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With the increasing penetration of the photovoltaic (PV) in the distributed grid network,
the dynamic response analysis of the system becomes more and more complex and
costs lots of computational time in the simulation. To cut down the computational
resources while guaranteeing the accuracy, this paper proposes a data-driven hybrid
equivalent model for the dynamic response process of the multiple PV power stations.
The data-driven hybrid equivalent model contains the simple equivalent model and data-
driven error correction model. In the equivalent model, the distributed PV power stations
in the same branch are equivalent to one power station model based on the parameter
equivalence and feeder equivalence. The data-driven error correction model tracks
and corrects the difference of dynamic response between the equivalent model and
precise model. The ensemble Gated Recurrent Unit (GRU) model based on the bagging
ensemble structure utilizes the simple equivalent dynamic response as input to learn the
dynamic response errors. The simulation results validate the super-performance of the
proposed model both in the response speed and accuracy.

Keywords: central PV power station, distributed PV power station, data-driven dynamic modeling, equivalent
model, gated recurrent unit

INTRODUCTION

With the aggravation of energy crisis, the advantages of PV power generation become increasingly
apparent. In recent years, due to the government policy support (Ferreira et al., 2018), a large
number of PV stations, including central and distributed PV stations, are constructed. It brings
in the increase of PV penetration and affects the power quality and stability. While the central
and distributed PV stations are different in physical and control parameters, their dynamic
characteristics of active and reactive power response are quite different. The disturbances of solar
irradiance and load could change the power flow and node voltage fluctuation. In addition, if the
solar irradiance changes rapidly, grid stability would face a great challenge. In order to research the
system dynamic characteristics containing the central and distributed PV stations, it is necessary to
establish a model to describe it.
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The equivalent physical model and precise physical model
are the common models to represent the system dynamic
characteristics (Batzelis, 2017; Abido and Sheraz Khalid, 2018).
However, the PV station is a high-order non-linear system
including many internal states (Xiang et al., 2016). Describing
each PV stations precisely in the system makes the mathematical
model extremely complex and contains dozens of orders,
which enlarges computation cost. With the aim of reducing
the complexity of the system and the cost of simulation, the
equivalent model is introduced. However, if the equivalent
model ignores too many internal states, it cannot reflect the
dynamic characteristics accurately. Since the data of the dynamic
process reflects the system dynamic characteristics, the data-
driven model can be utilized to track and correct the difference
between the precise and equivalent models.

At present, several researches based on PV physical model
have been developed. The current literatures mainly focus on
establishing the static model (Piazza et al., 2017), daily average
power generation of PV station (Muhammad Qamar et al.,
2016),main components of the PV station, such as PV array
(Hariharan et al., 2016; Shao et al., 2018), DC-DC (Direct
Current/Direct Current) converter (Chandra Mouli et al., 2017;
Siouane et al., 2019; Zapata et al., 2019) and DC-AC (Direct
Current/Alternating Current) inverter (Kim et al., 2018). In
addition, PV-grid connected devices, such as filters (Dehedkar
and Vitthalrao Murkute, 2018) and transformers (Yamaguchi and
Fujita, 2018), are also widely studied.

The equivalence modeling of the system dynamic process
containing PV stations have been widely researched. A two-
staged PV station model was proposed which simplified the
boost converter but established the precise filter (Piazza et al.,
2017). But this model was considered as an independent system
which ignored its grid-connected dynamic characteristics. In
Remon et al. (2016), the large-scale distributed PV stations
were equivalent to a single PV station. However, this method
only considered the equivalence of the physical parameters but
disregarded the difference of control parameters, which impacted
the model accuracy. Literatures (Zou et al., 2015; Li W. et al.,
2018) proposed a dynamic modeling which was similar as the
wind farm. Based on proportional and integral parameters, this
method clustered PV station through K-means algorithm and
built a multi-turbine equivalent model. Literatures (Li P. et al.,
2018; Li et al., 2019) clustered the distributed PV stations based
on the dynamic affinity propagation. It considered the dissimilar
physical and control parameters of different PV stations and
introduced the long short-term memory neural network to
improve the model accuracy. Many studies have been conducted
in building the equivalent model of the PV clusters. However,
the equivalent model combined with the data-driven model is
still in its infancy.

Clustering algorithm building the equivalent distributed PV
stations are based on certain indicators, such as the number
of clusters, which are set artificially. The selection of clustering
indicators usually needs lots of engineering experience and
mathematical knowledge. Considering the assistance of the error
correction model, the accuracy requirement of the equivalent
model is reduced. Therefore, the equivalent process in this paper

is simplified and all the distributed PV stations are divided
based on the feeder. The feeder equivalent and parameter
equivalent are used to establish the simple equivalent model.
Following the above researches, we propose a hybrid equivalent
model combining the data-driven correction model with physical
equivalent model to describe the dynamic characteristics of
multiple PV stations. The main contributions of this paper are
concluded as follows:

(1) The framework of data-driven hybrid equivalent
model for the dynamic process of the multiple PV
stations is proposed.

(2) The error correction model is built based on the ensemble
GRU model. Several GRU based models are generated and
integrated as an ensemble GRU to further improve the
model accuracy.

The remainder of this paper is structured as follows: section
“Precise Dynamic Modeling for A Single Two-Staged PV Station”
establishes a precise dynamic model of a single two-stage
PV station; section “The Framework of Data-Driven Hybrid
Equivalent Dynamic Model for Central and Distributed PV
Stations” introduces the framework of the data-driven hybrid
dynamic equivalent model; section “Equivalent Model for Central
and Distributed PV Stations” builds the simple equivalent model
for the central and distributed PV stations; section “Ensemble
GRU Based Error Correction Model” describes the data-driven
error correction model based on the ensemble GRU; section
“Case Study” shows the simulation settings and results, and
section “Conclusion” gives the conclusion.

PRECISE DYNAMIC MODELING FOR A
SINGLE TWO-STAGED PV STATION

The two-staged PV station (Sangwongwanich et al., 2017)
is currently the most common PV station due to its stable
performance, which is used and analyzed in this paper. The
structure of the two-stage PV station is illustrated in Figure 1,
which includes including the PV array, DC/DC converter,
DC/AC inverter and filter. The detailed mathematic models of
each component are described in the following subsections.

The First Stage Modeling of PV Station
In the First stage, the PV array converts the solar irradiance S into
the electric energy, which is impacted by the ambient temperature
T. Then, the DC-DC converter boosts the DC power by the array
capacitance Cpv and control the PV array output voltage by the
Maximum Power Point Tracking (MPPT) controller.

PV Array Modeling
The mathematic model of the PV array is essentially the
single diode equivalent model (Hariharan et al., 2016). Its non-
linear output characteristics are determined by four parameters,
including open-circuit voltage, Uoc, short-circuit current, Isc, the
maximum power voltage, Um, and the maximum power current,
Im. The output characteristics of ipv - upv of the single PV module
is described in Eq. (1). The coefficients C1 and C2 in (1) are
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FIGURE 1 | The structure of the two-stage PV station.

determined by the values of Uoc, Isc, Um, and Im (Li P. et al., 2018).

ipv = Isc

[
1− C1

(
e
upv/C2Uoc − 1

)]
(1)

Considering the series-parallel connection of the circuit, the
output voltage Upv and current Ipv of the PV array can be
formulated as (2) and (3) and the corresponding power output
Ppv is presented in (4).

Upv = Np × upv (2)

Ipv = ipv/Ns (3)

Ppv = η× Upv × Ipv (4)

where Np and Ns are the parallel and series number of the
modules in the PV, and the η is the conversion efficiency
of the PV array.

DC-DC Converter Modeling
In Figure 1, the boost converter is selected as the DC-
DC converter to maintain the current continuous (Chandra
Mouli et al., 2017). The DC-DC boost converter and the
PV array is connected by the array capacitance Cpv. The
output characteristics of this connection in Laplace domain is
given in Eq. (5).

Ipv = CpvsUpv + IL (5)

where IL is the inductance current of the DC-DC boost converter.
The dynamic characteristics of the DC-DC boost converter

can be represented as the switching cycle average model.
When the capacitance Cdc and the inductance Ldc of the boost
converter are enough large, the average output voltage Udc in the
capacitance and the average output current Idc in the inductance
in the Laplace domain are presented in Eqs (6) and (7).

LdcsIL = Upv − (1− D)Udc (6)

CdcsUdc = Idc − (1− D)IL (7)

where D is the duty ratio of the switch and determined by the
MPPT controller.

MPPT Controller Modeling
The MPPT converter is used to control the switch status to
guarantee the PV array output voltage can track the maximum
voltage Um and work at the maximum power point (Dehedkar
and Vitthalrao Murkute, 2018). The model of the controller in
the Laplace domain is displayed as (8).

D =
(

kp + ki
/

s
)
(Um − Upv) (8)

where kp and ki are the proportional gain and integral gain of the
controller, respectively.

The Second Stage Modeling of PV
Station
In the second stage, the DC-AC inverter converts the DC of
PV output into three-phase AC with the same frequency and
amplitude as the grid. The controller of the DC-AC inverter
is a dual-loop controller including the DC voltage control and
reactive power control. Besides, a filter is also needed for the
harmonic suppression.

DC-AC Inverter Modeling
Power model of inverter is generally used in power flow
calculation (Dutta and Chatterjee, 2018). The control strategy for
inverter in this paper is SPWM control. Under SPWM mode,
the output voltage of the inverter in d-q coordinate system
is shown in (9).

uid =
Udc

2UP
urd, uiq =

Udc

2UP
urq (9)

where uid and uiq are components of the inverter output voltage
in d-axis and q-axis, respectively, urd and urq are the components
of the modulation wave voltage in d-axis and q-axis, respectively,
and the Up is the peak voltage of the carrier wave.

Dual-Loop Controller Modeling
The control system is divided into inner loop control and outer
loop control. The outer loop control consists of DC voltage outer
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loop control and reactive power outer loop control. The inner
loop control is the current inner loop control.

In the outer loop control, the output voltage and current of
PV array first determine the DC reference voltage Uref . Then, the
difference between the actual measured voltage Udc and Uref is
calculated. The reference current id,ref in the d-axis in the DC
voltage outer loop control is presented in (10).

id,ref = (Uref − Udc)(kop + koi
/

s)− id (10)

where kop and koi are the proportional and integral gains of outer
loop control, respectively, and id is the d-axis component of the
actual output current of the PV system.

The reactive power outer loop control compares the reactive
power Qfilt measured from the filter circuit with the reference
reactive power Qref to get the reactive power difference. The
reference current iq,ref in q-axis is calculated by (11). The iq is the
q-axis components of the actual output current of the PV system.

iq,ref = (Qref − Qfilt)(kop + koi
/

s)− iq (11)

In the current inner loop, the SPWM modulation wave is
generated, which is controlled by id,ref and iq,ref . The components
of the SPWM modulation wave voltage in d-axis and q-axis, urd
and urq, are shown as (12) and (13).

urd = id,ref (kip + kii
/

s)− ωLf iq + usd (12)

urq = iq,ref (kip + kii
/

s)− ωLf iq + usq (13)

where kip and kii are the proportional and integral gains of inner
loop control, respectively, usd and usq are the components of
the actual grid voltage in q-axis and d-axis, the Lf is the filter
inductance and ω is the angle frequency of the power grid.

Based on the description of the two-staged PV station
modeling, the main factors affecting the output dynamic
characteristics of PV station generation can be divided into
physical and control parameters. The physical parameters
contain the Cpv, Cdc, Ldc, and Lf . The control parameters consist
of the control parameters of the MPPT controller and dual-
loop controller, including kp, ki, kip, kii, kop, and koi. When
the physic and control parameters are fixed, the corresponding
output dynamic characteristics of the single PV station under the
standard test condition is determined. Thus, the dynamic process
f (·) of the single PV station can be described as (14).

(P,Q) = f (S,T|Cpv,Cdc, Ldc, Lf , kp, ki, kip, kii, kop, koi) (14)

THE FRAMEWORK OF DATA-DRIVEN
HYBRID EQUIVALENT DYNAMIC MODEL
FOR CENTRAL AND DISTRIBUTED PV
STATIONS

Through the precise model of the dynamic characteristics of
the single PV station in section “Precise Dynamic Modeling
for A Single Two-Staged PV Station,” it is clear that the PV
stations are highly non-linear system. With the penetration

rate of the renewable energy increasing, the distributed PV
stations gradually become the mainstream way, especially in
industrial and rural areas. It brings in lots of uncertainty
and stochastic for the power grid and makes the whole
grid system quiet complex. Thus, it is necessary to build a
dynamic equivalence model with high precision and short
simulation time to study the impact of the central PV
and large distributed PV stations. In Figure 2, a data-
driven hybrid equivalent dynamic modeling approach is
proposed. It consists of the physical equivalent model and error
correction model.

In the equivalent modeling part, the precise dynamic
model of the PV stations is first simplified into the equivalent
model from the aspect of physics, including the physical
parameters equivalence and control parameters. According
to the mathematical model of PV system in section
“Precise Dynamic Modeling for A Single Two-staged PV
Station,” physical parameters are composed of PV array
capacitance Cpv, boost converter capacitance Cdc, boost
converter inductance Ldc and filter inductance Lf . The control
parameters include the control parameters of PWM system
(kp, ki) and SPWM system (kip, kii, kop, koi). Since the
distributed PV stations are installed in the different places
and different feeders, the feeder equivalence is necessary for the
distributed PV stations.

In the error correction modeling part, the errors between
the physical equivalent and precise model are considered and
corrected, including the steady-state error and the transient
error. The steady-state error is usually small or a constant.
The transient error is introduced by the equivalent control
parameters and performs different in different test conditions.
The data-driven approach is utilized to learn the errors of
the dynamic output characteristics of the two models under
multiple different work situations to make the hybrid equivalent
model more accurate.

EQUIVALENT MODEL FOR CENTRAL
AND DISTRIBUTED PV STATIONS

The principle of simplifying an equivalent model of central
PV stations and distributed PV stations is the output voltage
and power of the equivalent model must be the same as
the precise one. In addition, the distributed PV model are
located at different places of different feeders. Thus, the node
voltage and load need to be considered, while simplifying the
distributed PV stations.

The Feeder Equivalence
Since distributed PV stations scatter in the feeders, one or
more loads might exist between two PV stations. When multiple
distributed PV stations are equivalent to a cluster in the system,
the power distribution is also affected. Therefore, the node
voltage and power flow should be considered while simplifying
the distributed PV stations (Zhang et al., 2019). The load transfer
and line impedance equivalence are implied on every node. The
schematic diagram of feeder equivalence is displayed in Figure 3.
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FIGURE 2 | The framework of data-driven hybrid equivalent dynamic modeling.

FIGURE 3 | Schematic diagram of feeder equivalence. (A) Original feeder (B) equivalent feeder.

Suppose the voltage, injection current and load of the i-th
node are denoted as U̇i, İiand L̃i, respectively. The impedance of
line i-j is represented as zij. In Figure 3A, based on the Kichhoff’s
current law, the relationship between the node 1 and node 3 can
be presented as (15).

İ1 =
(
L̃1/U̇1

)∗
+

(
L̃2/U̇2

)∗
+

(
L̃3/U̇3

)∗
+ İ3 (15)

When node 2 disappears, the load of the node 2 is transferred
into node 1 and node 3. The transfer amount of load from node 2
to node 1 and node 3 are denoted as 1L̃1 and 1L̃3, respectively.
Since the injection current of node 1 should keep equal to the
output current of node 3 and the total power should remain

unchanged, the values of1L̃1 and1L̃3 are calculated as (16) and
(17). The load of node 1 and node 3 after the load transferring are
L̃′1 and L̃′3, presented in (18).

1L̃1 =
U̇1(U̇2 − U̇3)

U̇2(U̇1 − U̇3)
L̃2 (16)

1L̃3 =
U̇3(U̇1 − U̇2)

U̇2(U̇1 − U̇3)
L̃2 (17)

L̃′1 = L̃1 +1L̃1, L̃′3 = L̃3 +1L̃3 (18)
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Except the load transfer of the node 2, the line impedance
is also need to be modified, which impacts the line power
loss. To keep the line power loss between node 1 and node 3
the same before and after the load transferring, the equivalent
value of line impedance between node 1 and node 3 is
displaye in (19).

z13 =

∣∣U̇1 − U̇3
∣∣2

|U̇1−U̇2|
2

z12
+
|U̇3−U̇2|

2

z23

(19)

After load transfer and feeder equivalence for each node in the
network, multiple distributed PV stations can be equivalent to a
single PV station model.

The Parameter Equivalence
In the parameter equivalence, it includes the physical parameters
equivalence and control parameters adjustment. The principle
of the physical parameters equivalence is based on the ratio
of the total installed capacity of multiple PV stations to
the installed capacity of a single PV station. Suppose n PV
stations are clustered into one PV stations. The physical
parameters of the i-th PV station, i = 1,2, . . ., n, include
the capacitance and inductance parameters of the array, Cpv,i
and Lpv,i, the capacitance and inductance parameters of the
boost converter, Cdc,i and Ldc,i, and the inductance of filter,
Lf ,i. The corresponding aggregation parameters are determined
by (20)–(22).

Cpv,EQ =
1
n

n∑
i=1

ρiCpv,i, Lpv,EQ =
1
n

n∑
i=1

Lpv,i
/
ρi (20)

Ccd,EQ =
1
n

n∑
i=1

ρiCcd,i, Lcd,EQ =
1
n

n∑
i=1

Lcd,i
/
ρi (21)

Lf ,EQ =
1
n

n∑
i=1

Lf ,i
/
ρi (22)

where the subscript EQ represents the equivalent value in the
equivalent model and the value of the ρi is the ratio of the total
installed capacity of n PV stations to the installed capacity of
the i-th one.

Besides, considering each PV station connects to the power
grid by a transformer, the capacity and impedance parameters of
the transformer is also needed to be modified. The corresponding
aggregation parameters are shown as (23).

St,EQ =
1
n

n∑
i=1

ρiSt,i,Zt,EQ =
1
n

n∑
i=1

Zt,i
/
ρi (23)

where St,i and Zt,i are denoted as the rated capacity and
impedance of the i-th PV station transformer.

The control parameters of the MPPT and dual-loop controller
are adjusted after the aggregation physical parameters fixed. The
initial control parameters in the equivalent model are determined
by the average values of the control parameters of all the
equivalent PV stations. To make the dynamic performance of the

equivalent model close to the precise one, the control parameters
are further adjusted artificially.

ENSEMBLE GRU BASED ERROR
CORRECTION MODEL

The distribution and aggregation of central PV stations and
distributed PV stations are quite different. The physical
and control parameters of each PV station in central PV
plants are roughly equal, and their dynamic characteristics
are close. But parameters of distributed PV stations
are different. When the external conditions change, an
obvious gap exists in their dynamic response. Thus, it
is a data-driven error correction model is proposed in
this section to fit the error between the precise model
and the equivalent model. Considering the error data
are the time series data, the GRU algorithm, which is
powerful for dealing with the time series data, is used for
modeling the errors.

At specific time t, the active power and reactive power of the
equivalent model are denoted as EP(t) and EQ(t), respectively.
The parameters, EP(t), EQ(t) and solar irradiance S are regarded
as the input data of the error correction model. The target data
of the error correction model are the corresponding errors of the
active and reactive power at time t, CP(t) and CQ(t), which can be
obtained by the precise and equivalent models.

The equivalent model and the accurate model are simulated
under different conditions and a large amount of errors data are
generated. The error dataset is then used to train the GRU to build
the error correction model. The structural unit of GRU is shown
in the Figure 4.

The Figure 4A displays the structure of the single GRU
layer. The input data of each layer consists of the current
error data xt and the hidden node ht−1 of the upper layer,
where ht−1 contains the relevant information of the previous
node. GRU contains two gates, a reset gate and an update
gate. The parameter rt in the reset gate is used to control
the degree of information forgetting in the previous moment.
The parameter zt in the update gate is used to control the
amount of information retained from time t-1 to t. After the
gate processing, the data from the reset and update gates are
added to get the data ht of the current layer. To enhance
the information learning capacity, a single GRU base model
is composed of n GRU layers, shown as Figure 4B. The
Figure 4C shows the unfolded form of GRU model as the
increasing of time t.

To further improve the accuracy and reduce stochastic of the
neural network training, the ensemble technique is applied. In
Figure 1, the structure of the ensemble GRU model is displayed.
The BP neural network is used as the ensemble structure to train
the weights of each sub-model. The whole dataset is divided into
three parts, training dataset, validation dataset and test dataset.

The training dataset is firstly used to train the several GRU
models, which are regarded as the sub-models of the ensemble
model. To avoid the over-fitting phenomenon of the ensemble
model, the data used to train each GRU are randomly selected
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FIGURE 4 | The structure of a single GRU model: (A)The structure of GRU layer, (B) The structure at a specific time t, (C) The structure for time series.

FIGURE 5 | Schematic diagram of the multiple PV stations system: (A) The original system, (B) The equivalent system.

TABLE 1 | Physical and control parameters of PV stations.

Station Ldc (H) Cdc (µF) Lf (H) Cpv (µF) kp (× 10−2) ki (× 10−2) kop (× 10−2) koi kp kii

PV1 7.06 33.733 0.075 0.677 0.952 4.114 0.993 12.75 2.201 11.63

PV2 6.81 35.761 0.068 0.735 1.015 0 1.002 18.531 1.741 18.43

PV3 2.96 87.452 0.028 1.859 1.045 0.995 1.222 9.9753 1.925 8.98

PV4 0.671 371.61 0.008 7.122 0.999 0.963 0.954 10.146 2.013 9.52

PV5 1.474 171.38 0.014 3.496 1.017 3.972 1 13 2 11

PV6 2.718 93.497 0.029 1.773 0.953 0.975 0.984 1.208 11.28 2.93

PV7 1.478 175.31 0.041 3.469 1.015 3.819 1.05 12.11 1.975 10.14

PV8 1.429 169.84 0.014 3.428 1.086 4.172 1 18 2 17

Central PV1 6.96 33.573 0.067 0.667 0.983 4.201 1 12.52 2.101 11.65

Central PV2 1.523 103.45 0.078 4.193 0.895 4.908 0.950 10.638 2 10.89

through the bootstrapping technique. The structure of each GRU,
such as the number of the units in each GRU layer, is also
randomly generated.

Then, the outputs of each GRU model are regarded as the
input of the BP neural network. The CP(t) and CQ(t) are regarded
as the output. The weights of sub-models are learned by the

validation dataset. At last, the testing data are used to verify the
performance of the ensemble GRU model.

In the training process of the ensemble model, the data of
EP(t), EQ(t) and S are first used as the input of each GRU model.
The estimated active and reactive power errors of N GRU models
are obtained, C’P,i(t) and C’Q,i(t), i = 1,. . ., N. To ensemble all
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TABLE 2 | Parameter setting of a single GRU based model.

Type of layer Number of units Activation function Dropout

1 GRU layer Random (20, 100) tanh 0.3

2 GRU layer Random (50, 150) tanh 0.2

3 GRU layer Random (50, 100) tanh –

4 FC layer 30 Relu –

5 FC layer 15 Relu –

6 FC layer 1 Sigmoid –

the GRU models, the C’P,i(t) and C’Q,i(t) are regarded as the
input of the BP neural network to the weights of each GRU. The
active and inactive power estimated by the BP neural network are
denoted as C’P(t) and C’Q(t). The active and reactive power of
the hybrid model at time t, P’(t) and Q’(t), are calculated through
(24) and (25).

P
′

(t) = EP(t)+ C
′

P(t) (24)

Q
′

(t) = EQ(t)+ C
′

Q(t) (25)

CASE STUDY

In this section, the proposed method is validated through a
radial active distributed network simulation system, shown in
Figure 5A. In Figure 5A, there are a central PV stations and 8
distributed PV stations (PV1∼PV8). Since the central PV station
has two different types of PV, it is divided into two parts, central
PV station 1 and central PV station 2. In addition, the PV system
includes transformers, transmission lines and loads. The installed
capacities of the 10 two-staged PV stations are: 21 kW for PV1
and PV2, 23.4 kW for PV3 and PV4, 18 kW for PV5 and PV6,
18.6 kW for PV7 and PV8,475 kW for central PV station 1 and
338 kW for central PV station 2. The total installed capacity is
975 kW and the total load is 1532+j781kVA. The parameters of
PV system are set according to the PV system used in engineering.
The sample frequency is set to 500 Hz. Since the system reaches

the steady state after 0.25 s, the sample time period is set from
0.25 to 0.55 s. Each group contains 150 sampling points.

The detailing physical and equivalent physical system are
built on the Simulink platform in Matlab. The first stage of
the model is composed of the PV array, converter, MPPT
controller and PWM controller. The first stage calls the PI
controller model, integrator model, saturation model, product
model and other mathematical models in Simulink Library.
PI controller model and saturation model are used to realize
PWM control. MPPT controller is affected by PWM controller
and consists of mathematical models. The second stage is
composed of the inverter, filter and dual-loop controller.
Compared with the first stage, the second stage calls the
vector conversion model in Simulink Library additionally. The
vector conversion model converts three-phase current into d-q
coordinate system.

The error correction model is built by Keras on the Pycharm
platform. The simulations are conducted on a PC with Intel (R)
CPU i7-6500U, 2.5 GHz, RAM 8 GB.

Experiment Settings
The Settings of PV Stations and Test Scenarios
The physical and control parameters of each PV stations, which
determines their dynamic process performance are shown as
Table 1. In Table 1, it is obvious the control parameters
of each PV station are quite different, which brings lots of
difficulties on the control parameter setting of the equivalent
model. The error correction model can make up the difference
between the precise model and equivalent model. Thus, the
requirement of the equivalent model is reduced by building the
error correction model.

In order to validate the universality of the model, three test
scenarios are designed. In Case I, the random disturbance is
considered and added into the input irradiance data, which can
be described as the random input signal. This case represents
the shift of the day and night and the situation of load slightly
reducing and increasing. In Case II and Case III, the abrupt

TABLE 3 | Physical and control parameters of equivalent models.

Station Ldc (H) Cdc (µF) Lf (H) Cpv (µF) kp (× 10−2) ki (× 10−2) kop (× 10−2) koi kp kii

Distributed PV1 0.547 432.06 0.006 8.971 1.022 4.114 0.993 10.032 1.964 9.25

Distributed PV2 0.498 641.36 0.006 11.236 0.968 2.844 1.004 13.531 2.745 10.28

Central PV 2.96 87.452 0.028 1.859 0.939 4.555 0.975 11.579 2.05 11.27

TABLE 4 | Computational errors (RMSE) and computational time of different models.

Scenarios RMSE

Active power Reactive power Computational time (s)

Equivalent
model

Hybrid
model

Hybrid ensemble
model

Equivalent
model

Hybrid
model

Hybrid ensemble
model

Precise
model

Equivalent
model

Hybrid ensemble
model

Case I 3.000 0.368 0.235 3.622 0.109 0.088 44.634 2.419 4.320

Case II 5.786 2.183 1.865 3.657 0.098 0.092 55.322 2.670 4.578

Case III 7.339 3.589 2.780 3.731 0.205 0.155 56.031 2.736 4.695
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FIGURE 6 | RMSE of active power of each GRU base model and ensemble
GRU model in Case II.

change of the input irradiance data is considered. In Case II,
the rapid rise or fall of irradiance appears in a short period of
time and remains stable, which can be called as the step input
signal. This case is used to describe the instantaneous change in
irradiance, the situation of short circuit or instantaneous load
rejection. In Case III, a continuous and rapid rise and fall of the
irradiance happens over a very short period of time, named as
pulse input signal.

To train a general error correction model, the data under
different test scenarios are needed to be collected. The
detailed settings of three cases for data collection are shown
as follows:

Case I: set the irradiance from 300 to 1500 W/m2, and noise is
set from 5 to 40 W/m2. This case has 960 groups of experiments.

Case II: set the irradiance from 300 to 1500 W/m2. The abrupt
change happens at 0.33 s and the change amplitude is set from 40
to 120 W/m2. This case has 960 groups of experiments.

Case III: set the irradiance from 300 to 1500 W/m2.
The abrupt changes happen at 0.27 and 0.37 s. The change
amplitude is set from 40 to 120 W W/m2. This case has 960
groups of experiments.

The Settings of Ensemble GRU
Since the active power is greatly impacted by the external factors,
the ensemble model of active power contains 50 GRU base

models. Since the variance of the reactive power is relatively
stable, the ensemble model is set to include 25 base models.
Each GRU base model has the same number of the hidden
layers, including 3 GRU layers and 3 full connection (FC)
layers. The activation function of the GRU layer is tanh function
and the FC layer is Relu function. To reduce the impact
of the over-fitting, the dropout layer is added after the first
and second GRU layers. The number of units of the different
GRU layers are randomly generated to form different GRU
base models. The detailed parameter setting of a single GRU
base model is shown as Table 2. The Adam optimizer is
used to train the GRU base model. 150 samples are randomly
selected as a batch.

To avoid the neuron saturation, the sample data of every
moment is normalized by the min-max normalization, which
maps each sample data to [0, 1], shown as (26).

X′ =
X − Xmin

Xmax − Xmin
(26)

where X is the actual value of input variable, Xmin and Xmax are
the minimal and maximal value of input variable, and X’ is the
corresponding normalized value. The sequences of collected 3000
groups are disordered. The 2000 groups of samples are used to
form the training dataset and the rest groups for testing. The root
mean square error (RMSE) is used to evaluate the performance
of the error correction model. The RMSE of each group
is shown as (27).

RMSE
(
y, ŷ

)
=

√√√√ 1
N

n∑
t=1

(Ct − Et)
2 (27)

where Ct is the output of error correction model, Et is the actual
error, t is the index of the time step in each group, and N is the
total number of samples in each group. The RMSE of training
dataset and test dataset are calculated by average the RMSEs of all
groups in the dataset.

Simulation Performance and Analysis
Simulation Result
In this section, the performance of the data-driven hybrid
model is displayed and analyzed under the three test
scenarios. According to the above equivalent method, the

FIGURE 7 | Examples of irradiance input data in three test scenarios: (A) Case I, (B) Case II, (C) Case III.
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FIGURE 8 | Example of the response of precise, equivalent and hybrid model in Case I: (A) Active power, (B) Reactive power.

FIGURE 9 | Example of the response of precise, equivalent and hybrid model in Case II: (A) Active power, (B) Reactive power.

FIGURE 10 | Example of the response of precise, equivalent and hybrid model in Case III: (A) Active power, (B) Reactive power.

equivalent model of PV system is first established. The
central PV1 and central PV2 are equivalent to a PV station
with the capacity of 813 kW. Then, all the distributed PV
stations located in the same branch are equivalent to one

PV station. The distributed PV stations are equivalent as
two PV stations, distributed PV1 and PV2 according to
the distribution characteristics. The equivalent model of
the system is displayed as Figure 5B. The corresponding
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equivalent parameters of equivalent PV stations are given
in Table 3.

Table 4 shows the RMSE between three equivalent models
and the precise model. The hybrid model is the data-driven
hybrid equivalent model with single GRU. The hybrid ensemble
model is the data-driven hybrid equivalent with ensemble GRU.
In Table 4, it is clear that RMSE is significantly reduced after
introducing error correction model. The error of model with
ensemble GRU is smaller than the one with single GRU for all
three scenarios. Since the impact of the reactive power affected
by the changes of irradiance and load is less than the active
power, the error correction model performs better for the reactive
power. In Case I, the irradiance fluctuates slightly and the errors
are the least among three scenarios. The Case III has two rapid
disturbances and the greater errors than Case I and Case II.

Table 4 also shows the simulation time required for the precise
model, equivalent model and data-driven hybrid ensemble
model. It can be seen that the simulation time of the hybrid
model with ensemble GRU is far less than that of the precise
model. The error correction model needs the active and reactive
power time-series output of the equivalent model and work
after the equivalent. Besides, the error correction model contains
multiple GRU models, which needs the time to obtain output
of each GRU model. Combined with the above two points, the
simulation time of the hybrid ensemble model is longer than
that of the equivalent model. This advantage becomes more and
more obvious with the complexity of system increasing. The
purpose of reducing simulation time is realized by using the
data-driven hybrid model.

Besides, Figure 6 shows the training and test results of active
power by ensemble GRU under Case II, respectively. The result
of test dataset is close to that of training dataset, which indicates
that there is no over fitting or under fitting.

Simulation Example Under Different Test Scenarios
In Figure 7, three test examples are separately selected from three
test scenarios. In Figure 7A, the irradiance randomly changes
from 830 to 850 W/m2. The irradiance randomly changes within
a small margin. In this situation, the PV system usually works
in a disturbed environment which means it is always in a
dynamic process. The active and reactive power response of
different models in this case are shown in Figure 8. It is obvious
that there is a certain error between the equivalent and precise
models. After the introducing error correction model, the error
between the power output of the equivalent and precise model is
significantly reduced. Besides, the reactive power is less impacted
by the change of the random irradiance and keeps stable in
the whole process.

In the example of Case II, the irradiance rapidly rises from 740
to 820 W/m2, shown as Figure 7B. This scenario can reflect the
operation of load rejection and load increase in the infinite source
power grid. The load change in the power grid is usually long-
term and completed in a short time, which can be approximated
as the step response. Figure 9 gives the corresponding active
and reactive power response. When irradiance rapidly rises or
falls in a short period of time, the dynamic characteristics of the
equivalent model approach to the oscillation process. After using

single GRU model for error tracking, the output characteristics
of the equivalent model are improved to some extent, but there
are still some deviations. The error tracking of Ensemble GRU
model is further improved. The raised errors in some areas are
eliminates through Ensemble GRU, such as the error appearing
from 0.39 to 0.44 s.

In Case III, the irradiance rapidly falls from 740 to 660 W/m2

at 0.27 s and then rises to 740 W/m2 at 0.37 s, shown as Figure 7C.
This scenario reflects the instantaneous disturbance of PV system
and can represent that the PV system is blocked for a short
time or the grid is short-circuited. The corresponding active and
reactive power response are shaped in Figure 10. In this case,
due to the short time interval between two abrupt disturbs, the
influence of control parameters is amplified. It is clear that the
dynamic response of the equivalent model is slower than the
precise one. Through the error correction, this lag is almost
removed. Under this condition, the hybrid model can still track
the error accurately.

CONCLUSION

This paper proposed a hybrid data-driven model to build the
equivalent model of the dynamic process of the multiple PV
stations in the distributed network. The dynamic process of the
PV system were described by the physical and control parameters.
The data model and the physical model were combined to build
an accurate model.

The equivalent models for central and distributed PV stations
were firstly established from the physical aspect. The equivalent
models needed to consider the physical parameter and feeder
equivalence. Since the control parameters were determined
artificially, the errors existed between the simple equivalent
model and the precise model. The data-driven model was
introduced to track and correct the errors.

The ensemble GRU model was utilized as the error correction
model. Three different test cases were established to help build
the error correction model of the active and reactive power.
The simulation results showed that the proposed hybrid data-
driven model improved the fitting precision of the dynamic
characteristics while keeping the low model complexity and short
computational time.
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