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Ni-rich layered transition-metal oxides with high specific capacity and energy density are
regarded as one of the most promising cathode materials for next generation lithium-ion
batteries. However, the notorious surface impurities and high air sensitivity of Ni-rich layered
oxides remain great challenges for its large-scale application. In this respect, surface impurities
are mainly derived from excessive Li addition to reduce the Li/Ni mixing degree and to
compensate for the Li volatilization during sintering. Owing to the high sensitivity to moisture
and CO2 in ambient air, the Ni-rich layered oxides are prone to form residual lithium compounds
(e.g. LiOH and Li2CO3) on the surface, subsequently engendering the detrimental subsurface
phase transformation. Consequently, Ni-rich layered oxides often have inferior storage and
processing performance. More seriously, the residual lithium compounds increase the cell
polarization, as well as aggravate battery swelling during long-term cycling. This review focuses
on the origin and evolution of residual lithium compounds. Moreover, the negative effects of
residual lithium compounds on storage performance, processing performance and
electrochemical performance are discussed in detail. Finally, the feasible solutions and future
prospects on how to reduce or even eliminate residual lithium compounds are proposed.

Keywords: ni-rich cathode, air storage performance, residual lithium compounds, surface degradation, modification

INTRODUCTION

Although LiCoO2 is one of the earliest successfully commercialized cathode materials, with a low
energy density, high cost and toxicity, it is not suitable to be applied as a power battery material (Lu
et al., 2019; Xian et al., 2020; Cheng et al. 2020). By substituting cobalt (Co) with nickel (Ni), LiNiO2

has a similar layered crystal structure to LiCoO2. However, it possesses a larger energy density and
costs less (Ohzuku et al., 1993; Deng et al., 2019; Mu et al., 2020). Unfortunately, due to the large
cation mixing degree during synthesis (preparing stoichiometry LiNiO2 is actually difficult) and
extreme air sensitivity, the practical application of LiNiO2 is very challenging (Liu et al., 2007;
Manthiram et al., 2016; Das et al., 2017). In this respect, substituting the fractional Ni atoms in
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LiNiO2 with other metallic elements, Ni-rich layered oxide
materials (LiNixMyO2, M � Co, Mn, Al, x + y � 1 and x ≥
0.6) will be more stable than pristine LiNiO2 (ChongYoon et al.,
2015; Manthiram et al., 2017; Li et al., 2018; Ryu et al., 2018;
Zhang et al., 2019c). Taking NCM (LiNixCoyMnzO2) materials as
an example, through replacing some Ni atoms at the 3b site with
Co and Mn, with a favorable synergistic effect, they exhibit
equalizing performance, where Ni is the main capacity
provider with two redox couples including Ni2+/Ni3+ and
Ni3+/Ni4+, Co3+ is beneficial in suppressing Li/Ni mixing and
enhances systematic ionic conductivity, furthermore, Mn4+ can
also stabilize the lattice structure and improve thermal stability
(Deng and Manthiram, 2011; Liang et al., 2016; Masoumi et al.,
2017). However, with the increase of Ni content, some intrinsic
defects originating fromLiNiO2 are prone to bemore obvious, such
as: Li/Ni cation mixing, air sensitivity, serious slurry gelation, and
unwanted gas evolution, which should be solved urgently before
their large-scale application (Park et al., 2016; Zhao et al., 2017;
Kim et al., 2019a; Duan et al., 2019; Zhang, 2020).

Li/Ni mixing is one of the characteristic defects of Ni-rich
layered oxides since Ni2+ (0.69 Å) and Li+ (0.76 Å) have a
similar ionic radius, and Ni2+ is difficult to fully oxidized into
Ni3+ during the sintering synthesis process. In order to minimize
the Li/Ni mixing degree, the synthesis process needs to be carried
out under an oxygen atmosphere by adding an excessive Li source
(Wu et al., 2015; Park and Choi, 2018; Li et al., 2019a; Zhang et al.,
2019b). However, after sintering, the residual lithium remains on
the surface of the final product, which is prone to absorbing and
reacting with moisture and carbon dioxide (CO2) in air. Therefore,
residual lithium compounds spontaneously generate (Cho et al.,
2014). In addition, the external Ni3+ ions with high chemical activity
have a tendency to be reduced into Ni2+, together with the lattice
oxygen release, the growth of residual lithium compounds, and the
surface phase transition during air exposure (Jo et al., 2014b; Tian
et al., 2018; Yang et al., 2019a). Those are the main reasons why
residual lithium compounds increase on the surface of Ni-rich
cathode materials with an air exposure time extension.

Furthermore, the formation of residual lithium compounds
not only influences the electrode preparation, but also results in
capacity fading and is a safety hazard. During the electrode slurry
preparation, the high alkaline Ni-rich cathode materials (pH ≈
11) will give rise to polyvinylidene fluoride (PVDF) degradation
and slurry gelation, thus worsening the processability of the
electrode slurry (Ross et al., 2000). Another issue is that due
to the intrinsic insulation of surface impurities, the Li+ diffusion is
seriously restricted, leading to the increased cell polarization and
inferior cycling performance (Chen et al., 2019; Wang et al.,
2019). Moreover, the electrochemical decomposition of residual
lithium compounds will cause cell swelling and localized heating,
which are potential safety risks in its practical application (Min
et al., 2017; Mao et al., 2019; Renfrew et al., 2019). As a
consequence, how to effectively reduce surface residual lithium
compounds of Ni-rich cathode materials, has become a current
research hotspot.

Up to now, various strategies have been put forward to
overcome the aforementioned issues, such as a washing process,

secondary sintering, surface coating, heterogeneous doping and
slurry additives, which will be introduced later. In addition,
recently, Renfrew et al. found that, up to 4.8 V vs Li/Li+ on the
first charge, the decomposition of residual lithium compounds
was the main source of CO and CO2 evolution, not the
electrolyte decomposition (Renfrew and McCloskey, 2017).
They also suggested that oxygen evolution from the lattice of
Ni-rich layered oxides decreased after removing partial residual
Li2CO3, implying that the residual lithium impurities may
facilitate the generation of oxygen, which is different from
what we knew before, that lattice oxygen release originates
from an irreversible H2 to H3 phase transition (Flores et al.,
2020). Therefore, understanding the origin of residual lithium
compounds and the possible solutions of how to remove them
appear to be particularly necessary.

SOURCES OF RESIDUAL LITHIUM
COMPOUNDS
Excessive Addition of Lithium in Synthesis
For the purpose of gaining Ni-rich layered oxides, the transition
metal hydroxide precursor, usually prepared by a co-precipitation
method, is uniformly mixed with a lithium source (e.g. lithium
hydroxide and lithium carbonate) and sintered in high
temperature at oxygen atmosphere for a period of time. The
sintering temperature must be higher than the melting point of
the lithium sources. For example, LiOH, the most commonly
used lithium source, with a melting point lower than 500°C, is
basically sintered above 750°C with a Ni-rich hydroxide
precursor. Therefore, the volatilization of lithium during
sintering should be taken into consideration. Moreover, due to
the similar radius of Li+ (0.76 Å) and Ni2+ (0.69 Å), if the ratio of
lithium and the precursor is 1, the Li+/Ni2+ cation mixing will be
severe. To reduce the impact of this defect, Arai et al.
demonstrated that excessive lithium addition was beneficial to
suppress cation mixing so that the resultant Ni-rich materials
remained a well-ordered layered structure with ameliorative
cycling performance (Arai et al., 1995). For those reasons, in
order to compensate for the lithium volatilization at high
temperature and to reduce the cation mixing degree, it is
necessary to introduce excessive lithium, which normally
ranges from 1% to 5%. However, the mass of excess lithium
addition is highly related to the sintering temperature and
sintering time (Wang et al., 2017; Kong et al., 2019). As a
result, after sintering, a part of unreacted lithium remains on
the surface mainly in the form of lithium oxide (Li2O). It is worth
noting that the lithium oxide on the surface is chemically
unstable, and tends to absorb and react with moisture and
CO2 in air to further form residual lithium compounds,
including LiOH, LiHCO3, and Li2CO3. Cho et al. also reported
that, if too much residual lithium (Li2O) remained on the surface
of the final product after calcination, LiOH would be the major
constituent part (Cho et al., 2014). The total reactions of residual
lithium and air can be described as Equation 1-3:

Li2O + H2O→ 2LiOH (1)

LiOH + CO2 → LiHCO3 (2)
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Li2O + CO2 → Li2CO3 (3)

Air Sensitivity
Apart from the formation of Li2O after sintering, with a strong
alkaline surface, Ni-rich cathode materials are also intrinsically
sensitive to moisture and CO2, forming residual lithium
compounds on the surface during the unavoidable air
contact. However, the surface degradation mechanisms of Ni-
rich cathode materials exposed to ambient air still remains
controversial, which can be mainly divided into two kinds: a
redox reaction mechanism and a proton–lithium exchange
mechanism.

By comparing the amounts of surface impurities on
LiNixCoyMnzO2 with different Ni contents, Noh et al. found
more carbonates and hydroxides grew on the higher Ni content
cathode surface (Noh et al., 2013), revealing that the formation of
surface residual lithium compounds was related to surface Nickel
ions. Similarly, on the basis of density functional theory (DFT)
calculation, Qian et al. promoted that with the increase of Ni
content, the charge transfer ability and moisture adsorption
energy of Ni-rich layered oxides were prone to being more
robust (Qian et al., 2019), suggesting that the growth of Li2CO3

in highNi content cathodes was faster than it is in a lowNi content
one (Figure 1A). As a matter of fact, in view of the crystal field
theory, Ni3+ at the octahedral site with an electron configuration of
t2g6eg1 is not stable and is prone to giving rise to the Jahn-Teller
(J-T) effect, inducing lattice distortion, while Ni2+ with an electron
configuration of t2g6eg2 is an inactive J-T ion (Figure 1B) (Kong
et al., 2018; Kim et al., 2019b). The chemical active Ni3+ ions

therefore tend to be converted to Ni2+, which could alleviate local
lattice distortion of Ni-O octahedral and can release partial
residual stress and reduce system energy at the same time.
Furthermore, the reduction reaction of Ni3+ will accelerate the
production of highly active oxygen species (Xiao and Sun, 2018).
Consequently, when Ni-rich layered oxides are exposed to
ambient air, the active oxygen species will react with the
absorbed moisture and CO2 to form hydroxyl and carbonate
species, along with the release of lattice oxygen to form oxygen
gas. The formed hydroxyl and carbonate species react with lithium
ions from host material and finally generate residual lithium
compounds (mainly LiOH and Li2CO3), together with the
phase transition from a layered structure to a NiO-like rock-
salt structure (Huang et al., 2019a; Martinez et al., 2020). The total
reaction can be expressed as the following equations:

Ni3+ +O2−(lattice)→Ni2+ + O− (4)

O− + O− → O2− (active) + O (5)

O2−(active) + CO2 →CO2−
3 (6)

O2−(active) +H2O → 2OH− (7)

O + O → O2 (8)

Except for the formation of Li2CO3 and LiOH, LiHCO3 is also
considered to be a residual lithium compound which may be
produced by the reaction between LiOH and CO2 under ambient
atmosphere.

In addition, the composition and content of residual lithium
compounds are extremely concerned with the temperature, moisture,
and CO2 concentration around the storage environment. Thus, the

FIGURE 1 | (A) SEM images of NCM333, NCM622, NCM701515, and NCM811 after 0, 10, 20, and 45 days of storage (from left to right, respectively) at 25°C and
40% relative humidity. Adapted from [Qian et al., 2019] with permission from Royal Society of Chemistry. (B) and (C) Illustration of the Jahn- Teller effect of NiO6 with
energy splitting in an octahedral complex. Adapted from [Kim et al., 2019b] with permission from Royal Society of Chemistry.
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reaction between Ni-rich layered oxide cathodes and ambient
atmosphere are more complicated in different conditions. Faenza
et al. indicated that moisture was essential for the formation of
residual lithium compounds at room temperature, suggesting that
Ni-rich layered oxide materials should be stored in a cool and
moisture-free space to suppress the spontaneous formation of
residual impurities (Faenza et al., 2017). Whereas Shizuka et al.
reported that Li1.040Ni0.80Co0.15Al0.05O2 (NCA) could react with pure
CO2 to form Li2CO3 at 400°C, without the participation of moisture
(Shizuka et al., 2007). Furthermore, Cho et al. demonstrated that if
too much residual lithium (Li2O) remains on the surface of the final
product after calcination, LiOH will be the major constituent part
(Cho et al., 2014). Apart from the residual compounds and various
absorbed species, Chen et al. found a delithiation layer existing on the
subsurface of LiNi0.6Co0.2Mn0.2O2 (NCM622) stored at 55°C with
80% relative humidity, which implied that the extraction of lithium
from host material to surface region really occurred (Chen et al.,
2017b). In conclusion, the surface degradation of Ni-rich layered
oxides during air exposure are driven by the reduction of chemical
active Ni3+ to more stable Ni2+, causing the release of lattice oxygen
and the formation of residual lithium compounds on the surface.
Owing to the consumption of surface lattice lithium, a NiO-like rock-
salt phase layer and a delithiation layer are also generated. Surface
coating combined with surface doping, an effective method to
stabilize the layered structure and reduce surface reactivity of the
activematerial, has beenwidely reported to enhance the air stability of
Ni-rich layered oxides, which will be subsequently discussed.

Except for the above-mentioned redox mechanism, the
additional proton–lithium exchange mechanism has also been
proposed, which is supposed to take place in the near surface
regions in concert with redox reactions (Shkrob et al., 2017; Toma
et al., 2020). The released H+ from surface absorbed water
molecular exchanges with the out-migration Li+ and occupy Li+

site, form residual lithium compounds. The H+/Li+ exchange
mechanism can be described with the following equations:

Li+ +H2O → H+ + LiOH (9)

LiOH + CO2 → LiHCO3 (10)

2LiOH + CO2 → Li2CO3 +H2O (11)

Exposing LiNi0.5Co0.2Mn0.3O2 (NCM523) to humid air,
Shkrob et al. provided some evidence for a proton–lithium
exchange mechanism (Shkrob et al., 2017). First, the
contraction of c lattice was observed by XRD, which was
mainly attributed to the stronger interaction force between H+

and lattice oxygen. Subsequently, the partial capacity recovery has
been detected during several initial charging/discharging cycles
since the H+ intercalation was reversible and could be replaced by
Li+ again in electrochemical (de)lithiation.

Although the proton–lithium exchange mechanism indicates
that moisture is necessary to start the degradation of Ni-rich
layered oxides, it cannot explain the acceleration effect of high Ni
content on the growth rate of residual lithium compounds.
Therefore, the H+/Li+ exchange mechanism is considered to
play a minor role in surface degradation of Ni-rich cathode
during air exposure, which usually emerges at the primary
stage of air exposure.

NEGATIVE EFFECTS OF RESIDUAL
LITHIUM COMPOUNDS

The formation of residual lithium compounds not only puts
forward a strict requirement of storage atmosphere for Ni-rich
cathode materials, but also sets great challenges for the
subsequent slurry processing, cycling performance, and safety
issues. In this section, the negative effects of residual compounds
are analyzed.

Increase Storage Costs
As shown by the spontaneous growth of detrimental residual
lithium compounds on the surface of Ni-rich cathode materials
during air exposure, it is inappropriate to store Ni-rich cathode
materials in ambient air. Generally, for practical application, Ni-
rich cathode materials are stored under vacuum or inert
atmosphere conditions, which significantly enhance the storage
cost to some extent, leading to inconveniences in production and
application. Recently, Faenza et al. compared the growth of
residual lithium compounds on LiNi0.8Co0.15Al0.05O2 stored at
different conditions for 2 weeks, including ambient air, dry CO2

with less 10 ppmH2O, pure argon (Ar) and a dry room (with dew
point about -35°C) (Faenza et al., 2017). The results clearly
demonstrate that the formation of residual lithium compounds
can be effectively suppressed when the sample is stored in a dry
room with a low moisture content. It is therefore suggested that
Ni-rich layered oxides are stored at a very low relative humidity
condition. Additionally, in order to reduce storage requirements
and cost, some surface modifications need to be conducted, such
as surface coating and doping, which will be discussed later.

Slurry Processing Performance
Deterioration
Poly(vinylidene fluoride) (PVDF) is the most used binder for the
preparation of a cathode slurry. Generally, PVDF can be fully
dissolved in N-methyl-2-pyrrolidone (NMP) solution, but it is
insoluble in an aqueous solution. It is worth noting that PVDF
is prone to a defluorination reaction under an alkaline condition
(Ross et al., 2001). As a result, when it encounters a Ni-rich cathode,
strong alkaline residual lithium compounds, such as LiOH, can
react with PVDF, thereby causing PVDF degradation, reducing the
cohesiveness of slurry, and generating H2O simultaneously.
Additionally, PVDF will be rapidly condensed and gelatinized in
water, severely deteriorating the slurry processing performance. In
fact, slurry is unavoidably exposed to air, making alkaline slurry
prone to absorbing the moisture from air, which will make the
slurry fabrication difficult. Hence, the air humidity should be strictly
controlled in the manufacturing plant to reduce the harmful effects
of moisture absorption.

Electrochemical Degradation
As mentioned above, Ni-rich cathode materials exposed to
ambient air may cause severe surface degradation, consuming
Li+ from host materials, further leading to the formation of the
delithiation layer, the rock-salt cubic phase layer, and the residual
lithium compounds layer. As a result, the loss of Li from host
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material directly triggers the initial capacity fading. Even worse,
being covered by poor ionic/electron conductivity impurities and
subsurface rock-salt cubic phase layer, the Li+ diffusion in the
interface of the cathode and electrolyte will be significantly
suppressed. As a consequence, the charge transfer resistance
increases so drastically that battery polarization obviously
intensifies, further cutting down discharge capacity and
worsening rate performance. By coating LiNi0.7Mn0.3O2 with a
Li2O layer, Cho et al. simulated the effect of residual lithium
compounds growing on the surface of Ni-rich cathode materials
(Cho et al., 2014). They indicated that a larger irreversible
capacity with limited discharge capacity emerged in
LiNi0.7Mn0.3O2, which was attributed to the suppressed Li+

diffusion by insulating the Li2O layer. In addition, the
electrochemical reaction heterogeneity caused by surface
insulating the Li2CO3 film was reported, which was
demonstrated by the splitting of the (003) reflection using the

in-situ XRD analysis as presented in Figure 2A (Grenier et al.,
2017). In a further step, Qian et al. proposed that the reaction
heterogeneity that originated from different energy barriers and
activation energies for (de)lithiation of individual particles was
due to the uneven growth of residual lithium compounds
(Figure 2B) (Qian et al., 2019). More seriously, the augment
of impedance may lead to the accelerated localized heating, which
increases the risk of catastrophically destroying the batteries or
igniting the liquid organic electrolyte. For this reason, safety
issues derived from the formation of insulating residual lithium
compounds should be taken seriously.

Furthermore, the presence of residual lithium compounds at
the interface of electrode and electrolyte could also cause adverse
reactions with the LiPF6-based electrolyte, generating CO2 gas and
LiF (Figure 2C). In order to confirm the influence of surface LiF
and Li2CO3 on the performance of Ni-rich cathode materials, Bi
et al. compared the electrochemical performance of both Li2CO3-

FIGURE 2 | (A) The splitting of the (003) reflection of LiNi0.8Co0.15Al0.05O2 after air exposure. Adapted from [Grenier et al., 2017] with permission from American
Chemical Society. (B) Schematic diagram of the energy barrier evolution with aging; the different colors of the lines represent different energy barriers from different
particles. Adapted from [Qian et al., 2019] with permission from Royal Society of Chemistry. (C) Scheme illustration of the surface reaction of Li2CO3-coated material in
LiPF6 electrolyte and (D) Cyclic stability of fresh, Li2O coated, LiF coated NCM811 at 1 C. Adapted from [Bi et al., 2016] with permission from Royal Society of
Chemistry. (E) Gas evolution (O2 and CO2) for pristine (untreated) and surface treated (ST) 18O-NMC, showing attenuation of both the CO2 and O2 evolution rates after
removal of a portion of Li2CO3. Adapted from [Renfrew and McCloskey, 2017] with permission from American Chemical Society.) (F) Scheme illustration of the origin of
CO2 during cycling of Ni-rich layered NCM cathodes, including the decomposition of Li2CO3, chemical and electrochemical oxidation of electrolyte. Adapted from
[Hatsukade et al., 2018] with permission from American Chemical Society.
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coated and LiF-coated LiNi0.8Co0.1Mn0.1O2 (NCM811) (Bi et al.,
2016). As shown in Figure 2D, the surface Li2CO3 coating layer
had a severely negative impact on the cycling stability while it was
negligible for the surface LiF coating, which could be attributed to
the decomposition of Li2CO3 reacting with the electrolyte. This
reaction can be described as follows:

LiPF6 + Li2CO3 →POF3 + CO2 + 3LiF (12)

In fact, Li2CO3 is mainly in the form of the amorphous state,
and its electrochemical stability is very poor, which is easily
decomposed at a high potential (Wang et al., 2018). Hatsukade
et al. employed an isotope labeling method to investigate the
origins of CO2 during the cycling of LiNi0.6Co0.2Mn0.2O2

(NCM622) (Hatsukade et al., 2018). The CO2 formation at the
first charge process was attributed to the surface Li2CO3

decomposition at high potential. However, with prolonged
cycling and the decrease of surface Li2CO3, CO2 stemming
from the chemical oxidation (with lattice oxygen) and
electrochemical oxidation at high potential of electrolyte
solvent became dominant (Figure 2F). In addition, there is an
ambiguous understanding on whether the decomposition of
Li2CO3 will produce oxygen simultaneously, because oxygen
may also originate from lattice. In this respect, the oxidation
of Li2CO3 has already been studied in Li-air cells (Mahne et al.,
2018), producing O2 and CO2, which can be described as follows:

2Li2CO3 − 4e− → 4Li+ + O2 + 2CO2 (13)

Subversively, Renfrew et al. observed the CO2/CO emission
caused by the decomposition of residual Li2CO3 during the first
charge, and the oxygen evolution from the lattice of Ni-rich
cathode materials also decreased after removing a portion of
surface Li2CO3 (Renfrew and McCloskey, 2017), suggesting
that the oxidation of Li2CO3 is related to the lattice oxygen
release (Figure 2E). Inspired by this research, quantitative
studies of the influence of surface impurities on the
structure evolution of Ni-rich cathode materials during the
cycling tests are needed. Although the decomposition
mechanism of Li2CO3 is not fully understood, the
decomposition of Li2CO3 reduces the Coulombic efficiency
of the initial several cycles. It also highlights the seriousness
of safety issues, such as increasing batteries’ internal pressure
and heat generation.

Moreover, the CO2 stemming from the decomposition of
Li2CO3 and electrolyte solvents can react with LiOH to
reformate trace H2O and Li2CO3 (Robert et al., 2015). Even
worse, the trace H2O is harmful to electrolyte salt, resulting in the
decomposition of LiPF6 and the formation of HF and other by-
products. This process can be expressed as follows:

LiOH + CO2 → LiHCO3 (14)

LiHCO3 + LiOH → Li2CO3 +H2O (15)

LiPF6 +H2O → LiF + POF3 + 2HF (16)

2POF3 + 3Li2O → 6LiF + P2O5(or LixPOFy) (17)

The resultant HF is detrimental to the electrochemical
performance of Lithium-ion batteries. On the one hand, HF
accelerates the decomposition of surface impurities including
Li2CO3 and LiOH. On the other hand, HF corrodes the
surface of Ni-rich cathode materials to promote the
dissolution of transition metal ions, especially Ni ion, leading
to rapid capacity loss and surface degradation.Moreover, after the
removal of surface impurities, a greater electrochemically active
surface will be exposed to the electrolyte, which will further boost
the dissolution of transition metal ions and the decomposition of
electrolyte solvent at high potential (Kleiner et al., 2015; Kim
et al., 2016; Liang et al., 2019).

CHALLENGES AND SOLUTIONS TO
RESIDUAL LITHIUM COMPOUNDS

To avoid the adverse effects of residual lithium compounds on
powder storage, slurry processing and electrochemical
performance of Ni-rich cathode materials, numerous methods
are conducted to remove the surface impurities and to enhance
the air-storage stability.

Washing & Annealing Process
Washing with water is widely applied in practical industrial
manufacturing to eliminate the detrimental residual lithium
compounds. To be specific, the alkaline Ni-rich cathode
materials are stirred in deionized water to remove surface
residual lithium compounds and dried at a high temperature
in an air-free atmosphere after filtration, which is called the
washing & annealing process (Kim et al., 2018). The
concentration of residual lithium compounds and powder pH
value can be effectively reduced after washing. As a consequence,
gas evolution of the washed cathode materials is significantly
suppressed during the charging process. Furthermore, after the
washing and annealing process, the cycling performance and
capacity retention are dramatically improved with a slight initial
discharge capacity decline.

However, it should be mentioned that the capacity
degradation of Ni-rich cathode materials may be accelerated
after the washing process owing to an improper annealing
temperature. As Xiong et al. reported, NCM811 annealed at
300°C after washing exhibited the worst specific capacity and
cycling stability compared to the washed or non-washed sample
annealed at 700°C (Xiong et al., 2013). Except for water washing, a
faintly acidic solution is also a substitution (Park et al., 2017; Xu
et al., 2017; Wu et al., 2018). Park et al. compared two kinds of
solvents, de-ionized water and diluted nitric acid with a solvent
evaporation process. They suggest that the diluted nitric acid
eliminates surface residual compounds more efficiently than de-
ionized water. The sample treated with diluted nitric acid
exhibited the superior cycling performance (Park et al., 2017).
Analogously, compared to water washing, mild polyaniline
(PANI) could also be utilized as a solvent to remove residual
impurities, and to synchronously form a protective layer on the
surface, which greatly enhances the surface stability of Ni-rich
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cathode materials (Xu et al., 2017). In addition to the above
washing solvents, alcohol washing is a “compromise” process,
which can reduce the lithium residue and does not destroy the
surface structure (Cao et al., 2019). However, the solubility of
LiOH and Li2CO3 in ethanol is low, which should be further
improved. Apart from annealing temperature and washing
solvent, the electrochemical performance of washed materials
is closely related to the powder-to-solvent ratio and washing time,
which is a complex technical method.

Although the residual lithium compounds and powder pH can be
effectively reduced by the washing process, the washed Ni-rich
cathode materials are more air sensitive than non-washed
materials because of more chemically active surfaces (Xiong et al.,
2013; Kim et al., 2018). After being exposed to the air for the same
time, a thicker amorphous residual lithium layer is formed on the
surface of washed Ni-rich cathode materials (Jo et al., 2016). During
the formation of an amorphous residual lithium layer, a part of
lithium on the subsurface of Ni-rich cathode materials will be
extracted from the host structure along with the increased cationic
disorder. As a result, a rock-salt NiO-like surface is generated, which
significantly deteriorates the electrochemical performance of Ni-rich
cathode materials. Therefore, taking air sensitivity of washed Ni-rich
cathode materials into consideration, it is very important to store
them in an air free- or humidity and CO2 controlled conditions.

Moreover, in practical application, washing treatment is generally
combined with other treatments such as surface coating, aiming to
prevent a chemically unstable surface from ambient air. In addition,
due to the generation of waste water, the increased processing time
and capital cost of waste water treatment should also be considered,
and still remains a huge challenge for its practical implementation.

Secondary Sintering
Secondary sintering is similar to the annealing process after
washing. However, compared to the washing process, secondary
sintering does not involve the generation of waste water, which
is a solid phase reaction process mainly including the
decomposition of residual lithium compounds and surface
reconstruction. In order to decompose the residual lithium
compounds sufficiently, the sintering temperature is usually
increased to the initial sintering temperature, sometimes even
higher. It is important to note that the evaporation of Li2O
should be taken into account to reduce capacity loss, so that the
secondary sintering time is not long. Furthermore, calcination
atmosphere is another factor effecting secondary sintering as
well. According to previous literature reported by Jo and co-
workers [Ross et al., 2001], for freshly sintered or few surface
residual impurities materials, when being reheated in air
atmosphere, a sintering temperature between 200°C and

FIGURE 3 | (A) Scheme illustration of the failure and recovery behaviors of the stored NCM701515 with the structure and surface morphology evolution. Adapted
from [Huang et al., 2019a] with permission from American Chemical Society. (B) Schematic view of the effect of spinel LiMn1.9Al0.1O4 coating on the Ni-rich layered
oxide surface and (C) The cycling performance of spinel LiMn1.9Al0.1O4 modified sample after air exposure. Adapted from [Oh et al., 2016] with permission from Royal
Society of Chemistry.
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400°C is optimal, otherwise the structural integrity will be
destroyed at a higher temperature.

Recently, Huang et al. conducted secondary sintering on the
degraded LiNi0.70Co0.15Mn0.15O2 under various atmospheres at a
high temperature (800°C) (Figure 4A) (Huang et al., 2019a). To get
the degraded sample, the aging processwas carried out at 60°C and 80%
relative humidity for 30 days, in which a residual lithium compound
layer,mainly composed of Li2CO3with∼90 nm thickness, was detected
on the surface with a NiO-like layer formed at the near surface region.
Successfully, the degraded LiNi0.70Co0.15Mn0.15O2 re-sintered at 800°C
under flowing oxygen atmosphere for 3 h, exhibited a comparable
electrochemical performance to the pristine one. Interestingly, after high
temperature calcination under oxygen atmosphere, the surface
impurities layer and NiO-like layer disappeared, and the surface was
reconstructed to the layered structure. However, under other
atmospheres such as air and argon, the surface structure can barely
recover to the original layered structure and a NiO-like layer still
remains, indicating that the oxidizing atmosphere is necessary for the
reversion of degraded materials during the secondary sintering
treatment.

Slurry Additives
Some additives are often added into slurry to reduce residual
lithium compounds and slurry pH, thereby meliorating slurry

processability. In detail, the additives should be moderate so that
they only react with surface impurities without other undesirable
side effects. This strategy is considered to be one of the most
convenient methods for practical manufacturing. For instance,
LiPF6 is adopted as a slurry additive to wipe off alkaline residual
lithium compounds in NCM811 slurry, finally forming into LiF
and Li3PO4 (Zhang et al., 2019d). With 0.5–1.0 wt. % LiPF6
addition (versus the mass of NCM811), the cycling stability
and rate capacity of NCM811-Li cells are improved, which can
be attributed to the formation of stable LiF and Li3PO4 and the
decrease of insulating residual impurities.

Surface Coating
Although the surface residual impurities and lithium compounds
can be removed after washing or secondary sintering treatment, the
air sensitivity of Ni-rich cathode materials still cannot be fully
solved. Therefore, Ni-rich cathode materials should be strictly
stored in an atmosphere-controlled condition to avoid contact
with H2O and CO2. In order to overcome this problem, various
surface modification methods are developed. In this respect, surface
coating is one of the most widely used methods in laboratory
investigation. Generally, surface coating layers can not only enhance
the air-storage stability of Ni-rich cathodematerials, but also protect
Ni-rich cathode materials from HF corrosion and detrimental side

FIGURE 4 | (A) Schematic views of the Li-reactive coating process and phase diagram for P2O5−LiOH/Li2CO3−O2. Adapted from [Min et al., 2017] with permission
from American Chemical Society. (B) Schematic diagrams of the working mechanism of CNT& Li3PO4 coating layer and cycling stability of CNT& Li3PO4 coated sample
compared to pristine and (C and D) SEM images of the CNT& Li3PO4 coated sample. Adapted from [Yang et al., 2019c] with permission from American Chemical
Society. (E) Schematic views of the sublimation-induced gas-reacting process on the surface and inside of the secondary particles and (F) The improved cycling
performance of surface LixSyOz coated sample. Adapted from [Kim et al., 2020] with permission from American Chemical Society.
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reactions with electrolyte at high potential. Up to now, various
surface coating agents have been adopted to reduce the residual
lithium impurities and to enhance the air storage stability of Ni-rich
cathodematerials, including phosphates (Jo et al., 2014a; Chen et al.,
2017a; Min et al., 2018; Fan et al., 2019; Zou et al., 2020), fluoride
(Dai et al., 2019; Huang et al., 2019b), conducting polymers (Sun
et al., 2018; Gan et al., 2019; Yang et al., 2019b), and metallic oxides
(Min et al., 2018; Zhao et al., 2018; Becker et al., 2019; Ho et al.,
2020; Mo et al., 2020; Zhao et al., 2020). However, the formation
mechanisms and functions of these coating layers are quite
different, and need to be further investigated.

First, a coating layer can be physically formed on the Ni-rich
cathode surface without reacting with residual lithium
compounds. This kind of coating layer is electrochemically
stable and nonreactive with electrolytes. As shown in
Figure 3B, C, the air-storage stability of LiNi0.7Co0.15Mn0.15O2

coated with chemically stable spinel LiMn1.9Al0.1O4 is
significantly improved. After being exposed to ambient air for
1 month, the capacity retention of the LiMn1.9Al0.1O4 coated
LiNi0.7Co0.15Mn0.15O2 sample is compared to the fresh one (Oh
et al., 2016). In addition, MnO2 coated LiNi0.8Co0.15Al0.05O2 can
effectively prevent LiNi0.8Co0.15Al0.05O2 from absorbing the

FIGURE 5 | (A) Schematic drawing of the function of surface hydrophobic coating layer and (B) TOF-SIMS depth profiles of LiCO3
− for bare, 4 wt. % PDMS(−OH)-

grafted, and 5 wt. % PDMS(−OH)-grafted LiNi0.8Co0.1Mn0.1O2 powder samples after storage in a humidity chamber at 50% RH and 25°C for 1 week. (C-E) Cycling
performances of bare, 4 wt. % PDMS(−OH)-grafted, and 5 wt. % PDMS(−OH)-grafted LiNi0.8Co0.1Mn0.1O2 after being exposed to a humidity chamber at 50% RH and
25°C, respectively. Adapted from [Doo et al., 2019] with permission from American Chemical Society. (F) Schematic illustration of the preparation process of OPA-
coated NCM811 and (G) TEM images of OPA-coated NCM811; SEM images of (H) bare NCM811 and (I) OPA-coated NCM811 after 14-day air exposure; Cycling
performance of (J) bare NCM811 and (K) OPA-coated NCM811 after different air exposure durations. Adapted from [Gu et al., 2020] with permission from American
Chemical Society.
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moisture and CO2 in air atmosphere and the HF erosion during
long-term cycling (Zhao et al., 2018). Furthermore, TiO2 (Mo
et al., 2020), ZrO2 and other oxides are also employed to construct
protective layers on the surface of the Ni-rich cathode to decrease
air sensitivity.

Moreover, the coating layers can be formed in-situ on the
surface of Ni-rich cathode materials via chemical reactions
between coating media and residual lithium compounds,
which could eliminate surface impurities as well as form a
functional film on the surface. For example, H3PO4 (Jo et al.,
2014a; Min et al., 2017; Yang et al., 2019c), an acidic coating
media, can react with the residual lithium compounds, such as
LiOH and Li2CO3 to form a Li3PO4 coating layer, which has been
verified to effectively enhance the surface stability of Ni-rich
cathode materials. Due to the reduced surface insulating
impurities and high ionic conductivity of newly generated
Li3PO4, the capacity retention and rate capability of Li3PO4-

coated NCM622 are greatly improved (Jo et al., 2014a).
Additionally, Li3PO4 reacts with trace water in electrolytes to
suppress the formation of HF, thereby preventing electrode
erosion, which can be described as follows:

Li3PO4 +H2O → L2O + LixHYPO4(or POxHY) (18)

Furthermore, Min et al. investigated metal phosphates and
metal oxides reacted with residual lithium compounds using a
hybrid functional theory calculation (Min et al., 2017). As
shown in Figure 4A, metal phosphates could effectively
reduce both LiOH and Li2CO3, whereas metal oxides tend to
react with LiOH more, in which P2O5 may be an optimal choice.
In a further step, Yang et al. constructed a four-phase cathode
electrolyte interface on NCM811, as described in Figure 4B
(Yang et al., 2019c). The phosphoric acid reacted with surface

FIGURE 6 | (A) Cycling performance curves of pristine and Al doping modified material before and after air storage for 30 days and (B) Concentration of residual
lithium species on Ni-rich cathode with various Ni contents before and after air exposure for 30 days and (C) Schematic illustration of the mechanism of Al-doping in
improving air stability of Ni-rich cathode. Adapted from [You et al., 2018] with permission from Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim. (D) Schematic view of
the surface structure of Zr doped Ni-rich cathode with its functions during cycling and (E) HAADF−STEM image as an evidence of the formation of cation mixed
layer. Adapted from [Han et al., 2018] with permission from American Chemical Society. (F) Cycling performances of both bare and Zr4+ modified NCA before and after
air exposure, indicating enhanced cycling stability and air stability of Zr doped NCA. Adapted from [Lai et al., 2019] with permission from Elsevier. (G) Cycling
performance comparison of LiNi0.94Co0.06O2 before and after B2O3 doping in pouch full cell with graphite anode cycled between 2.5 and 4.3 V at 25°C and (H) Cycling
performance comparison of the 30-day stored LiNi0.94Co0.06O2 before and after B2O3 doping in half cell and (I) Residual lithium content changes of the fresh and 30-day
air-stored B2O3 doped LiNi0.94Co0.06O2 and (J) TOF-SIMS three dimension depth profiling of Box

− (x � 1 or 2) species in the fresh B2O3 doped particle. Adapted from [Xie
et al., 2019] with permission from American Chemical Society.
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residual lithium compounds to form an ionic conductive Li3PO4

layer, and carbon nanotubes were coated on the surface to
penetrate through the Li3PO4 layer (Figure 4C, D). Thus, the
ionic conductivity and electronic conductivity of NCM811 were
both enhanced, leading to the greatly improved rate performance
and capacity retention after surface modification. More
importantly, even after being exposed to high moist air for 2
weeks, the modified sample could still deliver 154.2 mA h g−1 at
0.5 C after 500 cycles (Figure 4B).

ptApart from the liquid-solid reaction, the gas-solid reaction is
also employed to eliminate surface impurities, which could
essentially avoid the generation of waste water. As illustrated
in Figure 4E, the pioneering work (Kim et al., 2020) reported by
Kim and co-works presented a novel sublimation-induced gas-
reacting (SIGR) process on NCM811. The gas-phase sulfur (S)
reacted with residual lithium compounds at a low temperature of
300°C and in-situ constructed a LixSyOz coating layer.
Remarkably, the LixSyOz phases uniformly generated on the
surface of secondary particles, as well as in the boundaries

between internal primary particles. Consequently, the SIGR-
treated NCM811 exhibited improved cycling stability, which
were mainly attributed to the protected surface and suppressed
anisotropic volume changes during (de)lithiation (Figure 4F).

Since moisture is one of the essential conditions for the
formation of residual lithium compounds, thereby
constructing a hydrophobic layer tightly coated on the cathode
surface is highly expected to overcome this intractable issue (Doo
et al., 2019; Gu et al., 2020). The modified hydrophobic surface
effectively blocks the direct contact between moisture and the
chemically unstable surface of Ni-rich cathode materials, further
suppressing the formation of residual lithium compounds. Till
now, various organic molecules are adopted as surface coating
materials for modifying Ni-rich cathode materials. As shown in
Figure 5A-E, hydrophobic polydimethylsiloxane (PDMS) coated
NCM811, with a strong M−O−Si covalent bond, exhibited the
enhanced air storage stability (Doo et al., 2019). Additionally,
octadecyl phosphate (OPA) can be utilized to form a hydrophobic
self-assembled monolayer on the surface of Ni-rich cathode

FIGURE 7 | (A) Schematic view of the concentration-gradient core-shell structure cathode (CGCS) material; (B) Cross-sectional image of CGCS and
corresponding element maps of Ni, Co, Mn, and Al; (C)Cycling performance comparison of pristine NCA and CGCS between 3.0 and 4.3 V; Cycling performance of (D)
pristine NCA and (E) CGCS after air exposure with a relative humidity of about 30% for different numbers of days between 3.0 and 4.3 V. Adapted from [Shi et al., 2017]
with permission from American Chemical Society. (F) Schematic view of the core-shell structure and preparation process of gradient Ni-rich cathode material; (G)
CV curves for gradient Ni-rich cathode material before and after 90-days air exposure. Adapted from [Zhang et al., 2017] with permission from American Chemical
Society.
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materials to improve air-storage stability (Figures 5F-K) (Gu
et al., 2020).

Unfortunately, hydrophobic organic coating layers can only
improve the storage property, but it has no obvious improvement
in electrochemical performance. Meanwhile, the organic surface
coating layer may dissolve into organic electrolyte during the
long-term cycling. Even worse, the organic surface coating layers
may be oxidized at high voltage, which will deteriorate the
electrochemical performance of batteries, such as battery
swelling, a thick solid electrolyte interface (SEI) layer and
increased polarization.

Doping
Doping is another important strategy to enhance surface
chemical and structural stability of Ni-rich cathode materials.
By incorporating a small amount of cationic or anionic atoms
into the crystal lattice of Ni-rich cathode materials, the air
stability is significantly improved. The functions of cationic
doping can be classified into two types. One type is the
forming a strong covalent bond between doping cation and
lattice oxygen to boost lattice structure and to suppress the
loss lattice oxygen (You et al., 2018; Huang et al., 2019c). For
example, You et al. successfully introduced a small amount of
Al3+ into the surface lattice of LiNi0.94Co0.06O2 by sintering a
mixture of LiOH and precursor coated with Al(OH)3 at a high
temperature (You et al., 2018). The Al-doped LiNi0.94Co0.06O2

exhibited superior storage stability and capacity retention
compared to the pristine one (Figure 6A, B). The enhanced
surface lattice stability is mainly attributed to the robust Al-O
bond (Figure 6C). Moreover, some high valent cations are doped
to reduce the content of surface active Ni3+ (being reduced to
stable Ni2+ to keep charge balance) (Han et al., 2018; Lai et al.,
2019). As displayed in Figure 6D, E cation-mixed nanolayer with
∼5 nm thickness forms on the surface of NCM811 after doping
Zr4+, in which Zr4+ ions occupy the transition metal site and
increase the amount of Ni2+ to maintain the charge balance (Han
et al., 2018). Owing to the highly reactive Ni3+ ions that are
effectively reduced, the air-storage stability of NCM811 is
improved. Similarly, Lai et al. demonstrated that the air-storage
stability of LiNi0.815Co0.15Al0.035O2 can be significantly improved
after 1% nano-ZrO2 doping (Figure 6F) (Lai et al., 2019).

Anions doping, such as boron-based polyanion doping, has
been verified as an effective strategy to improve the air-exposure
stability of the Ni-rich cathode. It is worth noting that the discharge
capacity, cycling retention, and air exposure stability are
simultaneously strengthened. However, the working mechanism
of the boron-based polyanion doped Ni-rich cathode is seldomly
investigated (Park et al., 2018; Zhang et al., 2019a; Yang et al.,
2020). Recently, Xie et al. promoted a boron spatial distribution of
the B2O3 doped LiNi0.94Co0.06O2 cathode material, in which BOx

−/
LiBO2

− species mainly existed on the surface and boron ions (B3+)
infiltrated into the host lattice in the tetrahedral interstitial sites of
oxygen packing. (Figure 6J) (Xie et al., 2019). The surface species
were related to the formation of electrochemically stable cathode
electrolyte interface (CEI), and the boron doping could effectively
enhance the oxygen lattice stability, thus excellent performances
were achieved after boron doping (Figures 6G, H, I).

Furthermore, the combination of doping strategy and
surface coating technology is considered to be a promising
method to improve overall performance of Ni-rich cathode
materials. For instance, Li et al. reported the La/Al co-doping
and La2O3 coating co-modified NCM811 Ni-rich cathode (Li
et al., 2019b). The La and Al doped into the inner lattice play the
role of a pillar, which could enhance the structural stability as
well as suppress the phase transition. Furthermore, Ni
concentrations decrease in the La-Al co-doped layer in the
subsurface region, Additionally, the surface La2O3 coating
protects the Ni-rich cathode from the detrimental reaction
with air and electrolyte. Thus, the air storage stability and
cycling performance are effectively improved. Moreover, the
cycling performance and air storage stability of NCM811
could be successfully enhanced via the combination strategy
of Li2ZrO3 coating and Zr4+ doping. The surface Li2ZrO3

protective layer as a good Li+ conductor can suppress a
surface side reaction as well as improve the Li-ion
diffusion rate. More importantly, Zr4+ doping can stabilize
the structural stability and reduce oxygen loss. In this way,
the overall performance of NCM811 is improved. (Zhai et al.,
2020).

Gradient Materials
It is widely accepted that the air-storage stability and thermal
property of Ni-rich cathode materials are negatively related to the
Ni concentration. In other words, the air storage stability can be
improved by decreasing Ni concentration. However, this strategy
will cause the capacity declination. So, can we reach an optimal
equilibrium point where both relatively high discharge capacity
and stable air-storage performance exist? Constructing gradient
materials, with low a Ni concentration outer surface and high Ni
content inner core, provides the answer. By changing the
proportion of transition metal ions at different periods of
coprecipitation, Shi et al. synthesized a surface concentration-
gradient spherical Ni-rich cathode material with diverse
elemental composition, in which the core inside was
LiNi0.80Co0.15Al0.05O2 and the surface was composed of LiNi1/
3Co1/3Mn1/3O2 (Figures 7A, B) (Shi et al., 2017). Compared to
the pristine LiNi0.80Co0.15Al0.05O2, the gradient material
presented significantly enhanced air stability (Figures 7D, E)
and excellent cycling performance (Figures 7C).

Moreover, depending on the different precipitation pH values for
transition metal ions, a gradient precursor can be generated by
regulating co-precipitation pH as well. Figure 7F illustrates the
gradient Ni-rich cathode material consisting of a layer-structure
LiNi0.8Co0.1Mn0.1O2 core, gradient Ni concentration interlayer, and
spinel-like LiNixCoyMn2-x-yO4 shell (Zhang et al., 2017). Due to the
reduced Ni concentration and the formation of an air-stable spinel
layer in the surface region, the gradient Ni-rich cathode material
presents greatly improved long-term air storage stability (Figure 7G).

SUMMARY AND PERSPECTIVES

In this review, the origins and negative effects of residual lithium
compounds on air storage performance, processing performance,
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and electrochemical performance of Ni-rich cathode materials
were analyzed. Owing to the residue lithium and chemical
active Ni3+ on the surface, Ni-rich cathode materials are
chemically sensitive to moisture and CO2. Residual lithium
compounds generate on the surface during air exposure, which
have adverse effects on the processing and electrochemical
performance of Ni-rich cathode materials. Residual lithium
compounds with a strong alkaline feature will cause the
decomposition of PVDF and lead to the gelation of the cathode
slurry. In addition, due to the insulating impurities on the surface,
the Li+ diffusion in the interface of the cathode and electrolyte will
be suppressed and battery polarization will increase. Even worse, at
the cost of consuming Li+ from host materials, the structure near
the surface region of Ni-rich cathode materials is deteriorated, as
well as the electrochemical performance. It is worth noting that the
existence of Li2CO3 has negative effects on the cycling stability of
Ni-rich cathode materials. Quantitative studies related to the
mechanism of the effect of Li2CO3 on the electrochemical
performance of Ni-rich cathode materials are therefore still
required. In addition, under high temperature and high voltage
(≥ 55°C, > 4.3 V), the mechanism of CO2 production and its
influence on electrochemical performance should be further
studied.

Since Ni-rich cathode materials will deteriorate during the
long-term air exposure, one option is to store them in a vacuum
or in an inert atmosphere. However, this strategy will increase the
cost of storage, and it is not convenient for production and
application. Instead, storing them in a low relative humidity
condition seems more practical. To remove surface residual
lithium compounds, new types of cleaning agents that can
effectively remove lithium residue, but not destroy the surface
structure, should be further screened. Furthermore, washing
combined with an annealing process and secondary sintering
are widely implemented in large-scale application. The washing
time and powder-to-solvent ratio should be systematically
studied to obtain an optimal design. Moreover, the washing
process always takes place in conjunction with surface coating
to overcome the disadvantages as Ni-rich cathode materials are
more sensitive to air after washing. Secondary sintering is

preponderant in the reversion of the severely degraded Ni-rich
materials, in which sintering temperature and time should be
carefully controlled.

Although the surface residual impurities and lithium
compounds can be removed after washing or secondary
sintering treatment, the intrinsic air sensitivity of Ni-rich
cathode materials still cannot be fully solved. Combining a
doping strategy and surface coating technology is one useful
solution to reinforce the air storage stability of Ni-rich cathode
materials. In future studies, it is important to enhance the lattice
matching of the doping and coating interface and to develop a
facile method for large-scale production. Another solution is
constructing gradient materials with low Ni concentration at
the outer surface. We believe that this review provides an in-
depth understanding of the residual lithium compounds in Ni-
rich cathode materials.
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