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An effective control system for the air supply in fuel cell systems (FCS) is required to prevent
oxygen starvation and tomaximize the net power. For this purpose, conventional feedback
and adaptive controllers are designed using genetic programming (GP). To minimize the
time required for the GP convergence, FCS models of different complexity are studied and
a comparison between them is carried out. Guidelines on applying the GP approach based
on data obtained from simulations are developed along with a specially designed cost
function that promotes closed-loop linearization. The advantage of this design method lies
in its applicability to complex nonlinear systems for which nonlinear control methods may
not be applicable. Adaptation is added to the oxygen excess ratio (OER) regulation
problem by training a neural network that provides the optimal OER reference based on the
stack current and temperature. The performance of both the regulation and adaptive
controllers is tested under noise in the compressor flow and the stack current
measurements. The robustness of the GP controllers is observed through the
frequency response analysis.
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1. INTRODUCTION

Due to its high energy density and low pollution, hydrogen is considered as one of the most
promising alternatives to fossil fuels. Polymer electrolyte membrane (PEM), also known as proton
exchange membrane fuel cells (FCs) is one type of fuel cells that is fueled by hydrogen. PEMFCs are
suitable for vehicular applications due to their low operating temperature and high efficiency. They
use oxygen and hydrogen from air and pressurized tanks, respectively, to produce electricity, water,
and heat.

The main focus of this paper is on the control of the reactants flow subsystem which is responsible
for hydrogen and air supplies. The hydrogen flow is controlled using a valve, while the oxygen flow is
controlled by manipulating the compressor speed. The flows must be controlled effectively to
optimize the net power and avoid oxygen starvation during changes in the vehicle demand. For
electric vehicles, a competitive performance requires the power response of the fuel cell to be quick
and efficient without harming the membrane. The power response is limited by the fuel feeders, flows
and pressure regulators, and water and heat management systems. With changes in acceleration,
transients occur in the current drawn by the load. This depletes oxygen which could lead to
starvation. It also generates heat and water which can reduce the efficiency of the fuel cell. A control
system is required in order to ensure that the power demand is met, and losses are minimized without
causing oxygen starvation.
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Several linear controllers are presented in (Methekar et al.,
2007). First, the average power density is controlled through a
proportional-integral (PI) controller where the manipulated
variable is the inlet molar flow rate of hydrogen. It was shown
that the severe input dependent nonlinearity that is present in the
dynamics causes a slow response with a settling time of 275 s.
Another approach investigated involves the control of average
power density along with the solid temperature. The resulting
multiple-input multiple-output system settles down in 90 s. To
avoid oxygen starvation, a ratio control strategy is proposed,
which allows changing the inlet flow rate of oxygen such that a
certain hydrogen to oxygen ratio is maintained. It also rejects step
disturbances in coolant temperature.

Nonlinear control schemes including gain scheduling and
fuzzy control are studied in (Al-Durra et al., 2010). Feedback
linearization (FBL) is used in (Chen et al., 2018) to track an
optimal oxygen excess ratio (OER), also known as oxygen
stoichiometry. On the other hand, FBL is used in (Ki Na and
Gou, 2008), (Abbaspour et al., 2019), (Sankar and Jana, 2018)
with the objective of minimizing the deviation between the partial
pressures of the gases to prolong the fuel cell stack life. The
control variables include the inlet flow rate of the two gases,
oxygen and hydrogen. The FBL decouples and linearizes the input
and output behaviors, while a PI controller imposes the closed-
loop poles so that the partial pressures track asymptotically the
desired trajectory. This provides a better performance compared
to linear controllers according to the simulation results. Another
application of FBL is found in (Sankar and Jana, 2018) where it is
coupled with an adaptive state estimator. In other works, the
pressures of the reactants are controlled to increase the durability
of the FC by minimizing the partial pressure difference between
oxygen and hydrogen (She et al., 2013), (Sankar and Jana, 2018).

On the other hand, Pukrushpan linearized a nine-state model
where the resulting linear model consists of eight states
(Pukrushpan et al., 2004b). The control objective is to
maintain a desired net power and to keep the oxygen excess
ratio at a desired level. Dynamic feedforward with PI (DFF + PI)
controller was designed, yet it suffers from reduced robustness as
the control performance relies more on the feedforward path.
This issue was tackled by designing a state-feedback with integral
action controller. The conflict of the objectives, which arises from
the fact that the net power is affected by the compressor effort,
was the main factor in choosing the optimization function of the
controller. Since only the compressor air flow rate, supply
manifold pressure, and stack voltage are measured, a reduced-
order Kalman filter is used to apply full state feedback. Other
works that focused on regulating the OER to a fixed value include
gain scheduled linear parameter varying control (Bianchi et al.,
2014).

A sixth-order model of the fuel cell system (FCS) is obtained
through model reduction in (Rakhtala et al., 2014), and is used to
design a high-order sliding mode (HOSM) observer and
controller to track the optimal OER (Deng et al., 2018). In
other works, an HOSM observer is used to estimate the OER,
and a second-order sliding mode controller is designed to
regulate OER to an optimal value to maximize the efficiency
of the FCS (Pilloni et al., 2015). Sliding mode control was also

applied to the hydrogen channel pressure in order to minimize
the pressure difference while an extremum seeking controller was
applied to the air channel pressure to maximize the net power
(Hayati et al., 2016). Optimal OER has also been tracked in
(Kelouwani et al., 2012) through an adaptive controller that
utilizes online identification to estimate the efficiency
parameters. Model predictive control has also been applied to
control the OER but with a very simplified model of the plant
(Wang and Kim, 2014), (Arce et al., 2010).

Genetic programming (GP) has not been widely used for
control systems applications. In the same year when Koza
published his popular book on GP (Koza, 1992), GP was used
to discover an effective control algorithm for a model of an active
suspension system (Marko and Hampo, 1992). The work in
(Koza et al., 2000) proposed using GP to generate controllers
that meet time-domain and frequency-domain constraints and
were tested on three-lag plant with a significant time delay. The
function set was limited to transfer functions, which limited the
resulting GP functions to linear controllers. This is preferred for
the linear plant that was given as an example, but is often not the
ideal solution for nonlinear plants. Other reported applications of
GP are related to control and robotics (Paić-Antunović and
Jakobović, 2012), (Ferreira et al., 2014).

Many control strategies have been used to obtain controllers
for the objective of regulating the OER. However, these
approaches have never been applied to the high order
models of the FCS due to their nonlinearity and complexity.
The problem of adaptation for optimal OER has not been
addressed either for the high-order models, where third-
order (Chen et al., 2018) and fifth-order models (Liu et al.,
2019) are normally used. Even with such controllers, the OER
optimal reference is generated through a fitted function, which
is only a function of the stack current, with other factors such as
the stack temperature ignored.

This paper, therefore, addresses the existing gaps that is done
by first investigating multiple models of the FCS to determine the
most suitable one for GP applications. It is shown that a model of
five states is enough to capture almost all the dynamics of the
OER with the least run time. Secondly, a general methodology for
developing GP controllers through simulations and development
of the cost function ensuring linearizing property of the GP-based
controller is proposed and applied to the FCS. The resulting
algorithm is capable of generating controllers that provide
consistent performance over a wide range of operating
conditions. Thirdly, optimal setpoint generation is performed
by training a neural network that is based on stack current as well
as temperature variations. The network approximates the optimal
ratio with high accuracy and feeds the reference to a controller
generated through GP.

The paper starts with the investigation of available FC models.
Order reduction and comparison betweenmodels is performed in
Section 2. Section 3 provides a brief on the GP algorithm and
develops guidelines on applying GP based on data obtained from
simulations. Section 4 discusses the application of GP to the air
flow control of the FC. The adaptation for load and temperature
variations is presented in Section 5. Finally, concluding remarks
are presented in Section 6.
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2. SYSTEM MODEL

In the case ofmodel-based control techniques, an accuratemodel that
captures the dynamics of the system is required. On the other hand, it
may not be evident that a model is required for data-driven control
approaches since many of them are applied to data that is obtained
through experimentation. In this paper, however, data is obtained
through simulations which requires an accuratemodel. Therefore, we
investigate in this section the most popular models of PEMFCs, and
we study reduced-order versions that can be run in significantly less
time with the least impact on the variables of interest, specifically, the
air supply dynamics. The air supply subsystem is shown in Figure 1,
indicating five states and their corresponding differential equation
which will be included in the model.

One of the most popular models of a PEMFC is the nine-state
nonlinear model given in (Pukrushpan et al., 2004b), which is
reduced to the fourth-order in (Suh and Stefanopoulou, 2007)
with reasonable assumptions for the purpose of air-supply
control, and further reduced to a third-order model in (Talj
et al., 2010). In the present paper, we study the fourth-order
model and determine if more states are required to achieve a
reasonable accuracy. The model assumes that gases obey the ideal
gas law, and the cathode temperature is equal to the stack
temperature. Also, it assumes that the temperature and
pressure of flow exiting the cathode are equal to the ones in
the cathode. All the water is assumed to be in the form of vapor,
and the gases in the cathode and anode are fully humidified.
Flooding is neglected in gas diffusion layer, and spatial variations
in flow channel and gas diffusion layer are neglected.

The four-states model is governed by

d
dt
mO2 � WO2 ,in −WO2 ,out −WO2 ,rct, (1)

d
dt
mN2 � WN2 ,in −WN2 ,out, (2)

d
dt
psm � RTcp

Matm
a Vsm

(Wcp −Wca,in), (3)

d
dt
ωcp � 1

Jcp
(τcm − τcp). (4)

The inlet cathode flow rate Wca,in can be used to find the inlet
mass flow rate of oxygen WO2,in and nitrogen WN2 ,in as

WO2 ,in �
xO2 ,atm

1 + watm
Wca,in, (5)

WN2 ,in �
1 − xO2 ,atm

1 + watm
Wca,in, (6)

where the oxygen mass fraction of inlet air, xO2,atm, is
given by

xO2 ,atm � yO2 ,atmMO2

yO2 ,atmMO2 + (1 − yO2 ,atmMN2), (7)

where the oxygenmolar ratio, yO2,atm, is taken as 0.21. The inlet air
humidity ratio is given by

watm � Mv

yO2 ,atmMO2 + (1 − yO2 ,atm)MN2

ϕatmpsat
patm − ϕatmpsat

, (8)

where ϕatm is the relative humidity and psat is the saturation
pressure of vapor. The cathode mass flow rate is given by

Wca,in � kca,in(psm − pca), (9)

where kca,in is the cathode orifice flow constant and pca is the
sum of oxygen, nitrogen, and vapor partial pressures. The
outlet mass flow rate of oxygen WO2 ,out and nitrogen WN2 ,out

are given by

WO2 ,out �
MO2pO2

MO2pO2 +MN2pN2 +Mvpsat
Wca,out , (10)

WN2 ,out �
MN2pO2

MO2pO2 +MN2pN2 +Mvpsat
Wca,out . (11)

The mass flow rate out of the cathode Wca,out is given by the
nonlinear nozzle flow equation

Wca,out � CDATpca����
RTst

√ (patm
pca

)1
c⎛⎝ 2c

c − 1
⎛⎝1 − (patm

pca
)

c–1
c ⎞⎠⎞⎠

1
2

, (12)

for

patm
pca

>( 2
c + 1

)
c
c–1

, (13)

and

Wca,out � CDATpca����
RTst

√ c
1
2( 2
c + 1

)
c+1

2(c− 1)
, (14)

FIGURE 1 | Illustrative diagram of the five-states fuel cell system model.
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for

patm
pca

≤( 2
c + 1

)
c
c–1

, (15)

where CD and AT are the discharge coefficient and the opening
area of the nozzle, respectively.

The mass flow rate of the compressor, Wcp, is given by the
Jensen and Kristensen nonlinear map (Pukrushpan et al., 2004a)
as a function of the compressor rotational speed ωcp, the pressure
ratio psm/patm, and the upstream temperature Tatm. The air
leaving the compressor has a temperature of

Tcp � Tatm + Tatm

ηcp
⎛⎝( psm

patm
)

c–1
c

− 1⎞⎠, (16)

where ηcp is the compressor efficiency. In Eq. 4, τcm and τcp are
the compressor motor torque and compressor load torque,
respectively. The motor torque is calculated using the static
motor equation

τcm � ηcm
kt
Rcm

(vcm − kvωcp), (17)

while the torque consumed by the compressor is given by

τcp � CpTatm

ωcpηcp
⎡⎢⎢⎣( psm

patm
)(c− 1/c) − 1⎤⎥⎥⎦Wcp, (18)

where Cp is the specific heat capacity of air and c is the ratio of the
specific heats of air.

The five-states model is similar to the model above but
with the addition of the return manifold dynamics which are
given by

d
dt
prm � RTst

Mca
a Vrm

(Wca,out −Wrm,out), (19)

where the flow rate out of the cathode is determined by

Wca,out � kca,out(pca − prm), (20)

and the manifold exit flow can be calculated similar to Eqs. 12, 14
except for the cathode partial pressure which is replaced by the
partial pressure of the return manifold.

The six-states model is similar to the previous model except
that the dynamics of the mass in the supply manifold is
considered. The corresponding differential equation is

d
dt
msm � Wcp −Wsm,out , (21)

where the mass flow rate out of the supply manifold is given by

Wsm,out � ksm,out(psm − pca), (22)

and the supply manifold pressure equation is modified to include
the temperature difference as

d
dt

psm � R
Matm

a Vsm
(WcpTcp −Wca,inTsm). (23)

In all of the models, the mass flow of reacted oxygen is directly
related to the stack current as

WO2 ,rct � MO2

nIst
4F

, (24)

where n is the number of cells and F is the Faraday constant. The
variable of interest which is the oxygen excess ratio or
stoichiometric factor is given by

λO2 �
WO2 ,in

WO2 ,rct
. (25)

For the net power simulation, the stack voltage is obtained by
subtracting the activation, concentration, and ohmic losses from
the open circuit voltage, and taking into account the number of
cells as given by

vst � n(E − vact − vohm − vconc). (26)

The losses and open circuit voltage are functions of the stack
temperature and membrane water content and are calculated as
in (Pukrushpan et al., 2004b). Since the compressor consumes up
to 93.5% of the total auxiliary power (Li et al., 2018), the net
power is considered to be the difference between the power
produced by the stack and the power consumed by
compressor motor and is given by

Pnet � Istvst − Icmvcm, (27)

where vcm is the control command and Icm is found from the
motor model by dividing the net voltage by the motor electrical
resistance.

The comparison between the three reduced models is
performed by simulations, and they are compared to the nine-
states model as well. A summary of the model parameters is
provided in Table 1, while the different state vectors and the
measured run time is given in Table 2.

TABLE 1 | FC model parameters.

Parameter Value

Type of membrane Proton exchange membrane
Rated power of FC 75 kW
Number of cells (n) 381
Cell active area 280 cm2

Membrane thickness (tm ) 0.01275 cm
Cathode volume 0.01 m3

Supply manifold volume 0.02 m3

Cathode outlet throttle 0.0124
discharge constant
Cathode outlet throttle area 0.00175 m2

Supply manifold outlet 0.3629 × 10− 5kg/(s · Pa)
orifice constant
Nominal temperature (Tst) 353 K
Nominal membrane water 14 (100% humidified)
content (λm )
Rated power of compressor 12.5 kW
Compressor and motor 5 × 10− 5kg ·m2

inertia
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The results shown in Figure 2 demonstrate the changes in
OER that occur due to a series of step changes in the stack current.
Static feed-forward control is used to generate the compressor
voltage for all the simulations. The OER responses of the nine-
states and six-states models are almost identical, while the five-
states model has a minor difference in overshoot. On the
contrary, the four-states model oversimplifies the OER
response and shows much smaller overshoot throughout the
simulation. As for the net power, the response is identical for
all models. Since the objective of this paper is to follow a
specific OER, the fours-states model is not sufficient. The five-
states model is selected for this study as it captures the OER
dynamics and runs faster than the six-states model by
about 20%.

3. GENETIC PROGRAMMING

Machine learning control, which includes GP, is usually applied
to complex systems for which it is difficult to derive a model or to
develop a control law. This makes it suitable for high order
models of FCS that does not facilitate the development of
adequate control laws.

3.1. Principles of GP
Genetic algorithms (GA) can effectively solve many
optimization problems. A solid understanding of their
properties have become available due to the variety of
theoretical studies performed. However, the representation of
individuals which is based on a fixed-length string-type is
unnatural and constrains the effectiveness of GA for many
applications. For instance, a computer program has more
freedom when it is expressed as a hierarchical, variable size
structure instead of a fixed-length string with variable
parameters. The initial choice of the string length in GA
limits in advance the complexity of the program and sets an
upper bound on what the system can learn.

GP can be used to learn and enhance control laws, which could
be nonlinear mappings from the sensors’ outputs to the actuators’
inputs. This mapping can be represented by a recursive function
tree, where the generations are obtained using the same
operations used in genetic algorithms. An overall view of GP
within a control loop is depicted in Figure 3. In generation j, the
population is composed of multiple controls ui which are
functions of the measurements y. Each controller is assigned a
cost based on a cost function. After evolving the controllers,
generation j + 1 which is composed of new controllers is sent to

the Simulink model to obtain the responses and assign the new set
of costs.

A cost function J is defined based on the response
characteristics of the system. This cost is fed back to the GP
block to guide it to a better control structure and/or better
parameters selection. This continuously modified controller
takes the sensed states to supply the actuation to the plant,
and this process keeps repeating until some defined
termination criteria is met.

The tree-based GP algorithm for control applications is based
on the following steps (Koza, 1992):

1. Step 1. Initialize a random population of controllers using
the terminal and function sets. The terminal set includes
constants and variables that will appear in the control law
where the variables are the measurements obtained from the
available sensors. The function set includes the pool of allowed
mathematical operations.
2. Step 2. Repeat (a) and (b) until a termination criterion is
reached. (a) Simulate the system using each controller in the
population of controllers and give it a fitness value based on a
cost function. (b) Choose a set of controllers for mating with a
selection probability that is proportional to their fitness. Based
on their probabilities, apply the genetic operations (i) to (iii) to
create the population of the next generation.

(i) Replication: a controller is taken to the population of the
next generation without modification. (ii) Crossover: random
parts of two controllers are recombined to form a new
controller. (iii) Mutation: create a random controller part
and substitute it in place of a randomly selected part in an
existing controller function.

3. Step 3. The best controller throughout the generations is
the result of the GP process. The GP tree is formed of nodes

TABLE 2 | FC models state vectors and run time.

State vector Run time (s)

[mO2 mH2 mN2 ωcp psm 4.1488
msm mw,an mw,ca prm ]u[mO2 mN2 ωcp psm msm prm ]u 2.6441[mO2 mN2 ωcp psm prm ]u 2.1077[mO2 mN2 ωcp psm ]u 2.0657

FIGURE 2 | The OER response for models of different orders.
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and leaves, which represent functions and terminals,
respectively. The set of functions can include arithmetic
operations, mathematical functions, Boolean and
conditional operations, and iterative operations. On the
other hand, the set of terminals is formed from the
available variables and constants. It is recommended that
the function and terminal sets satisfying closure and
sufficiency requirements must be ensured (Rozenberg
et al., 2012).

3.2. GP for System Linearization
Given that the fuel cell is a nonlinear system, it responds
differently to disturbances of different sizes. However, having
a consistent response is desirable to guarantee a good
performance over a wide range of operating conditions. A
system is said to be linear if it satisfies the property of
superposition. Given two inputs, x1(t) and x2(t), and their
respective outputs, y1(t) � H{x1(t)} and y2(t) � H{x2(t)}, the
superposition holds when αy1(t) + βy2(t) � H{αx1(t) + βx2(t)}.

FIGURE 3 | Application of GP in control systems (Duriez et al., 2017). A general overview of the implementation is shown in (A), while an example of the crossover
operation is shown in (B). The terminals are enclosed by squares while functions are in circles.
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Consider L step signals of sizes a1, a2,. . ., aL that are applied as
input disturbances at time samples t1, t2,. . ., tL, respectively. A
linear system is expected to have a similar response for all of these
steps. For example, the percentage overshoot should be identical.
To ensure the linearizing properties of the GP algorithm, the cost
is scaled based on the step size. The total cost function is
composed of two terms and is expressed as

J � Jf + CsJv. (28)

The first term is the summed weighted cost which is
responsible of enhancing the overall performance and is given by

Jf � ∑L
l�1

Jl, (29)

where Jl is the weighted cost of the interval corresponding to step
l. It is given by

Jl � a1
al
∫tl+1

tl

|e|dt,  (30)

where |e| is the difference between the simulated OER and the
reference OER. In Eq. 28, sJv represents the standard deviation of
the weighted cost samples and is minimized by adding it to the
GP cost function. It is the standard deviation of the elements of
the following row vector

Jv � [J1(k) J2(k) . . . JL(k)], (31)

where Jl(k) is the value of Jl at time sample k. The constant C is a
weighting factor. When C is set to a high value, the algorithm tries
to find a linearizing control law at the cost of the performance on
the reference signals used during the training process. The terms
inside the standard deviation look as in Figure 4 after a typical GP
run. If the closed-loop system is perfectly linearized, the curve
would be identical in the three regions.

4. AIR FLOW CONTROL USING GP

A complicated phenomenon known as oxygen starvation occurs
when the oxygen excess ratio goes below 1. This event has serious
consequences where it leads to a sharp decrease in the cell voltage,

which can lead to hot spots on the membrane and hence
permanent damage.

Therefore, the control objective in the FC air supply subsystem
is to regulate the OER to a desired level, usually 2, in the presence
of load (stack current) changes, which is modeled as a
disturbance. An alternative objective is to track an optimal
OER given by a neural network. Since the OER is not
available for measurement due to the lack of OER sensor (Suh
and Stefanopoulou, 2007), the control is based on two
measurements, the compressor air flow rate and the current
demanded by the vehicle power management system. The
compressor motor voltage is the controlled input. A
proportional controller is used for the fuel flow to ensure
equal pressures in the anode and cathode.

The GP controller is generated for the five-states model but is
tested on the nine-states model to ensure its functionality on the
more accurate model. The available measurements are the stack
current, compressor flow rate, and temperature. The controller
gives the compressor voltage, which has to regulate or track the
reference OER with the least excursion and quickest recovery.FIGURE 4 | Weighted cost example.

TABLE 3 | GP parameters for air flow control in FCS.

Parameter Value

Population size (N) 2000
Replication probability 0.1
Mutation probability 0.4
Crossover probability 0.5
Elitism number 40
Function set +, −, ×, tanh

FIGURE 5 | OER regulation using GP controller for IAE minimization.
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The controller inputs are scaled, and the output of the controller
passes through an absolute value block which leads to faster
convergence of the GP algorithm. The GP parameters are given in
Table 3.

A sample GP controller for the OER regulation yields the
response shown in Figure 5. The controller provides a quick
recovery to the OER with minimal overshoot under different sizes
of steps in the stack current. The control effort, given by the
compressor voltage, is also within the permittable range.

The obtained controller performs well in minimizing the
integral absolute error (IAE) of the OER, but still does not
limit the sudden excursion, which happens at the time when
the load changes. In order to minimize the excursion, the
minimum OER value for each time window should be added
to the cost function with a weight that depends on the step size of
the disturbance as well. Furthermore, the derivative of the stack
current should be included in GP controller inputs. Since the
stack current is low-pass-filtered, a filtered derivative can be
obtained. A GP controller that is obtained through this
strategy performs, as shown in Figure 6. It can be seen that
the excursion of the first step is reduced to about 0.5 instead of 0.7,
as in the previous case. All other excursions are reduced as well.
However, the overshoot became higher due to the aggressiveness
of the new controller, which can also be seen from the large
control effort. An overshoot is not a problem by itself since extra
OER is not harmful, but this would mean that the undershoot is
high as well, as can be noticed at t � 12, which can lead to
starvation if the undershoot is large. The tradeoff between

excursion and overshoot can be achieved by tuning the
weights of the terms in the cost function.

The performance of the GP controller for IAE minimization is
compared to the traditional DFF + PI controller developed in
(Pukrushpan et al., 2004b) in order to assess the effectiveness of
the GP method. The GP controller provides a response with shorter
settling time in most of the step sizes of the disturbance, as shown in
Figure 7. The performance of both controllers deteriorates at different
operating conditions, such as a decrease in the stack temperature. The
DFF + PI seems to be more robust to this change, although the
difference is minor. The IAE and the integral square error (ISE) for
both controllers for the two temperatures is given in Table 4. This
drawback of theGP controller is due to the fact that it is trained on the
plant with a nominal temperature of 353 K. Therefore, it does not
necessarily perform well at other temperatures. Nevertheless, the
robustness can be addressed by changing the parameters of concern
between generations, or by extending the simulation and adjusting
the temperature between two of the step disturbances. In this case, GP
controllers that perform well at multiple temperatures would survive
since they would be assessed based on the response that depends on
the updated temperatures.

A sine stream with a bias of 250 A is used to generate Bode
plots to compare between the controllers. The closed-loop
frequency response from the disturbance to the excess ratio
using static feedforward (SFF) control, DFF + PI control, and
the GP controller is shown in Figure 8. Both DFF + PI and GP
controllers reduce the magnitude of the excess ratio more than
the SFF controller at most frequencies. The stack current is
filtered in practice by a low pass filter to give time for the FCS

FIGURE 6 | OER regulation using GP controller for excursion
minimization.

FIGURE 7 | GP and DFF + PI comparison for OER regulation.

TABLE 4 | IAE and ISE with different controllers.

Controller Temperature (K) IAE ISE

DFF + PI 353 0.219 0.028
300 0.39 0.04

GP 353 0.134 0.0314
300 0.2785 0.0395
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controller to react and avoid oxygen starvation. A high cutoff
frequency is desired for this filter in order to provide quick power
output. The spectrum of the step disturbance includes all
frequencies, but it is filtered through a low pass filter with a
cutoff frequency of 100 rad/s in this study. Therefore, it is
preferred to have a controller that attenuates the magnitude of
excess ratio within this frequency. The linearizing property of the
GP controller can be noticed where the Bode plots are generated
for different amplitudes. The Bode plot of the GP controller case
maintains the smallest shift in the Bode plot when the amplitude
is changed compared to the SFF and DFF + PI controllers.

5. ADAPTATION FOR LOAD AND
TEMPERATURE CHANGES

Since PEMFC are considered as a power source for automobiles,
they are expected to undergo large and quick load transitions
during their operation. Keeping the oxygen excess ratio above a
certain value is necessary to prevent damaging the fuel cell.
However, keeping this excess at a constant value such as in
(Pukrushpan et al., 2004b) does not yield the optimum net
power output as the latter depends heavily on the oxygen excess
ratio in the cathode. A high excess ratio means that a high amount
of oxygen is supplied to the cathode, which yields a higher output
power in general. Nevertheless, the net power decreases for a very
high excess ratio due to the excessive power consumed by the
compressor. Therefore, the tradeoff between the fuel cell power
production and the compressor power consumption has to be
addressed to obtain the optimal excess ratio.

For the purpose of maximizing the output power, a mapping
between the stack current and the oxygen excess ratio that yields
maximum net power should be obtained. Then, a controller that can
follow the optimum excess ratio with quick response and zero
steady-state error must be generated. It is also preferred for the

control algorithm to be computationally efficient and self-optimizing
in order to consider model uncertainty and the variations in the
system parameters. The authors in (Chang and Moura, 2009)
provided simulation results that show that the optimum excess
ratio depends on the stack current, stack temperature, and
membrane hydration. They proposed an online extremum
seeking approach to regulate the oxygen excess ratio about an
optimum value for time-varying parameters. However, the
simulations show that the controller takes about 2 min to reach
the optimum power, which is indeed not practical for automotive
applications where power demand is changing continuously.
Moreover, the method relies on periodic perturbation, which
leads to non-vanishing oscillations. This leads to producing
power close to optimum value, but it never converges to it. A
more practical implementation is given in (Chen et al., 2018) by
providing the optimal reference ratio to a fuzzy controller through a
lookup table, where the optimal values are pre-recorded for different
stack currents. Another practical method is proposed in (Chen et al.,
2018), where the optimal excess ratio is expressed as a function of the
stack current. A controller that tracks the reference ratio is then

FIGURE 9 | Optimal OER and its estimation using ANN. The curves are
combined for different temperatures.

FIGURE 8 | Closed-loop frequency response from the disturbance to
the excess ratio. Solid and dashed lines represent the plots obtained using
sinusoids of amplitudes 20 and 40 A, respectively.
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designed through feedback linearization based on a third-order
model of the air supply system.

The methods mentioned contain multiple drawbacks. First, the
optimal ratio was taken as a function of only the stack current, while
the effect of temperature variation was neglected. Second, the fitting of
a simple function and the use of a lookup table are clearly unable to
provide high accuracy in estimating the optimal ratio. Furthermore,
the controllers designed rely on either a simplifiedmodel of the system
in case of feedback linearization, or the experience of the designer in
the case of fuzzy control. In our approach, we propose obtaining a
nonlinearmap from the current and temperature to the optimal excess
ratio through a neural network. This map can then be used online to
provide the reference excess ratio to the controller, which is obtained
through the application of GP.

An artificial neural network (ANN) that consists of four
hidden layers with 50, 30, 10, 10 neurons can approximate the
optimal OER as shown in Figure 9 for current that ranges from
80 to 238 A and temperature that ranges from 20 + C to 95 + C.

The trainedANN is used to generate the optimalOERbased on the
stack temperature and current. A GP controller with five inputs is
trained to follow the optimal OER. The optimal ratio is a setpoint
which is augmented based on the stack current and temperature. This
can be considered as a form of gain scheduling that is used to provide
adaptation to uncertainties, such as the stack current disturbance.
Since the variation in stack current is essentially a result of the change
in load resistance, this uncertainty can also be viewed as a variation in
the system parameters if a more comprehensive model that includes
the load is considered. A mean block is used to smooth out some
undesired spikes that occur at the ANN output. Figure 10 shows the
performance of the generated controller at a nominal temperature. It
also shows the new current profile, which is used to remain within the
permittable compressor voltage command range.

It is desired to view the difference in the net power when regulating
OER at two against when using the optimal OER adaptation. This
difference is not clear when the FCS is simulated at the nominal
temperature since the dependence on stack current is small. The
difference, however, is large when the stack temperature changes as
can be seen in Figure 11. Although the adaptive controller provides
higher net power at a steady-state, it goes through a sharp reduction
during transients. This is due to the current derivative term that is not
available in the GP regulator used in the comparison. This derivative
causes the compressor to react aggressively and to consume more
power, but it reduces the excursion in OER.

The controllers generated through GP can be viewed and
tested through the Simulink files provided in the Supplementary
Material for this article.

6. CONCLUSION

Quick response in a FC system is essential to avoid permanent damage
to the membrane and increase the lifetime of the system. The high
changes and uncertainty in electrical loads make the problem of
maintaining a specific level of OER challenging. The control design
problem is tackled in the present research through the unconventional
data-driven GP approach. To make the design process more feasible,
multiple FCSmodels of different orders are obtained and compared in
terms of accuracy and run time. The five-states model is found to be a
good candidate that provides a balance between accuracy and run
time. The linearizing property of GP through a specially designed cost
function is exploited to generate controllers with consistent

FIGURE 10 | Optimal OER adaptation at Tst � 80° C.

FIGURE 11 | Net power with optimal OER adaptation at Tst � 50 ° C.
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performance. The GP algorithm is used on the FCS five-states model
to generate a controller that outperforms a conventional DFF + PI
controller. Although a low-order model is using for the controller
generation, the resultant controller is verified on the nine-statesmodel.
Furthermore, adaptation for different operating conditions is
performed. This is achieved by training a neural network that
outputs the optimal OER based on the stack current and
temperature. The optimal OER is fed to a controller that is
generated through GP. Overall, the GP-based control for a FC
system is found to be a promising control approach that provides
some useful features not available with other control approaches.
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NOMENCLATURE

vact Activation losses voltage

Tatm Ambient temperature

patm Atmospheric pressure

Wca,in Cathode inlet mass flow

kca,in Cathode inlet orifice flow constant

Wca,out Cathode outlet mass flow

kca,out Cathode outlet orifice flow constant

pca Cathode pressure

Jcp Combined inertia of compressor and motor

ωcp Compressor angular velocity

ηcp Compressor efficiency

τcp Compressor load torque

Wcp Compressor mass flow

kv Compressor motor back electromotive force constant

Rcm Compressor motor electrical resistance

ηcm Compressor motor mechanical efficiency

τcm Compressor motor torque

kt Compressor motor torque constant

vconc Concentration losses voltage

Jv Cost vector

watm Humidity ratio of atmospheric air

WN2 ,in Inlet nitrogen mass flow

WO2 ,in Inlet oxygen mass flow

Matm
a Molar mass of atmospheric air

Mca
a Molar mass of cathode air

mN2 Nitrogen mass

MN2 Nitrogen molar mass

pN2
Nitrogen partial pressure

CD Nozzle discharge coefficient

AT Nozzle opening area

vohm Ohmic losses voltage

WN2 ,out Outlet nitrogen mass flow

WO2 ,out Outlet oxygen mass flow

λO2 Oxygen excess ratio

mO2 Oxygen mass

xO2,atm Oxygen mass fraction of atmospheric air

MO2 Oxygen molar mass

yO2 ,atm Oxygen molar ratio

pO2
Oxygen partial pressure

WO2 ,rct Reacted oxygen mass flow

ϕatm Relative humidity

prm Return manifold pressure

Vrm Return manifold volume

ai Size of step i

Cp Specific heat capacity of air

Ist Stack current

Tst Stack temperature

sJv Standard deviation of vector

Jf Summed weighted cost

msm Supply manifold mass

Wsm,out Supply manifold outlet flow

ksm,out Supply manifold outlet orifice flow constant

psm Supply manifold pressure

Vsm Supply manifold volume

Tcp Temperature of compressor outlet air

Tsm Temperature of supply manifold air

Mv Vapor molar mass

psat Vapor saturation pressure

Jl Weighted cost of the interval

C Linearization weighting factor

e Error used in the GP cost function

E Open circuit voltage

F Faraday constant

J Total cost

n Number of cells

R Universal gas constant

Γ Specific heats of air ratio
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