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The performance of energy storage devices is highly related to the properties of
electrode materials, such as components, morphology, configurations and so on. As
a typical hierarchical carbon material, three-dimensional ordered porous carbon (3D-
OPC) has unique characteristics of low cost, large specific surface area, highly ordered
channels, and high electronic and ionic conductivity, which shows great potential
in energy storage and conversion applications. In this mini review, we summarize
various template-assisted preparation methods for 3D-OPC, including hard-, ice- and
self-templated approaches, and their applications in electrocatalysis, batteries and
supercapacitors. Additionally, the critical roles of vertical channels in 3D-OPC when used
as electrodes are also discussed. Finally, the current challenges and future research
outlook of 3D-OPC are proposed.

Keywords: 3D ordered porous carbon, energy storage and conversion, vertical channels, template-assisted
methods, low tortuosity

INTRODUCTION

Developing safe, low-cost and efficient energy storage and conversion devices has become an urgent
need, owing to the growing demands of sustainable resources, such as solar and wind power (Cao
et al., 2017; Li et al., 2020; Wu M. et al., 2020). Carbon materials exhibit numerous advantages,
such as high electrical conductivity, low cost and high specific surface area (Cao et al., 2014; Li
et al., 2019; Wu Q. et al., 2020). Carbon materials can be categorized into four types, i.e., zero-
dimensional (0D, e.g., C60), one-dimensional (1D, e.g., carbon nanofibers and carbon nanotubes),
two-dimensional (2D, e.g., graphene and carbon sheets), and three-dimensional structures (3D, e.g.,
3D porous carbon and graphene foam) (Zhang F. et al., 2017). In recent years, 3D carbon materials
have demonstrated excellent electrochemical performance in a wide range of applications including
energy storage and conversion (Ullah et al., 2019; Ni and Li, 2020).

In a conventional route for preparation of a certain electrode, a slurry composed of active
material, conductive agent and binder is normally casted onto a current collector. With increase
of the loading mass of active material and the thickness of electrode, its electrical conductivity
decreases. Besides, thick electrode leads to high tortuosity, which hinders the penetration of
electrolyte and ion transport and results in limited utilization of active materials (Wang et al.,
2019; Shi et al., 2020a). It is an effective way to promote the transportation of ions and electrons
by fabricating low-tortuosity electrode.

The three-dimensional ordered porous carbon (3D-OPC) possesses low tortuosity and open
pores (Qiao et al., 2019; Zhou et al., 2019). When used as an electrode material, it can not
only provide fast electron transport path, but also significantly shorten ion diffusion length to
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achieve fast kinetic performance (Figure 1a). In addition, 3D-
OPC effectively suppresses the agglomeration of nanoparticles
and maintains a large specific surface area (Zhao et al.,
2015). However, the controllable preparation of 3D-OPC
is still a challenge. In this review, we summarize the
controllable preparation methods for 3D-OPC, and the
latest research progress of 3D-OPC in energy storage and
conversion applications.

PREPARATION METHODS

The methods to prepare 3D-OPC can be divided into template-
assisted methods and non-template approaches. Based on the
different types of templates, the template-assisted methods
include hard-templating method (Masuda and Fukuda, 1995;
Li X. et al., 2018), ice-templating method (Roberts et al., 2014;
Zhai et al., 2017), soft-templating method (Peng et al., 2019),
and self-templating method (Feng and Yin, 2018). However, the
soft-templating method normally lack of controllability, which
is difficult to form a stable structure with vertical channels.
Herein, we focus on the research progress of the other three
template-assisted preparation methods for 3D-OPC.

Ice-Templating Synthesis
The ice-templating method is based on the solid phase produced
in the process of phase separation, followed by removing
solidified solvent with the solid phase frame retained (Shao
et al., 2020). The structures produced by ice-templating method
can be easily regulated. Moreover, this method is applicable to
a wide range of materials, such as polymers, carbon aerogels
and so on. According to different precursors, carbon aerogels
can be divided into graphene aerogels, carbon nanotube-based
aerogels, biomass-derived aerogels and so on (Shahbazi et al.,
2020). Graphene oxide (GO) aerogels with good physical and
chemistry properties is one of the most widely studied carbon-
based aerogels. Wang et al. first proposed a freeze-drying
method followed by a reduction process to prepare the reduced
graphene oxide (rGO) aerogels (Wang and Ellsworth, 2009).
Since then, the graphene aerogels prepared by the ice-templating
method have been extensively studied. As a typical example,
Zhang et al. added ethanol to the GO suspension, which was
then transferred to a polytetrafluoroethylene (PTFE) mold for
the subsequent rapid-freeze process in liquid nitrogen (Zhang
P. et al., 2017). Finally, a long vertical graphene film was
produced by freeze-drying and annealing. Ethanol is used as
anti-freeze agent to reduce the freezing point, which has a
significant influence on the crystallization behavior of ice. In
addition, Wang et al. prepared a GO aerogel with a radially
aligned structure by bidirectional freeze-casting method (Wang
C. et al., 2018). During the freezing process, ordered porous GO
aerogel was formed with a continuous 3D network. To study
freezing/assembling mechanism, the authors added different
additives, such as ethanol, chitosan or cellulose nanofibers to the
aqueous solution of GO. It is revealed that different additives
affected the interaction between ice crystals and GO nanosheets,
resulting in the ice crystals with different shapes. Furthermore,

Mochizuki et al. reported vertical aligned rGO electrodes through
electrodeposition of GO to form rGO and subsequent freeze-
drying process (Figure 1b; Mochizuki et al., 2019). This method
can control the film thickness and pore size to achieve fast
charge storage and low resistance. In addition, the pore size
can be controlled in the range of 10–100 µm by adjusting
the freezing rate.

Hard-Templating Synthesis
The hard template not only has high stability, but also can
control morphology and increase specific surface area of catalysts.
There are numerous hard templates, such as salt (Zhang et al.,
2020), metal (Cao et al., 2011), and silica (Byeon et al.,
2020), available to prepare carbon materials. For example,
Kim et al. used various-sized silica nanoparticles as template
which was subsequently removed by 1M NaOH to obtain
mesoporous nitrogen (N)-doped carbon (Byeon et al., 2020).
Kyotani et al. (1988) first proposed that carbon materials can
be synthesized via hard-templating method in 1988. Further,
the next breakthrough was achieved by Kyotani et al. (1995),
who synthesized carbon nanotubes with a uniform length and
diameter by using anodic aluminum oxide (AAO) as a hard
template in 1995. The porous AAO template is a typical
hard template with low cost and highly ordered nano-scale
array channels. Since then, the preparation of various 3D-
OPCs through AAO template had become a research hotspot.
Typically, Wang et al. used AAO as a hard template to
prepare CNT-coated Sn nanoparticles with almost 100% particle
encapsulation and high filling uniformity by a chemical vapor
deposition (CVD) process (Wang et al., 2009). Similarly, Zhou
et al. prepared a sulfur-doped carbon nanotube cathode (S-
CNTs) by using sulfate-containing AAO templates (Figure 1c;
Zhou et al., 2012). The specific surface area of S-CNTs with
mesoporous structure reached 613 m2 g−1. The authors claimed
that the mesoporous structures of S-CNTs can reduce cathode
polarization, and promote ion transportation. Moreover, sulfur
is confined in the walls of the nanotubes which can restrict
the dissolution of formed polysulfides when used as cathode
for Li-S battery.

Self-Templated Synthesis
Direct synthesis without additional template can significantly
reduce cost in practical applications. Wood is a natural composite
material composing vertical channels. After carbonization, its
original features of low tortuous, open micro-channels and 3D
layered porous structure can be maintained, which is suitable
as building block for constructing ultra-thick electrodes. The
wood-derived carbon material was first reported as electrode
materials for supercapacitors in 2004 (Wu et al., 2004). Since
then, the application of wood-derived materials have been further
extended to batteries, electrocatalysis and so on. For example,
Li et al. pre-carbonized wood slices at 260◦C for 6 h in air
atmosphere, then carbonized them at 1000◦C for 6 h in Ar
atmosphere, and finally activated the carbonized slices in CO2
atmosphere at 800◦C (Li et al., 2017). During the process, CO2
reacted with the amorphous carbon in carbonized wood to
produce porous structure. The activated wood has an anisotropic
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FIGURE 1 | (a) Schematic illustration of the different configurations of electrode materials: fabricate electrodes by slurry-casting process (left) and 3D-OPC
electrodes (right). (b) Formation mechanism of the vertically aligned film by electrophoresis and freeze-drying (source: Mochizuki et al., 2019). Reproduced by
permission of American Chemical Society https://doi.org/10.1021/acsaem.8b01478. (c) Thermal decomposition of C2H2 in a sulfate-containing AAO template and
the formation of S-CNTs after AAO removal (source: Zhou et al., 2012). Reproduced by permission of Royal Society of Chemistry https://doi.org/
10.1039/C2EE22294A. (d) The fabrication process of the CW-CNT@N-C-NiFe electrode (source: Li Y. et al., 2018). Reproduced by permission of WILEY-VCH
Verlag GmbH & Co. KGaA, Weinheim https://doi.org/10.1002/aenm.201801289. (e) Photos of the pristine wood, the flexible wood, and the flexible cathode with the
CNT coating and Ru (source: Xu et al., 2018). Reproduced by permission of Royal Society of Chemistry https://doi.org/10.1039/C8EE01468J.

structure and excellent deformation resistance. After that, rGO
and S were filled into the microchannels of the carbonized
wood to achieve a high sulfur mass load. Furthermore, Wu
et al. used H2 as the reducing gas, ethylene as the carbon
source and Ar gas as the carrying gas to in situ grow CNTs
in carbonized wood channels by CVD method (Figure 1d;
Wu et al., 2019). The specific surface area of the electrode
was increased to 537.9 m2 g−1 because of the introduction of
CNTs. Then, the authors improved the hydrophilicity of the
material after treating them using a mixed solution containing
HNO3 and H2SO4, achieving the reduction of contact angle
from 144 to 27.1◦. Lignin, cellulose and hemicellulose are
important components of wood. Xu et al. used sulfites to remove
lignin which makes wood rigidity (Xu et al., 2019). Meanwhile,
hemicellulose and cellulose could be dissolved by soaking in
a basic solution containing sulfites, which made the treated
wood more flexible (Figure 1e). Later, the surface of the flexible
carbonized wood was coated with ruthenium-decorated CNT
network (CNT/Ru) by vacuum-assisted method. Based on the
Xu’s research, Chen et al. reported a carbonized sponge with
a high compressibility of ∼ 80% and high fatigue resistance
(10,000 cycles at 50% strain), which was prepared by a wood
template (Chen et al., 2018). In this work, more lignin and
hemicellulose inside wood were removed by a treatment of
H2O2. A subsequent carbonization leads to a sponge with unique
lamellar structure.

APPLICATIONS OF ENERGY STORAGE
AND CONVERSION

Electrocatalysis
Noble metal-based catalysts (e.g., Pt and Ir) are efficient
electrocatalysts for oxygen evolution reaction (OER), oxygen
reduction reaction (ORR) and hydrogen evolution reaction
(HER). However, scarcity and valuableness greatly restrict their
commercial applications (Deng et al., 2019; Liu et al., 2019, 2020).
Therefore, it is desirable to develop inexpensive and efficient
alternatives. Ordered porous carbon with vertical channels is a
promising candidate, which has advantages of fast ion diffusion
and electron transport.

Recently, 3D wood-based materials have aroused numerous
researchers’ interest. Li et al. demonstrated the core-shell
nitrogen doped, few-graphene-layer-encapsulated nickel iron
alloy nanoparticles (N-C-NiFe) in the carbonized wood with
CNTs (N-C-NiFe@CW-CNT) by thermal-pulse method (Li Y.
et al., 2018). The N-C-NiFe was anchored on CNTs uniformly
(Figures 2a–d). Low-tortuosity microchannels were favor to
hydrogen release and electrolyte penetration, therefore, N-C-
NiFe@CW-CNT showed good electrochemical performance of
HER with a small Tafel slop (52.8 mV dec−1), low overpotential
(179 mV, at 10 mA cm−2) and good cycling stability (Figure 2e).
Inspired by this, Yang et al. designed a CoFePx nano-catalyst
with thin iron shells in wood wall (CoFePx/c-wood) by making
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FIGURE 2 | (a–d) Morphology of the CW-CNT@N-C-NiFe. (a–c): SEM images of CW-CNTs@N-C-NiFe (d)TEM image of CW-CNTs@N-C-NiFe, it shows the NiFe
alloy nanoparticle which is inset in CNT and encapsulated by the few graphene layers) (e) LSV curves of the CW, CW-CNTs, CW-CNTs@C-NiFe-NF,
CW-CNTs@N-C-NiFe, and commercial 40 wt% Pt/C electrodes (source: Li Y. et al., 2018). Reproduced by permission of WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim https://doi.org/10.1002/aenm.201801289. (f) Li stripping/plating of bare Li metal electrodes and Li/c-wood electrodes. (g) Voltage profiles of bare Li
metal and Li/c-wood cell at 3 mA·cm-2, Li/c-wood cells exhibited smaller voltage and long-term cycling stability (source: Zhang Y. et al., 2017). Reproduced by
permission of American Chemical Society https://doi.org/10.1073/pnas.1618871114. (h) VG films derived from the SiC substrates to form VG-MSCs. (i,j)
Areal/volumetric capacitance of different VG-MSCs (PG means using H2SO4/PVA as gel electrolyte, IL means using EMIMBF4 as liquid electrolyte) (source: Zheng
et al., 2017). Reproduced by permission of American Chemical Society https://doi.org/10.1021/acsnano.7b00553.

use of the steam pressure difference between Fe and Co at high
temperature (Yang et al., 2019). The thin iron shell (∼2 nm) as
the protective layer of CoFePx greatly improved the durability
of catalyst without sacrificing the activity of the catalyst due
to geometric effects of the thin coating layer. Compared to
CoPx and FePx, CoFePx showed a better OER electrochemical
performance with lowest overpotential (323 mV at 10 mA
cm−2) and Tafel slope (58 mV dec−1). Besides, CoFePx/c-wood
possessed excellent cycling stability of 50 h.

Batteries
Rechargeable batteries, such as lithium-ion batteries (Zhang et al.,
2018; Deng et al., 2020a,b; Huang et al., 2020), sodium-ion
batteries (Gao et al., 2020; Jin et al., 2020; Shi et al., 2020b,c; Wang
et al., 2020) and metal-air batteries (Shi et al., 2019; Wu F. et al.,
2020), have been intensively investigated recently. Due to the long
cycling life, high voltage and energy density, lithium-ion batteries
are widely used in electronic devices and other fields (Yan et al.,
2019; Deng et al., 2020b).

Li metal anode undergoes large volume change during Li ion
intercalation/deintercalation, which destroys the solid electrolyte
interphase (SEI), making fresh Li metal exposed to electrolyte
and leads to excessive growth of SEI. Zhang Y. et al. (2017)

injected the molten lithium metal into the channels of carbonized
wood to form a Li metal/carbonized wood (lithium/c-wood)
electrode, in which the ZnO coating made the interface between
c-wood and Li more wettable. Moreover, c-wood with 3D porous
conductive frame structure is an ideal host for lithium metal,
which can adapt to the volume change of lithium metal during
the long cycle (Figure 2f). In addition, compared to bare Li
metal, Li/c-wood electrodes in symmetrical batteries had a lower
overpotential (90 mV at 3 mA cm−2), better cycling performance
(150 h at 3 mA cm−2) and more stable stripping/plating profiles.
Even at a high current density of 3 mA cm−2, the Li/c-wood
electrodes in the commercial electrolyte achieved long-term
cyclic stability (Figure 2g). Similarly, Xue et al. (2018) assembled
continuous silver nanowires onto an interconnected 3D graphene
network (3D Ag-GN) by ice-templating method, and designed
a layered 3D porous structure as a host for the lithium metal
composite anode. The hierarchical networks not only provided
ultrafast electron transport channels and non-nucleation barrier
sites to limit lithium deposition, but also had excellent
mechanical strength to support lithium deposition. Moreover,
3D Ag-GN could work over 1000 plating/stripping cycles with
low overpotential (at 40 mA cm−2) in a symmetric cell. As
the thickness of the electrode increased, the dynamics of ion
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transport were hindered, and the rate performance of the lithium-
ion batteries decreased. Zhang et al. (2019) used magnetite
(Fe3O4) with high theoretical capacity to produce aligned
Fe3O4/GO electrodes with fast ion transmission channels by ice-
templating method. Besides, they proved that Fe3O4/GO had a
fast ion transfer kinetics by galvanostatic intermittent titration
technique (GITT), electrochemical impedance spectroscopy
(EIS), and cyclic voltammetry (CV).

Supercapacitors
Supercapacitors is one of the most promising energy storage
devices due to long lifetime, high power density, and fast
charge/discharge rates (Xu et al., 2017, 2018). However,
traditional supercapacitor electrode materials (e.g., activated
carbon, carbonized derived carbon, and carbon nanotubes)
normally have a long ion-diffusion path. Moreover, the presence
of binder in powder-based electrode materials covers a part
of the active sites, which reduces energy density. Electrode
with vertical channels can provide fast mass transportation.
Zheng et al. (2017) designed vertically aligned graphene (VG)
nanocrystals by decomposing SiC matrix at high temperature,
which used as electrode materials for micro-supercapacitors
(MSCs) (Figure 2h). The VG nanocrystals micro-supercapacitors
(VG-MSCs) had high areal and volumetric capacitance, and fast
frequency response. More importantly, it showed high power
density in gel electrolyte (∼15 W cm−3) and ionic liquid (∼61 W
cm−3) (Figures 2i,j). In addition, Chen et al. designed an
all-wood-structured asymmetric supercapacitor (ASC) using a
MnO2/wood carbon as cathode, an activated wood carbon as
anode, and a wood membrane as separator (Chen et al., 2017).
Remarkably, a high mass load of active material can be achieved
by increasing electrode thickness or extending electrodeposition
time of MnO2. The prepared electrode materials maintained the
unique anisotropy structure of the wood and highly exposure
active sites, allowing the electrolyte ions to pass directly through
the channels, showing high ionic conductivity. The ASC retained
∼0.6 mW h cm−2 (5.7 W h kg−1) at a power density of
24440 mW cm−2 (107.7 W kg−1), which can light up a light-
emitting diode (LED) after pre-charging to 1.8 V. Furthermore,
Wang Y. et al. (2018) applied Co(OH)2@CW as cathode of an
all-solid-state asymmetric supercapacitors, which possessed high
energy/power density, and maintained 85% capacitance retention
after 10000 charge/discharge cycles.

CONCLUSION

The versatility and availability of the 3D-OPC with high
specific surface area, highly ordered channels, low tortuosity
and open pores have been demonstrated in various applications
in energy storage and conversion. In this review, we outlined
the latest development on the rational design and controllable
preparation of 3D-OPC and their composites for applications
of electrocatalysis, batteries and supercapacitors. The strategies
to achieve controllable synthesis of 3D-OPC can be classified
as follows. Firstly, a hard template with appropriate size and
morphology can be selected to synthesize electrode materials.
Secondly, in ice-templated approach, the electrode thickness

and pore size can be controlled through modulating the
crystallization behavior of ice by adding various additives
(e.g., ethanol, chitosan, or cellulose nanofibers), and adjusting
the freezing rate, which achieve high conductivity, shorten
ion diffusion length and large specific surface area. Thirdly,
carbonization temperature and calcination atmosphere control
the shrinkage rate as well as the consequent aperture changes of
carbonized wood, which play an essential role in the formation of
internal pores and surface morphology of samples.

Although the 3D-OPC or their composites with ultrafast
electron/ion transport path, abundant active sites, and fast
reaction kinetics showed superior electrochemical performance
when applied in energy storage devices, it still has several
challenges. First, the methods based on hard templates inevitably
involve the corrosive solution in post-processing step, which
largely increases the cost and is not suitable to industrialization.
Second, the controllable growth of active materials on the 3D-
OPC is still a challenge, since uneven distribution of reactants in
channels normally results in asymmetrical nucleation and growth
of active materials. Third, the relation between morphology, pore
size, structure of the 3D-OPC and electrochemical performance
is vague and imprecise.

In spite of the vast research and progress that were discussed,
there are still many opportunities for further advancement of
3D-OPC. First, the influence of the penetrability of vertical
channels (the diffusion of adjacent channels) on electrochemical
performance could be further studied. Second, the other active
materials, such as perovskite, single atom, can be loaded on
the 3D-OPC to improve the performance for photocatalysis,
electrocatalysis, and so on. Third, it is significant to proceed
the computational simulation about the relation between pore
size of vertical channels and electrochemical performance.
Moreover, there are still some other methods may be explored
for preparing 3D-OPC, such as template-free method, biomass-
derived method, the assembly of sp2-hybridized carbon. It is
also promising to explore the applications of 3D-OPC in gas
separation, dye degradation, water purification, and capacitive
deionization (CDI). Therefore, tremendous explorations and
optimizations of the 3D-OPC and their composites are
indispensable in the future work.
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