | Hybrid-model-based RL framework.

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 8 | Article 6105184

Zhao et al. Hybrid-model DRL HVAC Control

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


Solving MPC control results in an accurate knowledge-driven
model is trustworthy but time-consuming. This is one of the main
reasons for using model-free methods. For the proposed method,
it is necessary to choose a low-fidelity knowledge-driven model
that can be solved quickly. Although the result is not as accurate
as the high-fidelity knowledge-driven model, it is sufficient to
provide protection information for the RL agent.

Setting the action violation as a punishment in the reward
function makes the agent approaching the available action range
at the beginning of the learning process. Adding the penalties
prevent the agent from falling into the local optimal outside the
range of available action. However, this makes the agent being
afraid to take action near the boundary of the available action
range and reduce the RL’s performance. The value of the reward
function parameter influences the final result of the learned
policy. Generally, the smaller value of the penalty parameter,
the less important the violation, and the greater possibility of
violating this item. On the other hand, the importance of other
items has increased relatively. Separate the learning process into
two periods also allows the framework to adjust the reward
function between the two periods. Since the agent have
learned the basic policy to stay within the available range, the
weight of the action violation item can be reduced or removed

during the online learning process, i.e. Rt, new � −C1,t − α1C2,t −
α2, newC3,t , 0≤ α2,new ≤ α2,old .

SETUPS

Heating, Ventilation, and Air-Conditioning
System and Zone Model
In this paper, a simulation building (25 m*25 m*10 m) with a
VAV system and fixed strategy cooling/heating system is
implemented to test the proposed method. To investigate the
effects in the simulation environment, we maintain two versions
of the HVAC systems, zone models, and dynamic models. The

Algorithm 1 Hybrid-model-based deep deterministic policy gradient algorithm.

Input: Knowledge-driven Model Mk, threshold Rt

1: Initialize Q network Q and policy network μ

2: Initialize target network Q’ and μ’ with the same weights
3: Initialize replay buffer RB
4: For episode � 1,. . ., M do
5: Receive initial observation state s0
6: For t � 1,. . ., T do
7: Selection RL action arl, t � μ(st|θμ) + Nt

8: ae,t � PM(Rt ,Mk(arl,t , st))
9: Execute ae,t , observe reward rt and next state st+1
10: Store transition (st , ae,t, rt , st+1) in RB
11: Update Data-driven model Mk with RB
12: For repeat times � 1,. . .,N do
13: Update Q using the sampling data from Mk

14: Update μ using the sampled policy gradient
15: Update the target networks Q’ and μ’

FIGURE 2 | Protection mechanism.

TABLE 1 | Environment parameters.

Symbol Quantity Symbol Quantity

Aw 1000m2 ρa 1.25 kg/m3

Ca 1.005 kJ/kgCo Δt 1 s
kf 1.675 kWs2/kg2 fmax

z 0.45 kg/s
Uw 10− 3 kW/m2Co Tmin

zone 19Co

Ts 16 or 30Co Tmax
zone 25Co
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first version is built as the real environmentMr and not available
to know in practice. The second version is built to represent the
knowledge-driven model Mk. Mk is an inaccurate translation
of the Mr.

The setup of the HVAC system and zone model of Mr is
summarized in Table 1. In the test, we suppose the degradation of
Mr toMk is majorly caused by an unknown dynamic of electricity
price and ambient temperature. The setup of the dynamic model
of Mr and Mk is introduced in the next part. The only difference
between Mr and Mk in the HVAC system and zone model is the
kf . In the Mk, the value of kf is 1.5.

The discount factor is related to how much the agent cares
about the future. The range of the discount factor is from 0 to 1.
The larger the value, the greater the future impact. In the test, we
set the discount factor as 0.9.

Electricity Price and Ambient Temperature
To simulate the electricity price and ambient temperature
dynamics, the day-ahead electricity market price data from the
Australian Energy Market Operator (AEMO) and the ambient
temperature in New South Wales are utilized. The interval of
these data is half an hour and the data from 2018/09/01 to 2018/
09/30 are chosen. The distribution of electricity price and ambient
temperature are shown in Figure 3. The red ‘+’ in the box plot is
the outlier of each period.

The electricity prices in the data follow a non-Gaussian
distribution and the price fluctuations in the data ΔλDt,d of all
periods t in all days d is calculated to simulate the environment
dynamic Mr , i.e., ΔλDt, dλDt,d � λDt+1,d − λDt,d . The (.)D is the value of
data. For the knowledge-drivenmodelMk, detailed information is
ignored. The change expectations of all periods E(ΔλDt ) are the
model prediction outputs, i.e., E(ΔλDt ) � ∑30

d�1 Δλ
D
t, d

30 , t � 1, . . . , 48.

The electricity price prediction in the knowledge-driven

model is λt+1 � λt + E(ΔλDt ). For the environment model,
detailed information is included. The price update in the
knowledge-driven model is λt+1 � λt + ΔλDt,d and d is randomly
selected from all days with uniform distribution. To ensure the
stability of the process, the maximum price and minimum price of
each period are used to constraint the generated result. The same
method is applied to generate the ambient temperature using the
temperature data.

RESULTS

Optimal Results
To verify the effectiveness of the proposed method, we design a
testing process in the simulation environment that uses the
previous setups. Firstly, the agent is pre-trained by interacting
with the knowledge-driven model Mk for 2,880 iterations
(60 days). The pre-trained policy is tested in the environment
model Mr for 480 iterations (10 days). Then, to simulate the
online learning process, the agent interacts with theMr using the
proposed algorithm and methods. The online learning process
also has 2,880 iterations. After that, the final policy is tested with
the MPC method in theMr for 480 iterations. The MPC method
solves the one-period optimal result of Eqs. 1–9 with Mk. Since
the data-driven model is hard to be trained well in such a short
number of iterations, the replay buff is used to simulate an
accurate data-driven model Md . This testing process is
repeated ten times to ensure generalization.

The total energy cost and temperature violation are two main
aspects of a good HVAC control policy. The energy cost and
temperature violations are as low as possible. To compare the
performance of the RL method and the traditional MPC method,
the average energy costs and temperature violations are
compared. On the other hand, the target of RL is to utilize

FIGURE 3 | Distribution of (A) electricity price data (B) ambient temperature data.
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long-term rewards to reduce the energy cost during periods of
high electricity prices, which are referred to as the peak price
periods in this paper. According to the historical data, the periods
36 and 37 are the peak price periods, and the time of these periods
corresponds to 18:00 to 19:00. Also, the temperature violation
during the high/low periods, which are referred to as the peak
temperature periods, are checked. The low temperature is further
to the acceptable zone temperature than the high temperature.
Therefore, periods 8, 9, and 10 are the peak temperature (lowest)
periods, and the time corresponds to 4:00 to 5:30.

The results are shown in Table 2. The pre-trained policy is the
DRL policy, which is only pre-trained in the knowledge-driven
model. The final policy is the DRL policy, which is pre-trained in
the knowledge-drivenmodel and trained in the environment. The
MPC method solves the one-period optimal result of Eqs. 1–9
with Mk. Generally, the MPC can satisfy the temperature
requirement at a relatively high cost. The temperature
violation of MPC is almost zero. In comparison, the pre-
trained policy saves about 1/3 energy cost on average but the
temperature violation is unacceptable. The final policy of
proposed method saves an average of 26.99% energy cost in

all periods and 32.17% energy cost in peak price periods
comparing to one-period MPC. The temperature violation of
the final policy is very small too. The temperature randomness in
the environment causes a large temperature violation of the pre-
trained policy. Compare to the pre-trained policy, the final policy
reduces the influence of temperature randomness at an average of
61.71% in all periods, and 71.81% in peak temperature periods.
The detailed profile of the testing results is shown in Figure 4.
The figure shows the average electricity price, the average energy
cost, the average ambient temperature, and average temperature
violation for 10 trails.

Learning Efficiency and Learning Costs
Comparison of Deep Deterministic Policy Gradient
and HMB-Deep Deterministic Policy Gradient
In the first test, we compare the policy of DRL with the one-
period MPC policy to show the improvement of DRL methods in
the HVAC control problem. In this test, the improvement of
learning efficiency and learning cost is tested compared to the
DDPG algorithm. Since the learning efficiency and learning cost
of the pre-training process is not as important as the online

TABLE 2 | Testing results conclusion.

Pre-trained policy Final policy MPC

Average energy cost 219.5155 247.8671 339.5064
Average energy cost (peak periods) 369.3853 431.5970 636.3084
Average temperature violation 0.2095 0.0802 0.0032
Average temperature violation (peak periods) 0.5744 0.1619 0.0082

FIGURE 4 | The profile of average testing results (A) average electricity price (B) average energy cost (C) average ambient temperature (D) average temperature
violation.
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learning process, only the process of online learning is compared.
The other settings are the same as the previous test.

The average reward, average energy cost, and average
temperature violation profile results are shown in Figure 5.
Step A represents the pre-training process using DDPG in the
knowledge-driven model. Step B represents the training process
using DDPG in the environment. Step B with HMB represents the
training process with HMB-DDPG in the environment. Both
DDPG and HMB-DDPG use the same pre-trained policy from
step A for further training. The HMB-DDPG shows less learning
cost and higher learning efficiency compared to DDPG. The low
learning rewards of DDPG do not occur in the HMB-DDPG. The
next two tests show the specific improvements in the protection
mechanism and adjusting reward methods.

Comparison of Deep Deterministic Policy Gradient
and Deep Deterministic Policy Gradient With
Protection Mechanism
The target of the protection mechanism is to avoid the high
learning cost during the learning process. To verify the
performance of the protection mechanism, the DDPG with the
protectionmechanism is compared with DDPG during the online
learning process in the environment. The threshold of the
protection mechanism is set as the temperature violation of
RL action in the knowledge model exceeds 7°, and the
executed action is the average of the MPC action and the RL
action.

The average reward, the average energy cost, the average
temperature violation, and the average percentage of use
protection during the training process in 10 trails are shown

in Figure 6. Similarly to the former test, step A represents the pre-
training process using DDPG in the knowledge-driven model.
Step B represents the training process using DDPG in the
environment. Step B with PM represents the training process
using DDPG with the protection mechanism method in the
environment. Both step B and step B with PM use the same
pre-trained policy from step A for further training. In the upper
picture of Figure 6, when the agent detects high learning cost
periods, the protection mechanism has a higher activation
probability in the corresponding periods in the second picture.
Since the executed actions change from the unacceptable RL
actions to the new actions which combined with theMPC actions,
the energy costs and temperature violations are reduced.

Comparison of Deep Deterministic Policy Gradient
andDeep Deterministic Policy GradientWith Adjusting
Reward
The target of the reward function is to minimize the energy cost
within a satisfactory temperature range. For the continuous
action space problem, the first challenge is to find the
available action range so the agent can exploit the range. The
common way is to add the action violation to the reward function
as a penalty. Directly ignore the violation of action will cause the
policy hard to converge to the feasible range. However, when the
parameter value of the violation item is large, exploration at the
boundary of the available range is hard because the policy is
influenced by the boundary of action.

The adjusting reward method is tested using the DDPG
algorithm that activating the penalty item during the pre-
training process and removing the penalty item during the

FIGURE 5 | The comparison of DDPG and HMB-DDPG (A) average reward (B) average energy cost (C) average temperature violation.
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online learning process. The average reward, average energy cost,
and average temperature violation profile results are shown in
Figure 7. Step A represents the pre-training process using DDPG

in the knowledge-driven model. Step B represents the training
process using DDPG in the environment. Step B with AR
represents the training process using DDPG with adjusting the

FIGURE 6 | The comparison of DDPG and DDPG with protection mechanism (A) average reward (B) average percentage of using protection (C) average energy
cost (D) average temperature violation.

FIGURE 7 | The comparison of DDPG and DDPG with adjusting reward (A) average reward (B) average energy cost (C) average temperature violation.
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reward method in the environment. Both step B and step B with
AR use the same pre-trained policy from step A for further
training. Comparing to the training process of DDPGwithout AR
(step B), the DDPG with AR (Step B with AR) converge faster.

CONCLUSION

Energy consumption caused by the HVAC systems accounts for a
large proportion of the entire building. Reducing the energy costs
while maintaining temperature satisfaction is the main target of
the HVAC system, but the performance is limited by the dynamic
environment and system modeling accuracy. DRL is a model-free
method that interacts with the environment to learn the optimal
policy. Learning efficiency and learning cost are the main
obstacles to the implementation of the DRL method.
Therefore, we proposed a new hybrid model-based RL
framework for the HVAC control problem. The model-based
RL framework can learn the policy efficiently and the knowledge-
driven model can provide additional information for the agent to
avoid low reward actions. The simulation results show that the
final policy of the proposed method saves an average of 26.99%
energy cost in all periods and 32.17% energy cost in peak price
periods comparing to one-period MPC. The hybrid-model-based
method reduces the online learning cost by using the knowledge-
driven model.

Although the simulation results show the reliability of the
method, it still needs to set many hyperparameters such as neural
network structure and learning rate to obtain a good online
learning process. In real cases, repeating the learning process will
also cause the learning cost. Further works will focus on how
to automatically adjust these hyperparameters during the

pre-training process to the reduce online learning cost. Also,
the dynamic human activity need to be considered in the
framework which can further reduce the energy
consumption. By appending the information about whether
humans are acting in the area or not to the state, the factor can
be integrated into the proposed method. The data-driven
model like RNN will be studied to model the dynamic
human activities in the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

HZ developed the idea and wrote the initial version of the paper.
JZ provided the idea and performed the full edit of the paper. TS
provided the theory of thermal and weather models. ZP
implemented the thermal model. All authors contributed to
the article and approved the submitted version.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Shenzhen
Municipal Science and Technology Innovation Committee
(ZDSYS20170725140921348, JCYJ20160510153103492).

REFERENCES

Afram, A., and Janabi-Sharifi, F. (2014). Theory and applications of hvac control
systems–a review of model predictive control (mpc). Build. Environ. 72,
343–355. doi:10.1016/j.buildenv.2013.11.016

Afram, A., Janabi-Sharifi, F., Fung, A. S., and Raahemifar, K. (2017). Artificial
neural network (ann) basedmodel predictive control (mpc) and optimization of
hvac systems: a state of the art review and case study of a residential hvac
system. Energy Build. 141, 96–113. doi:10.1016/j.enbuild.2017.02.012

Amasyali, K., and El-Gohary, N. M. (2018). A review of data-driven building
energy consumption prediction studies. Renew. Sustain. Energy Rev. 81,
1192–1205. doi:10.1016/j.rser.2017.04.095

Barrett, E., and Linder, S. (2015). “Autonomous hvac control, a reinforcement
learning approach,” in Joint european conference on machine learning and
knowledge discovery in databases. Dublin, Ireland, September 10-14.
Lecture notes in computer science. Editors A. Bifet, M. May,
B. Zadrozny, R. Gavalda, D. Pedreschi, F. Bonchi, et al. (Cham: Springer
International Publishing), Vol. 9286, 3–19.

Belic, F., Hocenski, Z., and Sliskovic, D. (2015). HVAC control methods - a
reviewInternational conference on system theory, control and computing,
ICSTCC 2015 - joint conference SINTES 19, SACCS 15. SIMSIS 19,
679–686. doi:10.1109/ICSTCC.2015.7321372

Chen, Y., Norford, L. K., Samuelson, H. W., and Ali, M. (2018). Optimal control of
hvac and window systems for natural ventilation through reinforcement
learning. Energy Build. 169, 195–205. doi:10.1016/j.enbuild.2018.03.051

Chua, K., Calandra, R., McAllister, R., and Levine, S. (2018). “Deep reinforcement
learning in a handful of trials using probabilistic dynamics models,” in

Advances in neural information processing systems 2018-Decem (NeurIPS),
Montréal, Canada, December 2-8 , 4754–4765.

Deisenroth, M. P., and Rasmussen, C. E. (2011). PILCO: a model-based and
data-efficient approach to policy search. Icml, June 28th to July 2nd.
Available at: http://eprints.pascal-network.org/archive/00008310/,
465–472.

Ding, X., Du, W., and Cerpa, A. (2019). “OCTOPUS: deep reinforcement
learning for holistic smart building control,” in BuildSys 2019–proceedings
of the 6th ACM international conference on systems for energy-efficient
buildings, cities, and transportation, New York, USA, November 13-14,
326–335.

Fazenda, P., Veeramachaneni, K., Lima, P., and May O’Reilly, U. (2014). Using
reinforcement learning to optimize occupant comfort and energy usage in hvac
systems. J. Ambient Intell. Smart Environ. 6 (6), 675–690. doi:10.3233/AIS-
140288

Gao, G., Li, J., and Wen, Y. (2019). Energy-efficient thermal comfort control in
smart buildings via deep reinforcement learning. ArXiv. 10.1109/
jiot.2020.2992117

Gomez-Romero, J., Fernandez-Basso, C. J., Victoria Cambronero, M., Molina-
Solana, M., Campana, J. R., Ruiz, M. D., et al. (2019). A probabilistic algorithm
for predictive control with full-complexity models in non-residential buildings.
IEEE Access. 7, 38748–38765. doi:10.1109/ACCESS.2019.2906311

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al.
(2015). Human-level control through deep reinforcement learning. Nature 518
(7540), 529–533. doi:10.1038/nature14236

Paone, A., and Bacher, J. P. (2018). The impact of building occupant behavior on
energy efficiency and methods to influence it: a review of the state of the art.
Energies 11 (4). 953. doi:10.3390/en11040953

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 8 | Article 61051810

Zhao et al. Hybrid-model DRL HVAC Control

https://doi.org/10.1016/j.buildenv.2013.11.016
https://doi.org/10.1016/j.enbuild.2017.02.012
https://doi.org/10.1016/j.rser.2017.04.095
https://doi.org/10.1109/ICSTCC.2015.7321372
https://doi.org/10.1016/j.enbuild.2018.03.051
http://eprints.pascal-network.org/archive/00008310/
https://doi.org/10.3233/AIS-140288
https://doi.org/10.3233/AIS-140288
https://doi.org/10.1109/ACCESS.2019.2906311
https://doi.org/10.1038/nature14236
https://doi.org/10.3390/en11040953
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles


Sutton, R. S. (1990). “Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming,” in Machine learning
proceedings, Austin, Texas, June 21–23, Vol. 02254, 216–224.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning : an introduction.
Cambridge, MassachusettsMassachusetts London, England: The MIT Press
Cambridge.

Vázquez-Canteli, J., Kämpf, J., and Nagy, Z. (2017). Balancing comfort and energy
consumption of a heat pump using batch reinforcement learning with fitted
q-iteration. Energy Procedia 122, 415–420. doi:10.1016/j.egypro.2017.07.429

Wei, T., Wang, Y., and Qi, Z. (2017). “Deep reinforcement learning for building hvac
control,” in Proceedings–design automation conference part, Austin, TX, USA, June
2017, 12828.

Xie, D., Liang, Y., Jiang, T., and Zou, Y. (2018). Distributed energy optimization for
hvac systems in university campus buildings. IEEE Access 6, 59141–59151.
doi:10.1109/ACCESS.2018.2872589

Yan, Z., and Xu, Y. (2019). Data-driven load frequency control for stochastic
power systems: a deep reinforcement learning method with continuous
action search. IEEE Trans. Power Syst. 34 (2), 1653–1656. doi:10.1109/
TPWRS.2018.2881359

Yan, Z., and Xu, Y. (2020). Real-time optimal power flow: a lagrangian based deep
reinforcement learning approach. IEEE Trans. Power Syst. 35 (4), 3270–3273.
doi:10.1109/TPWRS.2020.2987292

Ye, Y., Qiu, D., Jing, L., and Strbac, G. (2019). Multi-period and multi-spatial
equilibrium analysis in imperfect electricity markets: a novel multi-agent deep
reinforcement learning approach. IEEE Access 7, 130515–130529. doi:10.1109/
ACCESS.2019.2940005

Yu, L., Sun, Y., Xu, Z., Shen, C., Dong, Y., Jiang, T., et al. (2020a). Multi-agent deep
reinforcement learning for hvac control in commercial buildings. IEEE Trans.
Smart Grid 1. doi:10.1109/tsg.2020.3011739

Yu, L., Xie, W., Xie, D., Zou, Y., Zhang, D., Sun, Z., et al. (2020b). Deep
reinforcement learning for smart home energy management. IEEE Internet
Things J. 7 (4), 2751–2762. doi:10.1109/JIOT.2019.2957289

Zhang, D., Han, X., and Deng, C. (2018). Review on the research and practice of
deep learning and reinforcement learning in smart grids. CSEE J. Power Energy
Syst. 4 (3), 362–370. doi:10.17775/cseejpes.2018.00520

Zhang, Z., Chong, A., Pan, Y., Zhang, C., and Lam, K. P. (2019). Whole building
energy model for hvac optimal control: a practical framework based on deep
reinforcement learning. Energy Build. 199, 472–490. doi:10.1016/j.enbuild.
2019.07.029

Zhao, H., Zhao, J., Qiu, J., Liang, G., and Zhao Dong, Y. (2020). Cooperative wind
farm control with deep reinforcement learning and knowledge assisted
learning. IEEE Trans. Ind. Inf. 16 (11), 6912–6921. doi:10.1109/tii.2020.
2974037

Zhao, J., Zhu, N., and Wu, Y. (2009). The analysis of energy consumption of a
commercial building in tianjin, china. Energy Pol. 37 (6), 2092–2097. doi:10.
1016/j.enpol.2008.11.043

Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N. J., Xie, X., et al. (2018). “DRN: a
deep reinforcement learning framework for news recommendation,” in The
web conference 2018–proceedings of the world wide web conference, WWW
2018, Lyon, France, April 23-27, Vol. 2, 167–176.

Zou, Z., Yu, X., and Ergan, S. (2020). Towards optimal control of air handling units
using deep reinforcement learning and recurrent neural network. Build.
Environ. 168, 106535. doi:10.1016/j.buildenv.2019.106535

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Zhao, Zhao, Shu and Pan. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org February 2021 | Volume 8 | Article 61051811

Zhao et al. Hybrid-model DRL HVAC Control

https://doi.org/10.1016/j.egypro.2017.07.429
https://doi.org/10.1109/ACCESS.2018.2872589
https://doi.org/10.1109/TPWRS.2018.2881359
https://doi.org/10.1109/TPWRS.2018.2881359
https://doi.org/10.1109/TPWRS.2020.2987292
https://doi.org/10.1109/ACCESS.2019.2940005
https://doi.org/10.1109/ACCESS.2019.2940005
https://doi.org/10.1109/tsg.2020.3011739
https://doi.org/10.1109/JIOT.2019.2957289
https://doi.org/10.17775/cseejpes.2018.00520
https://doi.org/10.1016/j.enbuild.2019.07.029
https://doi.org/10.1016/j.enbuild.2019.07.029
https://doi.org/10.1109/tii.2020.2974037
https://doi.org/10.1109/tii.2020.2974037
https://doi.org/10.1016/j.enpol.2008.11.043
https://doi.org/10.1016/j.enpol.2008.11.043
https://doi.org/10.1016/j.buildenv.2019.106535
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles#articles

	Hybrid-Model-Based Deep Reinforcement Learning for Heating, Ventilation, and Air-Conditioning Control
	Introduction
	Materials and Methods
	Problem Formulation
	Hybrid-Model-Based Reinforcement Learning Framework
	Hybrid-Model-Based Deep Deterministic Policy Gradient Method
	Protection Mechanism and Reward Adjusting

	Setups
	Heating, Ventilation, and Air-Conditioning System and Zone Model
	Electricity Price and Ambient Temperature

	Results
	Optimal Results
	Learning Efficiency and Learning Costs
	Comparison of Deep Deterministic Policy Gradient and HMB-Deep Deterministic Policy Gradient
	Comparison of Deep Deterministic Policy Gradient and Deep Deterministic Policy Gradient With Protection Mechanism
	Comparison of Deep Deterministic Policy Gradient and Deep Deterministic Policy Gradient With Adjusting Reward


	Conclusion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References


