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This review focuses on describing the current state-of-the-art research in the synthesis
of 3D architectures for electrochemical capacitor applications. The selection is based on
both template and non-template strategies. Particular attention has been paid to carbon
materials because of their structural interconnection, as they create not only the desired
hierarchical porous channels but also ensure high conductivity and mechanical stability.
A comprehensive overview of electrode materials is presented here with a detailed
discussion of composite solutions, including their advantages and disadvantages.
Numerous examples from the literature are presented for individual solutions. The future
challenges posed for this type of material are finally summarized.

Keywords: electrochemical energy storage, porous carbon materials, supercapacitors, supercapacitor (SC),
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INTRODUCTION

This review follows a slightly different manner than other papers that appear in the field.
The great variety of the materials that might be successfully described and compared makes
honest comparison and comprehensive description almost impossible in the frame of one paper.
Undoubtedly, there are several reasons for such a situation, with a subjective point of view as the
first one. The primary goal of this paper is instead to provide some insights and opinions on the
methods and materials that have recently attracted scientific interest and might be considered as
promising candidates for further development. Throughout the text, there are almost no values
presented, compared, and discussed, essentially in the “better/worse” context; this kind of approach
is followed for a specific purpose. Namely, a broad spectrum of the methods applied for the
materials testing does not allow for reliable comparisons and evaluation, as the specific capacitance
depends on many factors. Of course, taking into account the formula for energy stored in the
system, one might expect some kind of contest in this field. But this way might quickly lead to
. . . nowhere. For instance, such a competition in numbers generated the large amount of papers
that have reported enormous capacitance values, reaching hundreds or thousands of Farads per
gram. Still, they are (in a great majority of cases) battery-like materials, having nothing in common
with capacitive or pseudocapacitive properties. Thus, the primary “take-home message” from this
paper is that reasonable development does not mean that there should be a race or competition
in specific capacitance values, cycle numbers, or Volts presented as operating voltage. Rational
development and promising material must be sourced from multivariant analyses that also take
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into consideration the application of the device, user safety, and
the broad spectrum of the final system demands. Without such
a discussion and consideration, each new material will be just a
small piece of a big cake, that might be (of course!) very tasty but
must still contribute to the final effect. In other words, we do not
pretend to be able to judge whether an apple pie is better than
a brownie, but we instead describe and discuss how to prepare
them if there is a wish to enjoy some treat.

ENERGY STORAGE DEVICES

The energy storage devices market has been growing over the last
decades, and it is a big challenge to satisfy the requirements of
modern society. Additionally, an increase in energy consumption
and, consequently, fossil fuel depletion has led scientists from all
over the world to try to use renewable energy sources and find
new materials for advanced technologies (Wang X. et al., 2014;
Yu et al., 2015c; Alola et al., 2019). Moreover, it is essential to
store energy safely and use it efficiently when needed. Batteries
and electrochemical capacitors (ECs) seem to be adequate devices
for these purposes (Bernardo et al., 2011; Xu et al., 2013).
A comparison between different devices based on specific power
and energy values that can be reached by these systems is
presented in the Ragone plot (Figure 1).

Lithium-ion batteries are one of the most popular devices,
applied when required power is rather low, e.g., portable
electronics such as cell phones and laptops, but also in electric
vehicles. Batteries are also characterized by high energy density
values – significantly higher if compared with ECs (Etacheri et al.,
2011; Scrosati, 2011; Schipper et al., 2017). On the other hand,
when moderate energy has to be delivered in a short time, ECs can
be successfully used. ECs are used as a memory back-up in small
electrical equipment, such as photo and video cameras or coffee

FIGURE 1 | The Ragone plot presenting specific power and energy values
reached by different energy storage devices. Based on data sourced from
Simon and Gogotsi (2010), Béguin and Fra̧ckowiak (2013),
Budde-Meiwes et al. (2013).

FIGURE 2 | Electrochemical capacitor and lithium-ion cell construction.
Adapted from Béguin and Fra̧ckowiak (2009) and Béguin and Fra̧ckowiak
(2013) with permission from Wiley-VCH Verlag GmbH & Co. KGaA.

machines. In the automotive industry, ECs can be coupled with
batteries and used in hybrid cars, but also in city transportation
where “stop-and-go” technology is implemented (Nomoto et al.,
2001; Shukla et al., 2012; Miller et al., 2014). Hence, the utility of
batteries and ECs strongly depends on the needed properties.

All the mentioned differences between batteries and ECs’
performance come from their different constructions and
principles of operation, presented in Figure 2.

A Li-ion battery is composed of one or more cells where
chemical reactions occur at a positive and a negative electrode
during the charging and discharging processes. The positive
electrode (cathode), as a source of lithium cations, can be
made of lithium-metal oxides (e.g., LiMn2O4, LiCoO2), olivine
LiFePO4, LiNiPO4 or LiCoPO4 and others containing nickel
(LiMnNiCoO3, LiNi0.8Co0.15Al0.005O2). The negative electrode
(anode) is usually a layered carbon material where lithium ions
can be stored (during charge) and released from layers (during
discharge). The most popular material is graphite because of its
low cost, ready availability and relatively stable structure (Daniel,
2008; Nitta et al., 2015; Kim et al., 2019). There is also a separator
between the electrodes that allows ions to flow from one electrode
to another, but which prevents electrons from moving through it,
to avoid a short circuit. In batteries, different types of electrolytes
can be used. Still, liquid organic electrolytes with lithium salts
like LiPF6 or LiBF4, or more complex compounds such as
LiBC4O8 or Li[PF3(C2F5)3] in organic solvents (e.g., dimethyl
carbonate DMC, ethyl methyl carbonate EMC, acetonitrile ACN,
and propylene carbonate PC) are used (Younesi et al., 2015).

When the battery is being charged, electrons are moved from
the positive electrode to the negative one through an external
circuit (the positive electrode is being oxidized, the negative
electrode is being reduced) and the positive electrode “releases”
some of its lithium ions, which move via the electrolyte to the
negative electrode. Energy is taken in and stored in the cell.
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During discharge, the opposite process takes place – the electrons
move back to the positive electrode (reduction of electrode
occurs) and lithium ions reach this electrode as well. Chemical
energy is thus converted in this process into electricity, and the
external device can be powered (Barai et al., 2015; Yu et al., 2019).

ECs’ construction is rather simple – two electrodes made of
a highly porous carbon material (with a specific surface area
around 2000 m2

·g−1) are immersed in an electrolyte solution
(which is a source of ions) and, like in batteries, separated by
a separator (quite often made of glassy fiber) (Pandolfo and
Hollenkamp, 2006; Béguin et al., 2014; Zhong et al., 2015; Fic
et al., 2018). The principle of operation is based on electrostatic
interaction between ions and an electrode surface. During this
process, the so-called electrical double-layer is formed. Because
of this phenomenon, ECs are also called electric double-layer
capacitors (EDLCs). Ions’ attraction to the electrode surface is
a very fast and reversible process. The specific power of these
devices is higher if compared to batteries.

Electrolytes used for ECs can be aqueous (Khomenko et al.,
2006; Ruiz et al., 2009; Fic et al., 2012a,b; Gao et al., 2012;
Ratajczak et al., 2014), organic, or ionic liquids (Ruch et al.,
2010; Krause and Balducci, 2011; Wang et al., 2012a; Weingarth
et al., 2013; Mirzaeian et al., 2017; Hirota et al., 2018).
Each of them have different advantages and disadvantages. An
operating voltage strongly depends on the kind of medium
used and, consequently, the specific energy depends on it as
well (Frackowiak et al., 2005; Pandolfo and Hollenkamp, 2006;
Béguin et al., 2014).

It seems to be evident that the same electrode materials
cannot be used in both device types, because of asymmetric
construction of batteries, symmetric construction of EDLCs, and
different energy storage/conversion mechanisms. Moreover, the
behavior of the electrodes during device operation is supposed to
be different. Because of the intercalation process onto negative
electrode occurring in Li-ion batteries, the graphite structure
can be changed/destroyed when cycled, so it can (and does)
expand. It is one of the factors that limits the battery lifetime.
Theoretically, for EC’s electrodes, dimensional changes are
not expected. However, investigations performed for organic
electrolytes mostly show quite significant changes in electrode
volume, especially when the electrode is polarized negatively
(Hahn et al., 2006; Hantel et al., 2014; Prehal et al., 2015).

The capacity of batteries originates directly from redox
reactions, hence its value is relatively high. Capacity is here
understood as the amount of charge that can be stored in the
cell. It is calculated for active material in the battery. This
value is given in Ah and strongly depends on battery “state-of-
health” – batteries lose their capacity over time. Moreover, the
energy stored in batteries can reach much higher values than in
the case of ECs.

To express ECs’ performance, a capacitance value should
be calculated (Cdevice). The full device is considered as two
capacitors connected in series and the capacitance can be
calculated as follows:

1
Cdevice

=
1

Celectrode(+)
+

1
Celectrode(−)

(1)

FIGURE 3 | Various charge storage mechanisms in ECs: electrical
double-layer formation (A) and surface redox reactions (B) at the
electrode/electrolyte interface; redox reactions from the redox-active
electrolyte (C).

In the case of the symmetric cell, both electrodes [Celectrode(+) and
Celectrode(−)] have the same capacitance values, hence:

1
Cdevice

=
2

Celectrode
(2)

Cdevice =
Celectrode

2
. (3)

Because of different carbon materials utilization, various
constructions, and electrode masses, one should recalculate
capacitance given from Eq. 3 to gravimetric capacitance, based
on the mass of active material (mact) (Eq. 5) or to normalized
capacitance (based on the electrode area) (Eq. 5):

Celectrode =
2 · Cdevice

0.5 ·mact
, hence (4)

Celectrode =
4 · Cdevice

mact

[
F · g−1] (5)

C =
Celectrode

[
F · g−1]

SSA
[
m2 · g−1

] · 102 [
µF · cm−2] (6)

The specific energy value of ECs strongly depends on capacitance,
and it can be calculated as follows:

E =
1
2
· Cdevice · U2 (7)

Scientists all over the world have been working on ECs’
performance and energy improvement to reach values
competitive to batteries. Hence, modifications of conventional
EDLCs were invented (Figure 3).

Except for typical electrical double-layer formations
(Figure 3A), redox reactions can be implemented in ECs.
These reactions may have a different origin. One possibility is a
modification of the electrode material by introducing transition
metal oxides (TMOs) (like manganese oxide) (Khomenko et al.,
2006; Yang X.-H. et al., 2007; Malak et al., 2010), or intrinsically
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FIGURE 4 | Division of EDLC electrode materials.

conducting polymers (ICPs) (Peng et al., 2008; Li et al., 2009;
Fang et al., 2010) or heteroatoms-enriched carbons (Figueiredo
et al., 1999; Frackowiak et al., 2006; Raymundo-Piñero et al.,
2006; Lota et al., 2007; Figure 3B). This “additional capacitance”
from redox reactions occurring at the electrode/electrolyte
interface is called pseudocapacitance. Materials that could be
used for this purpose are discussed in detail in the next section
of this review. Redox-active electrolytes can also be used in ECs
as a redox-active species source (Figure 3C). The most popular
ones in the aqueous medium are halides (bromide and iodide
anions) (Frackowiak et al., 2012; Chen et al., 2015; Menzel et al.,
2015; Sathyamoorthi et al., 2016). However, recently, a different
group has also been implemented as a redox-active electrolyte –
pseudohalides (thiocyanates and selenocyanates) (Gorska et al.,
2017; Bujewska et al., 2019).

ELECTRODE MATERIALS USED IN
ELECTROCHEMICAL CAPACITORS

The key components of the EC are the electrode materials
presented in Figure 4, and the electrolyte (Frackowiak et al.,
2013). The role of charging the ion-sensitive interface between
electrode and electrolyte is here fundamental (Béguin et al.,
2014). It seems that higher values of capacitance are obtained
when the larger surface area of the electrode is used. However,
it has been demonstrated that the pore volume corresponds more
substantially with specific capacitance than the surface area does
(Frackowiak et al., 2006). Advancement of the specific surface
area typically makes the pore walls thinner and the pore diameter
a bit wider, but so-called screening effects begin to influence the
capacitance properties severely. Therefore, the electrode pore size
arrangement cannot be neglected (Pandolfo and Hollenkamp,
2006). Recently, the production of electrode materials has been
geared toward achieving sufficient pore size (in correlation with
selected electrolyte) with effective pore distribution during long-
term cycling for enhanced charge propagation and chemical
stability (Alexandru and Andrea, 2017).

Carbon Materials
Activated carbon (AC) is the material most widely used as an
electrode component. Activated carbon has attracted significant
attention due to its large surface area, great electrochemical
properties, and moderate cost (Pineiro-Prado et al., 2016).
Activated carbons can be produced from various types of
carbonaceous materials, which are well abundant, via either
physical or chemical activation. Physical activation requires the
treatment of carbon precursors in the presence of gases such as
air, CO2, or steam at high temperatures from 700 to 1200◦C.
With regards to chemical activation, the activating agents such
as sodium hydroxide, potassium hydroxide, zinc chloride, and
phosphoric acid are used at lower temperatures from 400 to
700◦C (Pandolfo and Hollenkamp, 2006). Activated carbons’
porous structure is obtained using activation processes that
have a wide distribution of the pore size consisting of macro-,
meso-, and micropores (<2 nm). Overactivation results in large
volumes of pores, which in turn leads to drawbacks such as poor
conductivity and material density, resulting in low energy density
and power loss (Heimbckel et al., 2019). Development and
further efforts in carbonization procedures seem to be necessary
to consider them as industrially reasonable and feasible.

Activated carbons made of biomass have attracted the
attention of scientists around the world as they use abundant and
renewable resources. Besides that, they have intriguing properties
that derive from the relatively high content of various elements
which can provide higher electron density and pseudocapacitive
contribution (Yang et al., 2019). An essential feature of the
synthesis of ACs from biomass is the low production price.
Activated carbons could be produced from different materials
like shells, leaves, flowers, bamboo, banana peels, seaweeds, olive
stones, and coffee grounds (Fic et al., 2018). Coconut shell is an
abundant material with a proper compact structure that is most
commonly used in research (Ghosh et al., 2019). Usually, biomass
carbonization yield is highly dependent on the type of precursor,
preliminary drying, and purification processes, and the yield has
a wide range from 30 to 50%. Quite often, the authors are picking
biomass without considering a yield of carbonization, elemental
composition, quality, price, etc. (Herou et al., 2018). For example,
the carbonization of certain flowers is highly doubtful and
meaningless due to the scarcity and minor content of carbon,
which affects the yield of carbonization (Zhao and Zheng, 2015).

Graphene has recently enjoyed tremendous attention
(Marcano et al., 2010). One atom-thick 2D structure has emerged
as a unique carbon material with potential for use in energy
storage devices due to its outstanding characteristics of high
electrical conductivity, chemical stability, and large surface area
(Miller et al., 2018; Najib and Erdem, 2019). Recently, it has
been suggested that graphene could be used in ECs because it
does not rely on the distribution of solid-state pores compared
to other carbon materials such as ACs or carbon nanotubes
(CNTs; Kim et al., 2013). When the entire specific surface
area is fully used, graphene could achieve a capacitance up to
550 F·g−1 (Qingqing and John, 2016). The leading quality is
that both of the main graphene sheet surfaces could be exterior
and easily accessible by an electrolyte. In the area of high-power
applications, it is necessary to produce capacitors with high
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specific capacitance and quick charging times at high current
density. It could be possible by synthesizing graphene from
the modified Hummer’s method and tip sonication, for use in
electric vehicles (Vivekchand et al., 2008). The major drawback
of graphene is the process of agglomeration which can lead to
restacking back to graphite. This downside could be reduced by
thermal reduction of graphite oxide at high temperatures and
later rapid cooling using liquid nitrogen.

Carbon nanotubes caught a lot of attention in
electrochemistry because of their specific pore structure,
good mechanical and thermal stability, and excellent electrical
properties (Winkless, 2014). Carbon nanotubes are usually
formed by catalytic decomposition of certain hydrocarbons.
It is possible to create nanostructures in different frameworks
by manipulating different parameters (Zhou Y. et al., 2013).
The CNT, unlike other carbon-based electrodes, has mesopores
that are intertwined, enabling a continuous charge delivery
that uses almost all of the available surface area. Nanotubes
are distinguished by their lower electrical resistance values
due to the high content of mesopores, which promote the
diffusion of ions (Jian et al., 2012). Carbon nanotubes can be
used as high-power electrode materials because of their great
conductivity and accessible surface area. CNTs could also be a
support for other active materials because of their elasticity and
mechanical resistance. Unfortunately, nanotubes have a small
specific surface area (<500 m2

·g−1) which in turn leads to a low
energy density relative to ACs. However, it is possible to improve
specific capacitance of CNTs using chemical activation with
potassium hydroxide (Simon and Gogotsi, 2008).

Moreover, carbon materials can be easily modified to improve
energy storage devices’ performance. In the case of ECs, surface
modifications are the most important due to the surface-related
mechanism of charge storage. However, most of the changes also
concern the bulk of the material. A comprehensive discussion
on this topic can be found in the literature (Liu et al., 2010;
Wang G. et al., 2014; Wang et al., 2015; Slesinski et al., 2018;
Yao et al., 2020). In many cases, this kind of modification allows
an operating voltage to be increased, most likely by changing
the pH at the electrode/electrolyte interface (in the case of
aqueous electrolytes). It can be done through the self-adjusting
mechanism of the pH gradient generation and by creating a
protective layer on the electrodes responsible for higher solvent
decomposition overpotentials. The introduction of functional
groups on the electrode surface may also lead to the redox
activity, which directly affects the obtained high capacity value of
the device. Nevertheless, one should be aware that oxygen groups
present at the surface can diminish the material conductivity;
hence, the power and lifetime of the device operating with
modified electrodes can be aggravated.

Intrinsically Conducting Polymers
Intrinsically conducting polymers (ICPs) have obtained
significant interest as electrode materials for ECs. That is because
of their simple manufacturing process and low cost (Kang et al.,
2016). Also, in comparison with carbon materials, conductive
polymers have a relatively high conductivity and equivalent
series resistance. ICPs use reduction-oxidation processes to store

and release charge. During the oxidation process (doping), ions
are transferred from solution to the polymer chain, but during
the reduction process (de-doping) ions are released back to
the solution (Thanh-Hai et al., 2017). The reduction-oxidation
process creates mechanical stress which, in effect, restricts
the stability of the electrode material through many cycles of
charge-discharge (Mastragostino et al., 2002).

One of the most popular intrinsically conducting polymer is
polyaniline (PANI) due to its high conductivity, simple method
of synthesis, and low cost (Zhu H. et al., 2013). Nevertheless,
PANI is susceptible to rapid deterioration of performance due to
swelling and shrinking during repeated charge-discharge cycles.
To avoid this restriction, the combination of PANI with carbon
materials has been shown to improve PANI’s stability as well as
increase the capacitance value (Chen and Elabd, 2017; Simotwo
and Kalra, 2018). Other conductive polymers are polypyrrole
(PPy) and poly(3, 4-ethylenedioxythiophene) (PEDOT). They
have many advantages, including low cost, flexibility and good
electrical conductivity and pseudocapacitance (Tong et al., 2015;
Kashani et al., 2016). However, the major drawback remains the
same as in the case of PANI: poor stability implying a noticeable
decrease in efficiency after a certain number of charge-discharge
cycles (Sen and De, 2010; Huang et al., 2016). Another factor
that restrains the use of PEDOT and PPy in the ECs industry
is limited capacitance. There are several solutions to solve these
problems, including the application of conducting nanofillers to
improve conductivity and the mixing or depositing of metal oxide
to increase capacitance (Zhao et al., 2016).

Miscellaneous Materials
Transition metal oxides can be listed as materials of interest
for use in ECs applications, but caution should be taken
when reporting their electrochemical metrics. Some of them
provide enough high conductivity, high specific capacity, and
low equivalent series resistance, thus making the construction
of ECs with high energy and reasonable power appear to be
easy (Ullah et al., 2015; Crosnier et al., 2018). RuO2 is among
the most highly studied TMOs (Nguyen and Rochefort, 2014).
RuO2 has been met with considerable interest due to its long
cycle life, wide potential window and highly reversible reduction-
oxidation reaction (Amir et al., 2016). However, RuO2 has lost
the attention of the industry because of the high production
price (Augustyn et al., 2014). Other TMOs commonly used in
energy storage devices are NiO (in hybrid systems) and MnO2
(for pseudocapacitive storage) (Zhao et al., 2017; Sadayappan
and Kwang-Sun, 2019). Their advantages include their low
production cost and environmental friendliness. Nevertheless,
they cause cracking of electrodes which results in short-term
stability, as their pores cannot be designed or altered in any form
(Julien and Mauger, 2017). This is a significant disadvantage that
limits their use in electrochemistry.

Metal sulfides, metal selenides, or polyanionic compounds
have also received considerable attention. Nickel cobalt sulfide
electrodes in asymmetric EDLCs might achieve high values of
capacitance and power density with a short charging time (Chen
W. et al., 2014). Metal selenides, like cobalt selenides, also exhibit
high specific capacitance values and they are distinguished by
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the great flexibility of final electrodes that might be interesting
for use in personal electronic application (Zhang et al., 2019).
Polyanionic molybdenophosphate anodes could largely extend
the cathodic stability of water and allow the assembly of
2.7 V aqueous ECs (Song et al., 2019). However, all of these
materials suffer from low conductivity, which restricts the fast
electron transport required for high rate capability, which can
even work as an insulator. This kind of problem has been
overcome by incorporating highly conductive carbon materials
in pseudocapacitive electrodes – it allows the hybrid system to be
constructed (Theerthagiri et al., 2018).

Recently, transition metal dichalcogenides (TMDs) have
enjoyed widespread interest as electrode materials for ECs. The
TMDs are inorganic structured materials composed of transition
metals (M) and chalcogens (X: S, Se, Te) which form with a
chemical composition of MX2, that provides a rich range of
physicochemical properties (Manish et al., 2013). Many two-
dimensional (2D) TMDs are used in ECs such as: MoS2,
MoSe2, WS2, WTe2, etc. The most commonly used and studied
among these TMDs is MoS2. However, MoSe2 presents better
electrochemical properties than MoS2, because transition metal
selenides demonstrate higher electrical conductivity than their
sulfide counterparts (Eftekhari, 2017). The existence of several
oxidation states and the large surface area allows 2D TMDs to
store charge by Faradic mechanism as well as electric double-
layer (EDL) mechanism, ensuring a high specific capacitance
and energy density (Nam et al., 2016; Choi et al., 2017). With
some interesting features of 2D TMDs, their low inner electrical
conductivity hampers their potential to be great electrode
materials for ECs (Pumera et al., 2014; Yang et al., 2014).

MXenes are a group of two-dimensional materials that consist
of very thin layers of transition metal carbides, nitrides, or
carbonitrides (Lukatskaya et al., 2013; Dall’agnese et al., 2014;
Ghidiu et al., 2014). The suffix “ene” was added to MAX phases
to emphasize their similarity to graphene (Naguib and Gogotsi,
2015). The best known and first discovered MXene is Ti3C2.
This material shows capacitance values up to 100 F·g−1 for
insertion of Li+, Mg2+, or Al3+ in aqueous solutions (Dall’agnese
et al., 2016). MXene efficiency can be dramatically improved
by adjusting the specific surface groups, or by delaminating or
incorporating carbon nanoparticles (Liu Y. et al., 2015; Zhao
et al., 2015). However, MXene has been studied primarily in
aqueous electrolytes, which have a limited potential window
due to water electrolysis. Furthermore, oxidation of Ti3C2 in
aqueous electrolytes under strong anodic potentials also restricts
its use mostly to asymmetric systems. As both the energy and
the power density increase with the square of the voltage, it is
crucial to expand the potential window which will improve the
performance of ECs.

Nanocomposites (for Hybrid Systems)
Composite electrodes combine carbon-based materials with
either metal oxide, intrinsically conducting polymer materials,
or different carbon materials, which in turn provides both
physical and chemical charging storage mechanisms in one single
electrode (Vangari et al., 2013).

Carbon materials have a high specific surface area which leads
to high capacitance values. By enriching with other carbonaceous
material, it is possible to increase the active surface area and
thus obtain carbon–carbon ECs with higher energy and power.
This would also solve some of the material’s drawbacks. For
example, the chemical reduction of graphene oxide may lead to
its aggregation and restacking through van der Waals interactions
back to graphite, thereby making less area for the electrolyte.
However, the use of single-walled CNTs as their spacers is
sufficient to prevent the restacking. Furthermore, by injecting
CNTs, the intra-pores for the electrolyte are generated (Zhang
et al., 2013b). However, from an industrial point of view, such
a sophisticated approach might be too expensive.

Another way of obtaining a good composite is by adding
a conducting polymer to the carbon material. It has been
confirmed that mixing PANI with AC (Wang et al., 2019) or
PEDOT and CNTs (Dettlaff et al., 2018) results in a higher
specific capacitance of carbon-conductive polymer materials than
individual components separately. Also, mixing metal oxides
with carbonaceous materials develops a specific capacitance.
Synthesis of CNTs and an MnO2 hybrid (Dan et al., 2020) or
graphene and MnO2 (Cheng et al., 2011) results in improved
conductivity, which affects the electrochemical properties of
the capacitor. Creating hybrid materials has many advantages.
However, they do not significantly improve the properties of
electrode materials and, unfortunately, it increases production
price (Borenstein et al., 2017).

3D MATERIALS

Definition
Nanostructured materials can be divided into four general
groups: (1) 0D zero-dimensional nanomaterials (nanoparticles,
nanospheres); (2) 1D one-dimensional nanomaterials (nanorods,
nanowires); (3) 2D two-dimensional nanomaterials (nanoplates);
and (4) 3D three-dimensional nanomaterials. Nanosized particles
that have their length and width within the nanometer range
(<100 nm) belong to 0D (1). All dimensions (length, width,
and height) are presented by one parameter, e.g., radius. In 1D
nanomaterials (2), one dimension is outside the nanoscale, in
2D nanomaterials (3) two dimensions are outside the nanoscale.
3D nanomaterials (4) are materials that are not confined to the
nanoscale in any dimension.

Currently, three-dimensional (3D) carbon materials are
becoming a promising alternative to AC for ECs application.
They can be used both as an active material and as supporting
scaffolds for other pseudocapacitive materials with relatively
limited electrical conductivity (Wang et al., 2013a; Cao et al.,
2014a; Zhang et al., 2014). 3D materials, if used in ECs
as electrodes, should have strictly designed porosity, surface,
density, wettability, flexibility, etc. Such structures are intended
to provide primarily high conductivity and to control the
distribution of heteroatoms. The unique pore network (e.g.,
hierarchical porous structures) reduces dead volume (the volume
of the electrode that the ions cannot access). Such solutions
ensure the rapid diffusion of ions from the electrolyte bulk to
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SCHEME 1 | Advantages and disadvantages of 3D architectures.

the electrode surface and efficient charge accumulation (Suss
et al., 2013; Song et al., 2018). Quite often, electrodes based on
3D materials do not require any additives or binders to prepare
the electrodes, while maintaining high flexibility. However, one
should be aware that these architectures are not suitable for every
type of energy storage/conversion device.

It is accepted that 3D materials construction should perfectly
match the device parameters and their work conditions (like

the device dimensions, type of electrolyte, temperature, pressure,
or susceptibility to disruptions) to ensure good performance.
Some advantages and disadvantages of different 3D structures are
presented in Scheme 1.

It has to be pointed out that there are some incorrect
definitions of 3D materials in the literature. For instance, ACs
should not be bracketed within 3D materials. Activated carbons
have, indeed, a highly developed porosity and surface, however,
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their structure is disordered – there are no repetitive elements.
Furthermore, ACs are not ideal for a new generation of ECs
because of three major disadvantages:

(1) Quite often, during electrode preparation, electrically
insulating binders need to be added; that increases the total
weight of the device (so-called dead mass) and hinders the
transport of ions.

(2) Micropores in ACs make up about 90% of its porosity
(Simon and Gogotsi, 2013; Fic et al., 2018). Such a large
number of micropores hinders ion diffusion in pores and
limits the capacitance at ultra-fast charging conditions
(especially for pores with a diameter smaller than ion size)
(He et al., 2016).

(3) Disordered pore distribution leads to a tortuous and
stochastic porous network, which also reduces the rate of
ion diffusion (Zhu et al., 2016).

Family of 3D Materials
Template-Based Methods
Synthesis of materials based on the template method appears to
be the easiest way to create 3D architectures. The matrix can
be a permanent scaffold for a 3D electrode, and it participates
in the creation of the electrode. There are also methods where
the matrix acts only in a transitional stage (schematic illustration
presented in Figure 5).

After applying the proper electrode material and its
anastomosis with the active material, the matrix is removed, and
the created 3D electrode material resembles its shape. Removing
the matrix allows the highly developed surface area electrode
to be formed. However, in many cases, the presence of the
matrix ensures the entire structure stability. Examples of active
materials include metal oxides and hydroxides, which provide
high gravimetric/volumetric capacity in hybrid storage systems.
The matrix method uses such processes as: (1) a chemical
vapor deposition (CVD), (2) a hydrothermal reaction, or (3)
electrodeposition. There are three main types of templates: (1)
nickel foams, (2) silica matrixes, or (3) polystyrene (PS) spheres.

FIGURE 5 | Schematic illustration of template-based 3D materials. SEM
pictures adapted from Ahn et al. (2019), Ussia et al. (2019), Zhou (2019), and
Wang et al. (2020) under the Creative Commons CC BY license.

Nickel foams
Nickel foam (NF) is made of a conductive, connected framework
of pure nickel. The pore density of such a skeleton varies
between 50 and 90%, and the conductivity ∼350 S·cm−1.
Electrodes manufactured based on a continuous NF network
usually adopt a monolithic structure. Popular active materials
include: metal oxides (Yan D. et al., 2012; Chen et al., 2013;
Zhou C. et al., 2013; Xu et al., 2014; Zhai et al., 2015),
sulfurs (Pu et al., 2013; Wei et al., 2014), hydroxides (Guan
et al., 2011; Yuan et al., 2014; Qu et al., 2015), and their
composites (Guan et al., 2011; Tang et al., 2013; Cai D. et al.,
2014). Incorporation of metal oxides to the nickel skeleton can
be realized by electrochemical reduction and electrosorption
(Zhang et al., 2014). Besides, the nickel susceptibility makes
the improvement of nickel oxides or hydroxides deposition
possible (Cai S. et al., 2014; Xiong et al., 2015). It is worth
mentioning that intermediate elements are also used as the
additive to the matrix and active compounds. The most common
additives are graphene coatings applied to NF. In turn, the active
material is applied to the graphene layer. Graphene growth is
realized by chemical vapor deposition (CVD; Zongping et al.,
2011; Ji et al., 2012; Chen M. et al., 2014; Liu et al., 2014;
Patil et al., 2014; Zhang et al., 2014) or by an electrochemical
method of dissolving and reducing graphene oxide (product –
ERGO material). In the CVD technique, the graphene layer is
deposited in the atmosphere CH4/H2/Ar (∼ 1000◦C) (Zhang
et al., 2014) on NF, and then impregnated by, for example,
poly(methyl methacrylate) (PMMA). The use of PMMA protects
the graphene layer from damage when the NF is removed.
Poly(methyl methacrylate) dissolves, and poly(dimethylsiloxane)
(PDSM) is introduced into the graphene framework. There
is an increase in strength and flexibility of such a network
(Zongping et al., 2011). Finally, the templates are selectively
removed (e.g., by FeCl3-HCl or 6 mol·L−1 HCl) to create a
3D graphene architecture. There are also hybrid solutions using
CNTs, which serve as a conductive carrier but also increase
the surface area of the metal oxides/hydroxides used. The
alternative is the hydrothermal reduction of graphene oxide
suspension (Luan et al., 2013). This technique does not require
the use of PMMA impregnation (Zhai et al., 2015). Nickel and
cobalt-based particles are then deposited on graphene foam to
catalyze CNT growth. Then a dense CNT layer is grown on
both the outer and inner spaces of each empty graphene wall
(Liu et al., 2014).

Silica templates
Silica templates have different morphologies: (1) nanoparticles
(Pan et al., 2012), (2) nanosheets (Nakanishi et al., 2013), and
(3) ordered mesoporous/macroporous structures (Huang et al.,
2012). This method is usually accompanied by high-temperature
treatment or a strongly acidic environment (Lei et al., 2011).
The use of these templates is mainly limited to carbonization
of organic precursors to produce porous carbon networks (e.g.,
ordered mesoporous carbon) or for the preparation of materials
that are stable against strong alkalis (Lee et al., 2000; Ryoo
et al., 2001; Lee et al., 2004). Silica particles, used as templates,
are firstly dispersed in the reaction solution. Then the material
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growth process takes place on the dispersed silica template.
The general preparation route may consist of three stages:
(1) impregnation of the template with the active material, (2)
use of pyrolysis/crystallization/sublimation to obtain the desired
product with the desired crystallinity, and (3) removal of the
silica matrix (HF etching or hot etching with, e.g., LiOH,
KOH) (Lu et al., 2014a; Zhang et al., 2017). The material is
activated by KOH treatment. The produced porous electrode
material is applied onto the foil (e.g., Cu, Al) and used as a
current collector. The separated nature of the material hinders
the capacitive performance of the EC without the use of a
foil. Despite the monodisperse features of silica particles, this
technique is also known for obtaining a continuous 3D structure
by combining silica particles into a colloidal 3D crystal (Kuai
et al., 2003; Wong et al., 2003). This technique involves matrix
colloid precipitation under external forces (gravity, capillary
forces, electrostatic forces, and hydrophobic interactions on the
oil–water interface) (Liu Y. et al., 2013). After creating the
connections between the particles, a 3D network is obtained,
and the active material can be placed in the porous space.
However, the scale of grain connection is still smaller than in
the case of NF, due to the small size of the silica grains. This
method is still expensive; therefore it is used as an auxiliary tool
for integrating mesopores into a macroporous backbone (e.g.,
graphene foam or aerogel) for the construction of bimodal or tri-
modal porous 3D frames (Lu et al., 2011; Huang et al., 2012).
Composite-based 3D electrode templates (e.g., a combination
of GA graphene aerogel and a SiO2 mesoporous silica layer)
are obtained with this approach. It is also possible to insert
silica into a macroporous structure to increase its strength and
to ensure the hierarchical structure. An example of such a
material is highly conductive graphite. Between graphene layers,
mesoporous carbon spheres are located, which are obtained as a
result of the deposition of carbonaceous material in silica spheres.
In the next stage, the carbon spheres are removed (leaving an
ordered mesoporous carbon structure). In this case, graphene
provides high conductivity, while incorporated carbon spheres
play the role of conductive spacers (Lu et al., 2011).

Polymer templates
3D structures obtained with polymer templates include two
manufacturing strategies: (1) converting colloids into 3D
colloidal crystals before forming a matrix (Zhou M. et al., 2013),
and (2) self-assembly of such templates with other materials
(e.g., graphene) to generate additional porosity (Liu et al., 2009).
Transfer methods to a conductive substrate include:

(1) dropping polymer colloids on the lateral surface of the
substrate along with further evaporation (Müller et al.,
2000),

(2) deposition of the polymer on a vertically suspended
colloidal polymer substrate by solvent evaporation (Bartlett
et al., 2000; Karuturi et al., 2012),

(3) a dipping method in which the substrate is withdrawn from
a colloidal polymer solution at a constant speed and angle
(Xia et al., 2010; Elias et al., 2013; Hsia et al., 2014),

(4) electrophoretic deposition of polymer spheres on a
conductive substrate (Yamaguchi et al., 2009).

Colloidal 3D crystals preparation usually takes more time
compared to procedures that directly integrate polymer
spheres into macroporous matrices. The most popular matrix
is PS template, but polyurethane sponges (PU) might be
considered as well.

Metal–organic frameworks
Metal–organic frameworks (MOFs) or skeletons enable much
greater flexibility in the design of 3D electrodes. In the case
of the previously mentioned templates, a higher-order structure
was used to produce a lower-order structure. On the contrary,
the MOF structure is made up of microscopic particles with
geometric symmetry and places that coordinate metal ions, thus
making the 3D structure design more flexible (Li and Xu, 2013).
Until now, their usage was limited to fulfilling the function of
precursors/matrices for carbons (Salunkhe et al., 2015; Wang
et al., 2016) or as composites with conductive additives such
as graphene (Choi et al., 2014). Recent research results propose
solutions for using MOF as pure active substances without the use
of a binding agent (Sheberla et al., 2016). The ECs’ capacitance
based on MOFs quite often exceeds the capacitance of devices
operating with carbon electrodes. This might originate from the
well-developed specific surface area; however, one should pay
special attention to the absolute values reported from the nitrogen
adsorption technique (Farha et al., 2012). The conductivity of
such materials reaches similar values as graphene (5000 S·m−1),
significantly exceeding the conductivity of AC and graphite (Yuxi
et al., 2014). The conditions for producing MOFs are much
milder than those used in the preparation of graphite carbons
(John et al., 2015).

Other materials
Other materials used as templates include macroscopic skeletons
(Lang et al., 2011, 2012; Liu N. et al., 2013; He et al., 2014)
and molecular templates (Meng et al., 2013) combined with self-
organizing graphene. Among them, there are structures with
an active layer embedded on them in graphene, which in turn
is an electron-conducting path (Liu N. et al., 2013). Hybrid
3D electrodes are another type (Lang et al., 2011). Molecular
templates (e.g., CaCO3) are used as supports in the self-assembly
of graphene or as forms for the design of hollow structures
(similar to silica and polymer templates) (Meng et al., 2013).

Non-templated Methods
The unconventional methods for obtaining electrodes are an
alternative to the template methods that allow many of the
disadvantages (associated with the first production method) to be
eliminated (Figure 6). Obtaining 3D architectures involves:

(1) self-organization of low-dimensional monomers,
(2) multi-stage assembly of hierarchical structures, and
(3) processing of natural 3D precursors.

Carbon materials
Thanks to their irreplaceable properties, carbon materials are
commonly used for electrode preparation in ECs application.

Frontiers in Energy Research | www.frontiersin.org 9 September 2020 | Volume 8 | Article 139

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-08-00139 September 1, 2020 Time: 19:20 # 10

Galek et al. 3D Architectures for Electrochemical Capacitors

FIGURE 6 | Schematic illustration of non-template-based 3D materials. SEM
pictures adapted from Hayashi and Hakuta (2010), Deng et al. (2015),
Tomczykowa and Plonska-Brzezinska (2019), and He et al. (2020) under the
Creative Commons CC BY license.

Thus, this type of material is also very often considered for 3D
electrodes production.

Graphene has a unique lamellar structure. Graphene is a
type of single-layer carbon with sp2 hybridization that allows
the electron mobility to be high. Moreover, it is characterized
by its high mechanical strength and large available surface area
(2600 m2

·g−1). Graphene is a component of graphite, where
many units of graphene are arranged in parallel. Graphite
was initially considered as a potential component of capacitor
electrodes due to the distance between the graphene layers, which
is 0.354 nm. Such a distance ensures the free movement of
ions in the material. This also enables the formation of ionic
or covalent intercalated graphite compounds (GICs; Liu J. et al.,
2013; Abdelkader et al., 2015) as a result of the exfoliation process.
The most critical stages of material exfoliation are GIC formation
and volumetric expansion (Wang G. et al., 2011; Wang J. et al.,
2011; Wei et al., 2012; Parvez et al., 2014). GIC formation can
be performed with chemical exfoliation – by oxidation of natural
graphite powder with strong oxidants or by electrochemical
exfoliation. The most cost-effective technique of exfoliation is
the second one, because of its low equipment requirements and
the lack of strong acids and oxidants. Moreover, it has a limited
impact on the environment that can be an additional advantage
(Yenny et al., 2008; Abdelkader et al., 2015; Yang et al., 2016).
However, the degree of exfoliation should be carefully monitored.
Too high a degree breaks the graphite into small pieces of
graphene, which reduces time efficiency and increases production
costs but also worsens the internal continuity and conductivity
of the 3D graphite network. To meet those requirements,
different strategies for partial electrochemical exfoliation, without
damaging the structural integrity of graphite, were developed
(Song et al., 2014; Song et al., 2015b). Such exfoliation consists
of intense gas evolution followed by ion intercalation. The
upper graphite layers are exfoliated in aqueous solution by
the evolution of gas. Then the ions (e.g., nitrate ions) are
intercalated through the upper layers under positive voltage to
further exfoliate the graphite layers underneath (Song et al.,
2016). Bent graphene layers can also be obtained from graphene

oxide (GO) dispersion by direct drying or spray drying (Wen
et al., 2012; Yan J. et al., 2012; Yoon et al., 2013). Under
these conditions, graphene sheets tend to create a strongly
crumpled surface with a large pore volume, which prevents
their agglomeration. Stabilization of GO sheets is carried out
in an aqueous environment (hydrothermal method), which is
associated with a balance of van der Waals forces between GO
sheets and electrostatic repulsion of hydrophilic oxygen groups
on the edges of these sheets. The self-organization of sheets is
possible when the balance of forces is broken. Chemical doping
with effective atoms is performed to improve charge density
and electrical conductivity. Moreover, this solution introduces
additional pseudocapacitance in the system. The most common
additives are nitrogen (Wu et al., 2012), sulfur (Zhang et al.,
2013a), phosphorus (Some et al., 2012; Zhang et al., 2013a), boron
(Martins et al., 2007; Wu et al., 2012), double Ni-Co hydroxide
(Song et al., 2015a), PANI (Geng et al., 2017; Ye et al., 2017), and
tungsten trioxide (Yu et al., 2015b).

Filtration is another common method for constructing 3D
graphene from GO dispersion. In this situation, graphene appears
macroscopically as thin paper (Dmitriy et al., 2007; Chen
et al., 2008; Yang et al., 2011). The main problem in these
processes is easy aggregation and re-arranging of graphene sheets
into a graphite structure. The reason for this phenomenon
is the interaction between p–p stacks and van der Waals
attraction between their underlying planes. Aggregation hinders
the diffusion of ions into the space of densely packed graphene
sheets. To solve this problem, spacers in the form of CNTs (Fan
et al., 2010; Du et al., 2011; You et al., 2013), metal oxides
(Shao et al., 2010; Xie et al., 2013; Cao et al., 2014b), polymers
(Meng et al., 2013; Zhang et al., 2013d), and others (Gong
et al., 2014) can be implemented. Another solution is the use of
intercalation ions in the graphite (e.g., Li+). Graphene layers fold
under the influence of these ions. After that, ions, e.g., ClO4,−

are introduced. After immersion of such an electrode in water,
hydroxylate and carbonyl groups are integrated on the corrugated
surface of graphene.

3D carbon cloths
Carbon cloth (CC; also called tissue or textile) can play a dual
function. In some cases, it plays the role of a matrix material for
other structures, but it can also exist as an individual electrode
material. However, it requires previous processing due to its low
capacitance (∼ 1 F·g−1) and surface area (∼ 5 m2

·g−1) (Wang
et al., 2015) at the initial production step. Activation involves
chemical oxidation and a two-stage reduction with hydrazine and
ammonia vapors (Liu T. et al., 2015). This leads to increased
fiber roughness and reduced resistance. The capacitance of such
a material increases significantly. Electrochemical peeling can
also be used for CC activation (Song et al., 2018). Carbon
cloth is treated with H2SO4-HNO3 mixture with a positive
bias of 3.0 V (Liu T. et al., 2015). There is also an acid-free
method that includes peeling, oxidation, and reduction steps
(Song et al., 2017). In the first stage, the material is exfoliated
by NO−3 ions. Then CC is oxidized by NO3–GIC hydrolysis.
Reductions of oxygen content are carried out in 0.1% aqueous
hydrate solution. The material after this process has a higher
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conductivity. Such a structure can also buffer the volumetric
deformation of the electrode during charge/discharge processes,
thereby increasing the life of the device. The combination of
matrix fabric with several compounds results in promising
pseudocapacitive composite electrodes. The applied compounds
include PPy (Huang et al., 2015), MnO2 (Feng et al., 2016),
TiN (Lu et al., 2012; Lu et al., 2014a), VN (Lu et al., 2013),
V6O13−x (Zhai et al., 2014), V6O13 (Wang et al., 2012b), and
Fe2O3 (Liu T. et al., 2015).

Carbon nanotubes
The CNTs are porous tubular structures. There are mainly
two strategies for producing 3D CNT based electrodes: using
CNT as “wires” for weaving into 3D architecture (Niu et al.,
2012), and direct deposition of active substances on the CNT
surface (e.g., manganese oxide and PANI) (Kohlmeyer et al.,
2011). Intrinsically existing CNT structures are not a promising
material; however, their combination with pseudocapacitive
materials allows the unique properties of the composite material
to be obtained (Chen et al., 2009, 2011; Zhang et al., 2011;
Chen et al., 2012). Twisted graphene sheets (in the form of
a horn) can also be seen as structures belonging to the CNT
group. These structures are also characterized by high self-
assembly into three-dimensional balls with diameters below
100 nm (Yang C.-M. et al., 2007; Azami et al., 2008; Izadi-
Najafabadi et al., 2011; Zhang et al., 2011; Deshmukh and Shelke,
2013; Jung et al., 2013). Modifications of these materials (in
the form of open cones) demonstrate higher capacitance in the
double-layer compared to classic CNTs (Yang C.-M. et al., 2007).
Nanocorns, in combination with pseudocapacitive materials, also
show high capacitance.

Hierarchical carbons
Hierarchical carbon materials are described as materials with
well-developed micro-, meso-, and macro-porous structure.
Micropores have a significant contribution to energy storage.
Mesopores and macropores are channels that distribute ions
to the micropores in the electrode. This group of materials
includes porous graphite carbons (HPGC) (Wang et al., 2008)
and carbon aerogels (CA; Miller and Dunn, 1999; Li et al.,
2006a,b; Hwang and Hyun, 2007; An et al., 2010; Chien et al.,
2012) obtained from the pyrolysis of polymeric materials. Also,
in the case of these materials, there are examples of composites
with pseudocapacitive materials, such as nitrogen atoms (Li
et al., 2012; Dhawale et al., 2013; Hou et al., 2015; Wei et al.,
2016), MnO2 (Li et al., 2006a; Chien et al., 2012), NiCo2O4
(Chien et al., 2012), SnO2 (Hwang and Hyun, 2007), and PPy
(An et al., 2010). The synthesis process consists of three main
stages (Zhang et al., 2016): (1) mixing the carbon precursor
(e.g., chitosan) and the blowing agent (e.g., K2CO3), (2) gelation
(e.g., with glutaraldehyde), (3) lyophilization, and (4) annealing
(∼ 600◦C). Processes (2) and (3) enhance carbon sheets into
a porous structure. Step (4), in turn, generates a meso- and
microporous structure.

Carbide carbons
Organic carbide (biocarbon) is also a key material for the
production of 3D architecture (Kalpana et al., 2009; Lv et al., 2012;

Biswal et al., 2013; He et al., 2013; Yun et al., 2013; Jin et al., 2014;
Genovese et al., 2015). This type of material is usually obtained
by pyrolysis. Activation is ensured by natural compounds found
in the precursor itself (Biswal et al., 2013). The pyrolysis process
and exfoliation through thermal rinsing allows the amorphous
environment to be removed, and, as a result, the material takes
the form of thin sheets of carbon. Exfoliated biocarbon is also
functionalized by oxygen groups that enables a high capacitance.
Generating 3D structures from natural materials and waste is one
of the most desirable solutions.

Metal oxides
Metal oxides such as MnO2 (Yu et al., 2013; Jin et al., 2014),
NiO (Liang et al., 2012; Xia et al., 2012), Co3O4 (Zhang et al.,
2013c; Guan et al., 2014; Xia et al., 2014a), VOx (Wang et al.,
2012b; Zhai et al., 2014), and Fe2O3 (Lu et al., 2014b) are
materials that might be claimed as promising for hybrid storage
mechanisms. They provide higher specific capacity values than
carbon materials, which further increases the EC energy density
(Lu et al., 2014b). The reason for that is their ability to store
energy via the electrical double-layer formation and charge
accumulation, but also through reversible Faradaic reactions. The
methods of constructing 3D metal oxide electrodes can be briefly
divided into one-stage and multi-stage assembly.

One-stage assembly. The self-organization of three-dimensional
metal oxides is based on crystal growth. Popular methods of
synthesis of metal oxide crystals include:

(1) electrochemical deposition,
(2) the hydrothermal method, and
(3) the solvothermal method (Liang et al., 2012; Xie et al., 2013;

Zhu J. et al., 2013).

The controlled production of 3D architectures is accomplished
by selecting conditions during the growth of metal oxide crystals.
The hydrothermal method allows for adjusting the synthesis of
nanocrystalline oxides by choosing the reaction time, precursors,
temperature, and additives.

Multi-stage assembly. The multi-stage assembly of 3D material
production is based on the production of low-dimensional
skeletal material, followed by the embedding of branched
material. Often ZnO is used as the basis (Sun et al., 2013) because
of the well-known synthesis of this material. In addition, there are
also Co3O4 (Liu et al., 2011), SnO2 (Yan et al., 2011), CuO (Yu
and Thomas, 2014), and MnMoO4 (Mai et al., 2011) skeletons. In
the next stage, a thin layer of branched MnO2 (Liu et al., 2011;
Sun et al., 2013), NiO (Xia et al., 2012), V2O5 (Yan et al., 2011),
NiOH (Guan et al., 2011), Fe2O3 (Wu et al., 2013), and CoMnO4
(Mai et al., 2011) is deposited on the skeleton while maintaining
skeletal morphology (Liu et al., 2012; Xia et al., 2012). Through
the use of synergistic effects from capacitance, the 3D structure
usually provides favorable electrochemical parameters.

Other materials. This group of materials also belongs to
conductive polymers like PANI (Fan et al., 2007; Meng et al.,
2014; Yu et al., 2014), PPy, PEDOT, and poly (styrene
sulfonate) PEDOT-PSS (Cuentas Gallegos and Rincón, 2006).
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FIGURE 7 | Direct ink writing method.

The 3D material is produced by the self-assembly of small-
sized nanostructures (Cuentas Gallegos and Rincón, 2006; Yu
et al., 2014). Typical preparation methods are mainly divided
into electrochemical polymerization (Fan et al., 2007; Meng
et al., 2014; Yu et al., 2014) and direct chemical polymerization
(Cuentas Gallegos and Rincón, 2006; Antiohos et al., 2011).
Polymer electrodes are characterized by their high extensibility
and very low capacitance decrease in repeated bending, and
there are also premises on the materials based on nitrides (Lu
et al., 2012; Balogun et al., 2015; Yu et al., 2015a), sulfides
(Xia et al., 2014b; Xiao et al., 2014), and metal selenides
(Wang et al., 2013b).

Direct Ink Writing
This method allows the highest degree of control of the porous
structure to be formed. 3D printing techniques, such as direct ink
writing (DIW), are becoming powerful material engineering tools
(Ambrosi and Pumera, 2016). In this case, the moving nozzle
forming the material is regulated by computer software based
on a previously planned computer-generated project (Lewis,
2006). The extruded material, in the form of a liquid or semi-
liquid, creates 3D architecture layer by layer. Requirements
for DIW inks are their continuity and resistance to collapse,
expansion, and sagging. To meet these requirements, the printing
materials must be shear thinned fluids: the viscosity of the fluid
should drastically decrease under shear and recover quickly after
removing the force. The surface area, electrical conductivity,
and capacitance are controlled by the proportion of individual
components of such an ink. An example of DIW is a material
based on graphene aerogel (Zhu et al., 2016). The ink contains
graphene oxide [a graphene aerogel precursor (Worsley et al.,
2010)], graphene nanoplates (electrically conductive additive),
resorcinol-formaldehyde resin (gelation catalyst), and fumed
silica (they serve as both a porogen and a viscosity enhancer)
(Figure 7). The print consists of alternately applied aerogel
gird structures.

FUTURE PERSPECTIVES

Thousands of solutions have still not allowed us to construct
the perfect energy storage device that provides both high power

and energy density. Looking ahead, there are still challenges to
be solved. In particular, 3D carbons and their composites have
great application potential. These structures can be successfully
implemented in energy storage devices as a new generation
of high-power electrodes at high mass loading, breaking the
energy and power limits of recent systems. However, these
technologies are not versatile, and, above all, they suffer from
complicated manufacturing processes and quite often very high
prices. Further work is needed to understand their chemistry and
charge storage mechanisms.

It is also necessary to improve the electrical conductivity
of these materials. Separating ion transport and accumulation
from electrons in different phases of the composite could offer
a unique interfacial storage mechanism, which would dominate
the internal limitations of traditional electrode materials. For
electrode materials – their flexibility plays a significant role.
This property not only allows for using these materials in
devices subjected to bending but also extends their lifetime.
Repeated charge and discharge processes result in volumetric
changes of the electrodes. In the case of traditional electrode
materials, the performance of such a device decreases over
time as a result of micro-cracks arising and an increase in
the resistance to charge transfer at the electrode/electrolyte
interface. 3D structures significantly limit this adverse effect.
Porous 3D conductive scaffoldings offer interpenetrating electron
and ion transport paths that ensure very efficient charge
delivery to and from electrodes. These transport routes are
necessary to translate the extraordinary performance achieved
through nanoscale materials into macroscopic electrodes. The
ability to increase the mass loading of active materials, without
compromising charge (energy) storage efficiency, is required
not only to capture the benefits of a new generation of high-
performance electrode materials in practice but also contributes
to crossing the border of traditional electrode materials by
reducing the dead volume of the electrode or the number of
passive materials. These improvements can increase the overall
energy and power density.

Materials Morphology
Template methods allow us to control the morphology of the
pores in the final structure because the electrodes inherit the
macroscopic shape of the template. However, these techniques
might be ineffective at generating large scale and well-ordered
micro- and mesoporous structures that have a much more
pronounced effect on capacitive performance than macropores.
The solutions proposed to solve this problem relate to
the combination of chemical activation on hard matrices.
Micro- and meso-structures generated by activation, together
with macropores formation by removing the matrix, create
hierarchical porous structures that can increase the surface area
available for ions, while facilitating fast ions diffusion. Another
more straightforward solution is to use templates with pore sizes
in the range of mesopores and micropores. Besides, the use of
interactions (e.g., electrostatic attraction, complexation) between
the matrix and the deposited material would be crucial in the
implementation of a uniform meso- and microporous dispersion.
However, the thickness of the carbon film on the matrix should
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be taken into account. If the coated carbon material is too thin,
structural integrity may not be maintained during the matrix
removal process.

Like the matrix technique, the DIW technique works in the
engineering of size and distribution of macropores but shows
little efficiency in the case of meso- and micropores. Improving
print resolution through the joint efforts of industry and the
academic community is desirable to transform DIW into a more
efficient electrode production tool. Besides, the ink must be varied
by incorporating more electrochemically active materials. For
example, converting biomass precursors used in the template-
free method into print inks could be a promising direction for
future research.

Production Conditions
In addition to the morphology itself, controlling the conditions of
these materials’ production plays an important role. For example,
the degree of exfoliation should be strictly controlled because it
is an essential parameter for structural integrity as well as for
electrochemical performance. Currently, the control of the degree
of exfoliation is still insufficient. There is no effective approach to
the controlled conversion of entire loose structures into porous,
connected 3D networks. Potential in this area is derived from
two-stage exfoliation, which is a combination of severe and
then mild exfoliation. The first stage is designed to reveal the
internal space through deep exfoliation and the second stage,
in turn, can further fine-tune the degree of exfoliation without
destroying the monolithic 3D network. However, this technology
is not fully understood and requires further research. It has to
be mentioned here that 3D architectures usually demonstrate
high (or at least satisfactory) gravimetric capacitance values.
However, their porosity makes the volumetric capacitance rather
moderate. This might be another aspect that requires further
development, as for portable electronics the volume required
for an energy storage system is quite often very limited. It
also raises the question of the right performance metrics to
be reported that allows for fair comparison between materials
(Balducci et al., 2017). In our opinion, both characteristics should
be presented – or at least the data that allows to calculate it
should be provided.

Moreover, very sophisticated 3D structures might be
destroyed during electrode material preparation; hence, the
future of this group is foreseen for self-assembled structures and
techniques that produce the electrodes “ready-to-use,” similar to
carbon monoliths or CCs. This seems to be the only way to save
the 3D architecture in the final electrode material.

Nowadays, organic materials have become a fashionable trend.
In addition to the limited or complete absence of negative
effects on the environment, electrode materials based on them
are characterized by a simple production scheme. However, the
unpredictable behavior of structural evolution during pyrolysis
under various conditions (time, temperature, heating speed, etc.)
justifies the difficulty of controlling the size of the pores, their
distribution, and capacitance. That is why it is so important to
know the mechanistic evolution of the structure during pyrolysis
under given annealing conditions, to improve the controllability
of this method. An indispensable element is also the repeatability

of obtaining 3D material. The composition of the biomass
precursors of subsequent batches will always vary, which is
related to their origin, time, and processing technique. It imposes
the need to modify the conditions of biomass processing into the
final electrode product.

Research Techniques
To ensure the continuous development of electrode materials,
it is also necessary to provide various research techniques,
including primarily high-resolution TEM in situ, atomic
force microscopy in situ, X-ray spectroscopy in situ, NMR
in situ spectroscopy and cryo-electron and transmission
microscopy. Consequently, it will make it possible to visualize
electrochemical processes in real-time and will finally allow
for the electrochemical mechanisms to be described in detail.
This can help to formulate guiding principles for material
development and electrode design.

Safety
Every year, energy-related devices are increasingly subjected to
safety regulations. When the energy is released accidentally, in
an uncontrolled and cascading way, it results in temperature
rises and disastrous consequences. Interest should be focused
on developing compatible electrolytes and separators with high
thermal stability, fully compatible with the proposed structures
and compounds, which can further prevent overheating, internal
short circuits, fires or explosions. In the research world, the cell
and case design are very often neglected. However, when one
thinks about system commercialization, it is necessary to develop
new solutions strictly designed for the “heart” of the device
(electrodes, electrolyte). When designing commercial, poorly
understood 3D electrode structures, all inconveniences should
be taken into account from the very beginning, to prevent them
from hampering cell construction and from being hazardous both
to the user and the environment.

THEORETICAL CONSIDERATIONS

The theoretical considerations supported by molecular
simulations are also an indispensable element. They play
an irreplaceable role in understanding the mechanisms of charge
storage and the synthesis-structure-property relationship
associated with 3D electrodes. The theory can support
experiments and create a basis for further studies. An optimally
planned experimental route reduces both research time and costs.

SUMMARY

In this article, recent progress in the use of 3D carbon
nanostructures as electrode materials for advanced capacitor
devices has been compiled. The review begins with a
comprehensive discussion of common electrode materials used
in energy storage devices and ends with an updated review and
division of carbon-based 3D architectures. Particular attention
was paid to clarifying the definition of 3D materials and errors

Frontiers in Energy Research | www.frontiersin.org 13 September 2020 | Volume 8 | Article 139

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/
https://www.frontiersin.org/journals/energy-research#articles


fenrg-08-00139 September 1, 2020 Time: 19:20 # 14

Galek et al. 3D Architectures for Electrochemical Capacitors

in the use of this definition in the literature. The basic
division of these structures has been done based on the
technology of their manufacture. This review summarizes three
basic groups: materials created based on matrices, matrix-
less materials, and materials produced using 3D printing.
Due to the structural interconnection of carbon-based 3D
nanostructures, they not only create hierarchical porous channels
but also have a higher electrical conductivity and mechanical
stability than commonly used materials. A rational combination
of connected meso- and micropores in electrode materials
significantly improves electrochemical parameters. Significant
progress has been made so far, but a full understanding of the
relationship between 3D carbon nanostructures and improved
electrochemical performance is still unclear. There is great
potential in the design and synthesis of new 3D materials for
advanced ECs with high energy and power density as well as a
long life. The road for creating the ideal energy storage device is

still very long, but the reasonable development of the proposed
structures could bring the goal a bit closer.
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