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Polydopamine-derived carbon materials have attracted tremendous attention owing
to nitrogen heteroatom doping. However, it is challenging to estimate the effect
of the morphology and porosity of the polydopamine-derived carbon for lithium
storage. Here, we designed three polydopamine-derived carbon materials with
different morphologies and porosity: carbon nanospheres (CNs), mesoporous carbon
nanospheres (MCNs), and bowl-like mesoporous carbon nanoparticles (BMCNs) to
evaluate the electrochemical performance. Such a bowl-like mesoporous structure
combines multiple advantageous features, including mesoporous channels and shorter
transmission distance, thus delivering a high specific capacity. In addition, our work
provides new insight into the electrochemical performance of polydopamine-derived
carbon and a useful reference for its future application in high-performance lithium ion
battery (LIB) electrode materials.
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INTRODUCTION

With increasing aggravation of energy crisis and environment pollution, the development of an
environmentally friendly new energy to replace traditional fossil energy is essential for building
a sustainable energy structure and a friendly eco-environment. Lithium ion batteries (LIBs) are
the most competitive candidates of energy storage systems (ESS) and have a wide application in
portable electronic devices and electric vehicles (Tarascon and Armand, 2001; Jiang et al., 2015;
Liu et al., 2015; Li et al., 2019; Zhu et al., 2019). However, graphitic carbon, as currently the
standard commercial anode material for LIBs, possesses low theoretical capacity (372 mA h g−1)
and undesirable rate performance, which limit its application in a high-energy system (Dai et al.,
2019; Zheng et al., 2019; Rao et al., 2020). Nitrogen-doped carbon nanomaterials have been
widely explored as alternatives to commercial graphitic materials, showing high reversible capacity,
high-rate performance, and high cyclic capability. A variety of nitrogen-doped carbon materials
have been obtained by using urea (Chen et al., 2018; Sun et al., 2019), polypyrrole (Qie et al.,
2012; Liu et al., 2016), polydopamine (Jian et al., 2019; Qian et al., 2020), and biomass sources
(Lang et al., 2019; Shen et al., 2019; Zhao et al., 2019) as precursors. Among these materials,
polydopamine-derived carbon materials have been widely applied in the anode/cathode field due
to that it can easily coat on virtually any surface by self-polymerization of dopamine in aqueous
media. For instance, the Si@void@C “yolk-shell” structure was fabricated via a sacrificial template
process, which delivered a high capacity of ∼1500 mA h g−1 at a current density of 1 A g−1
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(Liu et al., 2012). Wang and coworkers designed interconnected
N/O co-doped porous rod-like nanocapsules (N/O-CNCs)
through a sacrificial template process, and a capacity of
310 mA h g−1 was obtained at 30 A g−1 after 11000 cycles (Wang
L. et al., 2019). Recently, Mai and coworkers reported sandwich-
structured mesoporous polydopamine (mPDA)/reduced
graphene oxide (rGO) nanosheets and found that this composite
electrode could display a high specific capacity (Wang N.
et al., 2019). In addition, compared with the traditional hollow
structure, the bowl-like morphology has received extensive
attention due to its unique structural advantages (Liang
et al., 2015; Qian et al., 2020). However, to the best of our
knowledge, the influence of the morphology and porosity of the
polydopamine-derived carbon for lithium storage have not been
thoroughly evaluated as anode materials.

Herein, we have designed three polydopamine-derived carbon
materials with different morphologies and porosities: carbon
nanospheres (CNs), mesoporous carbon nanospheres (MCNs),
and bowl-like mesoporous carbon nanoparticles (BMCNs).
Importantly, the effect of the morphology and porosity of the
polydopamine-derived carbon for lithium storage were evaluated
in detail. We find that the mesoporous structure can shorten
the diffusion path of Li ions and electrons in the electrode and
accelerate the diffusion rate of the electrolyte. In addition, the
bowl-like morphology has a shorter transmission distance than
nanospheres, which can shorten the lithium ion and electron
transmission paths. Therefore, BMCNs combine the advantages
of both mesoporous channels and shorter transmission distance
so that it can effectively relieve the stress contributing to superior
long-term cycling stability. The obtained BMCN electrode
delivers a large reversible capacity of 300 mA h g−1 after 1000
cycles, revealing outstanding long-term cycle stability at 2 C.

RESULTS AND DISCUSSION

The overall fabrication process for CNs, MCNs, and BMCNs is
schematically illustrated in Figure 1a. First, CNs were synthesized
by the polymerization of dopamine hydrochloride (DA) under
the condition of basic aerobic conditions using ammonia as a
catalyst. Second, the low-block copolymer F127 is used as the
template, DA as the carbon source. TMB acts as the medium in
the ethanol/water system, which interacts with the hydrophobic
PPO segment of F127 and DA molecules, respectively. This
promotes the formation of F127/TMB/DA composite micelles.
Continuous cooperative assembly promotes the formation of the
initially formed composite micelles along the particle interior
to form mesopores. The polymerization reaction under oxygen
conditions continues to grow, and finally MCNs were formed
by carbonization treatment in an N2 atmosphere. Third, TMB
was ultrasonically transformed into an emulsion to form an “oil-
in-water” system. A block copolymer F127/TMB/DA composite
micelle is formed at the TMB/water interface; this seed-mediated
anisotropic growth process yields BMCNs. The color changes of
the synthesis process are shown in Supplementary Figure S1.

The SEM image (Figure 1b) and TEM images (Figure 1c and
Supplementary Figure S2) show that CNs have particle sizes

between 200 and 500 nm and cross-linked with each other; the
surface is smooth, and no mesoporous channels are observed.
MCNs obtained are very uniform with an average size of about
200 nm, and the ultrasmall mesopores are distributed on the
sphere surface (Figures 1d,e and Supplementary Figure S3).
The SEM image (Figure 1f) and TEM images (Figure 1g and
Supplementary Figure S4) show that BMCNs clearly display a
bowl-like structure with an even particle diameter of ∼250 nm,
and uniform mesopores can be distinctly observed.

X-ray diffraction (XRD) patterns (Supplementary Figure S5)
of the three samples suggest that two broad peaks at about
23.5◦ and 43.7◦ were assigned to partly graphitized (002) and
quasi-amorphous (100) structure diffraction modes (Jian et al.,
2019; Nan et al., 2019). The Raman spectra of CNs, MCNs, and
BMCNs are shown in Supplementary Figure S6. It is known that
the two characteristic peaks located at ∼1350 and ∼1590 cm−1

correspond to disordered sp3 carbon (D band) and graphitic sp2

carbon (G band), respectively (Gayathri et al., 2019; Hu et al.,
2019). In addition, the intensity ratios of D and G bands (ID/IG)
for CNs, MCNs, and BMCNs are 1.03, 1.04, and 1.05, respectively,
indicating a relatively superior graphitic degree.

The chemical composition and electronic structure of
the three samples were analyzed by X-ray photoelectron
spectroscopy (XPS). Figure 2A presents three typical peaks of
C1s, N1s, and O1s without any impurities in three samples.
The spectrum of C 1s exhibits that the primary characteristic
peaks at 284.6, 285.9, and 289.1 eV denote the C–C, C–N, and
O–C=O of CNs, MCNs, and BMCNs (Figure 2B), respectively
(Zheng et al., 2014; Chu et al., 2018; Shi et al., 2020). Four
obvious peaks of N 1s at 398.4, 399.7, 400.6, and 402.4 eV are
related to pyridinic N, pyrrolic N, graphitic N, and oxidized N
in Figure 2C (Chen et al., 2016; Liu et al., 2017; Peng et al.,
2019). The doping of nitrogen is conducive to enhancement of
the electrochemical activity and conductivity of the material (Ai
et al., 2013; Mao et al., 2018; Wang et al., 2018). Moreover, the
atomic ratio in Figure 2D presents that the proportions of the
three elements C, N, and O of CNs, MCNs, and BMCNs are
basically the same. The above results indicate that the phase
composition of CNs, MCNs, and BMCNs is identical, and there
are only differences in pore size and morphology. The specific
surface area and porosity distribution of MCNs and BMCNs were
obtained from the N2 adsorption/desorption analysis. Figure 2E
shows that both MCNs and BMCNs display representative type-
IV isotherms with an evident hysteresis loop, indicating the
presence of mesoporous structures (Hong et al., 2019; Tian et al.,
2019; Yin et al., 2019). The Brunauer–Emmett–Teller specific
surface area of BMCNs was 44.2 m2 g−1, which was larger than
that of MCNs (19.9 m2 g−1). As shown in Figure 2F, the pore size
distribution curves calculated using the Barrett–Joyner–Halenda
model confirmed that the pore diameters of BMCNs are mainly
distributed around 3.1 nm, which are larger than MCNs (2.2 nm).
The results show that BMCNs have richer mesoporous channels,
which will facilitate the contact between the active material and
the electrolyte and accelerate Li+ and electron transport.

We investigated and compared the electrochemical properties
of CNs, MCNs, and BMCNs as candidate anode materials for
LIBs. The Li-ion reaction behavior of the three electrodes was
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FIGURE 1 | (a) Schematic illustration for the fabrication procedure of CNs, MCNs, and BMCNs. FESEM and TEM images of (b–c) CNs, (d–e) MCNs, and (f–g)
BMCNs.

tested via cyclic voltammograms (CVs), as exhibited in Figure 3A
and Supplementary Figure S7. The 0.9-V peaks can correspond
to the decomposition of the electrolyte followed by the formation
of a solid electrolyte interface (SEI) layer (Cui et al., 2019; Xu
et al., 2019; Boyjoo et al., 2020). The 0.01-V cathodic peak is

ascribed to the intercalation and deintercalation of Li ions into
graphene-like planes (Liu et al., 2018; Ould Ely et al., 2019; Rao
et al., 2020). The galvanostatic discharge/charge curves of the
BMCNs at 0.1 A g−1 are presented in Figure 3B. The BMCN
electrode delivers high first-cycle discharge and charge capacities
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FIGURE 2 | XPS spectra for CNs, MCNs, and BMCNs: (A) Survey spectrum and high-resolution spectra of (B) C 1s, (C) N 1s, and (D) atomic ratio. (E) N2

adsorption/desorption isotherms of MCNs and BMCNs, (F) pore size distribution.

of 868 and 507 mA h g−1, respectively, suggesting an initial
Coulombic efficiency (ICE) of 58.4%. The initial Coulombic
efficiencies of CN and MCN samples are 61.4% and 55.3%,
respectively. The irreversible capacity loss may be originated
from the formation of an SEI layer during the first cycle and
electrolyte decomposition (Zhang et al., 2018; Zou et al., 2018; Liu
et al., 2020). Figure 3C shows the cycling performance of CNs,

MCNs, and BMCNs at 0.1 A g−1. After 100 cycles, the BMCN
electrode delivers a significant reversible capacity up to 371 mA h
g−1. In stark contrast, CN and MCN electrodes can only deliver
277 and 171 mA h g−1 after 100 cycles, respectively. Discharge
capacity and Coulombic efficiency of the first five cycles of CN,
MCN, and BMCN electrodes are presented in Figure 3D. The
BMCN electrode performs the best and delivers high discharge
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FIGURE 3 | (A) CV curves of the BMCN electrode at a voltage range of 0.01–3.0 V. (B) Charge/discharge curves of the BMCN electrode at a current density of
0.1 A g−1. (C) Cycling performance test of CN, MCN, and BMCN electrodes at the current density of 0.1 A g−1. (D) Discharge capacity and Coulombic efficiency of
the first five cycles of CN, MCN, and BMCN electrodes at the current density of 0.1 A g−1. (E) Long-cycling performance and Coulombic efficiency of the BMCN
electrodes at the high current density of 2 A g−1.

capacities. In addition, the Coulombic efficiency of the BMCN
electrode is maintained at above 96% from the second cycle,
which are superior to CNs and MCNs. The rate performance of
CNs, MCNs, and BMCNs at various current densities ranging
from 0.1 to 5 A g−1 is presented in Supplementary Figure S8.
The BMCN electrode delivers reversible charge capacities of 448,
381, 339, 285, 243, and 184 mA h g−1 at current densities of

0.1, 0.2, 0.5, 1, 2, and 5 A g−1, respectively, which are superior
to CNs and MCNs. When the current density returns from 5
to 0.1 A g−1, a high charge capacity of 425 mA h g−1 can be
recovered. To better demonstrate the good lithium ion storage
performance of BMCNs at high current densities, the long cycling
performance was further investigated at 2 A g−1 (Figure 3E),
the BMCN electrode which delivered a reversible capacity of
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FIGURE 4 | (A) Electrochemical impedance spectra and equivalent circuit (inset) of the CN, MCN, and BMCN electrodes obtained after 50 cycles at 2 A g−1.
(B) Schematic illustration for the lithium-ion and electron transport in the CN, MCN, and BMCN electrodes.

300 mA h g−1 is retained, and the Coulombic efficiency closes
to 100% after 1000 cycles, indicating outstanding cycling stability
over a long cycle life.

The electrochemical impedance spectroscopy (EIS)
measurements of three samples were conducted after the
50th cycles. All Nyquist plots are composed of a semicircle at the
medium frequencies and an inclined line in the low-frequency
region. The equivalent circuit is fitted using the ZSimpWin
software. In general, the semicircle at the medium frequencies
can be assigned to the interfacial transfer impedance of electrons
(RCT), and the slope spike denotes the diffusion ability of Li
ions in the electrodes. Re represents the electrolyte resistance.
The CPE (constant phase element) denotes the capacitance of
the SEI films and the double-layer capacitance, and ZW is in

relation with the Warburg impedance (Hao et al., 2018; Wu et al.,
2019; Zhang et al., 2019). It can be observed that the semicircle
of the BMCN electrode (Figure 4A) is smaller than other
samples; this proves that the ion transport within the BMCN
electrode is further ameliorated. The outstanding electrochemical
performance of the BMCN electrode could be explained by the
bowl-like mesoporous nanostructure (Figure 4B). Lithium
ions can be stored reversibly between graphene-like planes.
Comparing the electrochemical performance test results of
CNs and MCNs indicates that the existence of mesoporous
channels can provide convenient channels for lithium ions and
electrons and accelerate the penetration of electrolytes, which
can improve the electrochemical performance of electrodes.
Differences in electrochemical performance between MCNs
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and BMCNs are mainly due to the unique advantages of
the bowl-like morphology. In terms of geometry, this special
bowl-like morphology has a shorter transmission distance than
nanospheres, which can shorten the lithium ion and electron
transmission paths.

In a nutshell, we successfully synthesized polydopamine-
derived carbon materials with different porosities or
morphologies using three different methods. BMCNs were
synthesized by an emulsion-induced self-assembly strategy, and
MCNs were prepared according to a general nano-emulsion
assembly method. CNs were synthesized by self-polymerization.
Importantly, the effects of porosity and morphology on their
electrochemical performance under the same conditions were
studied in detail. Electrochemical test results show that the
mesoporous structure can shorten the diffusion path of Li+ and
electrons in the electrode and accelerate the diffusion rate of the
electrolyte. In addition, the special bowl-like morphology has
a shorter transmission distance than nanospheres, which can
shorten the lithium ion and electron transmission paths.
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