
ORIGINAL RESEARCH
published: 07 July 2020

doi: 10.3389/fenrg.2020.00124

Frontiers in Energy Research | www.frontiersin.org 1 July 2020 | Volume 8 | Article 124

Edited by:

Jun Wang,

University of Wisconsin-Madison,

United States

Reviewed by:

Kees Vuik,

Delft University of

Technology, Netherlands

Jiankai Yu,

Massachusetts Institute of

Technology, United States

*Correspondence:

Qian Zhang

qianzhang@hrbeu.edu.cn

Specialty section:

This article was submitted to

Nuclear Energy,

a section of the journal

Frontiers in Energy Research

Received: 22 November 2019

Accepted: 25 May 2020

Published: 07 July 2020

Citation:

Song P, Zhang Q, Liang L, Zhang Z

and Zhao Q (2020) GPU Based

Two-Level CMFD Accelerating

Two-Dimensional MOC Neutron

Transport Calculation.

Front. Energy Res. 8:124.

doi: 10.3389/fenrg.2020.00124

GPU Based Two-Level CMFD
Accelerating Two-Dimensional MOC
Neutron Transport Calculation
Peitao Song, Qian Zhang*, Liang Liang, Zhijian Zhang and Qiang Zhao

Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology,

Harbin Engineering University, Harbin, China

The Graphics Processing Units (GPUs) are increasingly becoming the primary

computational platform in the scientific fields, due to its cost-effectiveness and massively

parallel processing capability. On the other hand, the coarse mesh finite difference

(CMFD) method has been one of the most popular techniques to accelerate the neutron

transport calculation. The GPU is employed into the method of characteristics (MOC)

accelerated by two-level CMFD to solve the neutron transport equation. In this work, the

Jacobi method, the successive over-relaxation (SOR) method with red-black ordering,

and the preconditioned generalized minimum residual (PGMRES) method are applied

to solve the linear system under the framework of CMFD. The performance of these

linear system solvers is characterized on both CPU (Central Processing Unit) and

GPU. The two-dimensional (2-D) C5G7 benchmark problem and an extended mock

quarter-core problem are tested to verify the accuracy and efficiency of the algorithm

with double precision, as well as the feasibility of massive parallelization. Numerical

results demonstrate that the desired accuracy is maintained. Moreover, the results show

that the few-group CMFD acceleration is effective to accelerate the multi-group CMFD

calculation. The PGMRES method shows remarkable convergence characteristics

compared to the Jacobi and the SOR methods. However, the SOR method shows

better performance on GPU for solving the linear system of CMFD calculation, which

reaches about 2,400x speedup on GPU with two-level CMFD acceleration compared to

the CPU-based MOC calculation.

Keywords: MOC, GPU, CUDA, CMFD acceleration, PGMRES

INTRODUCTION

Significant advances in high-performance computing (HPC) systems enable the computational
feasibility of high-fidelity, three-dimensional (3-D) whole-core neutron transport calculation.
Several applications have been developed and deployed on theHPC systems based on themethod of
characteristics (MOC) (Askew, 1972). These applications employ the MOC as their routine 2-D or
3-D neutron transport method for practical whole-core simulations. The MOC code nTRACER
(Jung et al., 2013) was developed as direct whole-core simulator by Seoul National University.
Meanwhile, the University of Michigan developed the MPACT code (Kochunas et al., 2013) to
perform the 3-D neutron simulation. And then followed by OpenMOC (Boyd et al., 2014) and
NECP-X (Chen et al., 2018). However, many researches show that the MOC suffers from the slow

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2020.00124
http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2020.00124&domain=pdf&date_stamp=2020-07-07
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://creativecommons.org/licenses/by/4.0/
mailto:qianzhang@hrbeu.edu.cn
https://doi.org/10.3389/fenrg.2020.00124
https://www.frontiersin.org/articles/10.3389/fenrg.2020.00124/full
http://loop.frontiersin.org/people/854435/overview
http://loop.frontiersin.org/people/669908/overview
http://loop.frontiersin.org/people/906669/overview
http://loop.frontiersin.org/people/576377/overview
http://loop.frontiersin.org/people/925798/overview

Song et al. GPU Accelerated Two-Level CMFD

convergence rate especially for the large heterogeneous
whole-core simulation. Hence, various numerical acceleration
techniques and parallel algorithms have been employed to
accelerate the MOC calculation.

Considerable research has been performed to accelerate the
convergence of MOC neutron transport calculation. The non-
linear acceleration technique is appropriate when considering
that the steady-state problem of interest for a reactor is an
eigenvalue problem. The coarse mesh finite difference (CMFD)
method (Smith, 1984), has been widely used with pronounced
success for reactor analysis for the last several decades. As a
low-order acceleration scheme, CMFD solves the diffusion-like
equation on a coarse mesh and it is very effective at accelerating
the MOC calculation (Liu et al., 2011; Kochunas et al.,
2013). However, CMFD can introduce numerical instabilities
in optically thick regions which results in a degradation in
performance or even a failure to convergence. As a result,
several specific techniques such as the partial-current CMFD
(pCMFD) method (Cho et al., 2003), the odCMFD method
(Zhu et al., 2016) and lpCMFD method (Wang and Xiao, 2018)
have been studied for stabilizing CMFD acceleration of neutron
transport problems.

Moreover, massively parallel computing has been applied
successfully to whole-core analysis based on the HPC systems
which deploys CPU as their computational units (Kochunas et al.,
2013; Godfrey et al., 2016). However, the cost of high-fidelity
whole-core simulation is still unacceptable, even the large scale,
parallel computing hardware is used (Kochunas et al., 2015; Ryu
et al., 2015). Recently, CPUs/GPUs heterogeneous computing
systems have increasingly come to the forefront of state-of-
the-art supercomputers. As reported by the top supercomputer
rankings in June 2019, 122 heterogeneous systems equips the
NVIDIA GPUs are their main computing resources (TOP500
official site, 2019).

Massively parallel architecture of GPUs allows more powerful,
more energy-efficient and higher throughput than CPUs.
Therefore, the inclusion of GPU and heterogeneous computing
in the neutron transport calculation is increasingly explored.
Boyd et al. (2013) and Han et al. (2014) developed the GPU-
accelerated 2-D MOC code which shows that the GPU is
suitable to accelerate the MOC neutron transport calculation.
Also Tramm et al. (2016) implemented a formulation of 3-D
MOC neutron transport simulation. In our former research, a
GPU-accelerated 2-D MOC parallel algorithm was implemented
and the performance of the algorithm is investigated by a
performance analysis model (Song et al., 2019). Meanwhile,
efforts have been focused on implementing the MOC neutron
transport calculation on multi-GPUs. The ray parallel scheme
was introduced into the 3-D MOC simulation with intra-node
multi-GPUs parallelization by Zhang et al. (2013). A CPU-
GPU hybrid parallel MOC neutron transport calculation was
implemented with a dynamic workload assignment (Liang et al.,
2020; Song et al., 2020).

Since the feasibility of GPU acceleration of MOC calculation
had been explored, the GPU-accelerated CMFD calculation
is required to keep up with the enhanced performance of
GPU-based MOC. Several researches has been conducted to

accelerate the CMFD calculation on GPU. Kang and Joo, 2018)
implemented the GPU-based preconditioned BiConjugate
Gradient Stabilized solver (pBiCGSTAB) in nTRACER.
Furthermore, the performance of several linear system solvers on
GPU under the CMFD framework has been studied based on the
nTRACER code (Choi et al., 2018). Since the core work of CMFD
calculation is solving the linear system which is conducted by
the CMFD equation, the researched and experience of solving
linear systems on GPU can be used as reference to deploy the
CMFD calculation on GPU. Li and Saad (2012) developed the
high-performance iterative linear solvers on GPU. They speeded
up the sparse matrix-vector product (SpMV) operations and
discussed the suitable preconditioning methods. Jong et al.
(2017) presented the GPU-accelerated RRB-solver, which is a
PCG-type solver based on the Repeated Red-Black (RRB)method
and the incomplete Cholesky factorization. And it shown good
performance on GPU for solving 5-/9-point stencils problems.

In this work, for the solution of the large sparse linear system
involved in the CMFD formulation, the performance of the
Jacobi method, the successive over-relaxation (SOR)method, and
the preconditioned generalized minimum residual (PGMRES)
method are implemented on GPU. Especially, the numerical
performance of these linear system solvers on both CPU and
GPU under the CMFD framework is compared. Afterward, the
effectiveness of the CMFD is examined.

The rest of the paper is organized as follows. Section
Background gives the required background about the MOC and
the CMFD framework. Then the parallelization of MOC and
several liner system solvers on GPU are introduced in section
Implementation on GPU. Section Numerical resultsshows the
numerical tests and related analysis. Then the conclusions and
discussions are presented in section Conclusion.

BACKGROUND

Method of Characteristics (MOC)
The method of characteristics is a general mathematical
technique for solving the partial differential equations. The
characteristic form of the multi-group neutron transport
equation in steady-state is given by Equation (1):

dϕg(s)

ds
+ 6t,g (s) ϕg (s) = Qg(s) (1)

where s is the coordinate which represents both the reference
position and the flight direction of the neutron, ϕg(s), 6t,g(s)
represent the angular neutron flux, and total cross-section,
respectively. Qg(s) is the source term. And g represents the index
of energy group.

With the isotropic scattering approximation and the flat
source region approximation, the source term Qg(s) includes the
fission and scattering sources and it can be expressed in terms of
scalar neutron flux φg :

Qg (s) =
1

4π
[
χg

keff

∑

g
′ ν6f ,g

′ (s) φg
′ (s) +

∑

g
′ 6s,g

′
→g (s) φg

′ (s)]

(2)

Frontiers in Energy Research | www.frontiersin.org 2 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

6 denotes the cross-section, and the subscript f and
s represent different reaction types, which are fission and
scattering, respectively. χg is the normalized fission spectrum,
and keff represents the effective neutron multiplication factor or
eigenvalue of the system.

Equation (1) can be integrated along the characteristic
line within a flat source region. And the angular flux along
the characteristic line can be expressed as Equation (3). The
average angular flux along a specific segment is calculated by
Equation (4).

ϕs
out = ϕs

ine
−6t l

s
+

Q

6t
(1− e−6t l

s
) (3)

ϕs =
Q

6t
+

ϕs
in − ϕs

out

6t ls
+

Q

6t
(4)

where ϕs
in and ϕs

out are the incoming and outgoing angular
neutron flux of segment, respectively. ϕs represents the average
angular neutron flux, and ls is the length of current segment along
s. The subscript g is omitted for simplicity in Equation (3) and
Equation (4).

For a given direction, a set of characteristic rays must be
tracked through a discretized spatial domain and the transport
sweep is performed along with those rays during the calculation.
Then the scalar flux is integrated over discretized angles, as
expressed in Equation (5).

φ =
∑

pωp

∑

s∈n ϕslsdp
∑

s∈n l
sdp

(5)

where the quadrature weights ωp are introduced for each of the
quadrature points �p. d

p is the ray spacing in �p direction.
In order to obtain the scalar flux distribution over the space

and all energy groups, an iteration scheme is applied to solve
the source in Equation (2) and finally the scalar flux in Equation
(5). The quadrature proposed by Yamamoto et al. (2007) is used
for the polar angles and weights by default. Another well-known
optimization of MOC calculation is to tabulate the exponential
function or more specifically, 1 − e−6t l

s
, which is actually time-

consuming in Equation (3). For the evaluation of the exponential
function, the table with linear interpolation is used in this work.

Two-Level CMFD Formulation
The MOC provides a framework for solving the neutron
transport equation in heterogeneous geometries. However,
challenges arise when whole-core problems are encountered.
To reduce this computational burden, numerous acceleration
methods are developed. The coarsemesh finite differencemethod
(CMFD) is a popular method for accelerating the neutron
transport calculation.

Multi-Group CMFD Formulation (MG CMFD)
CMFD defines a diffusion equation on a coarse mesh with a
correction to the diffusion coefficient that preserves the current
between the cells from the transport solution. The neutron

balance equation on coarse-mesh is derived as:

1

Vi

∑

is A
is
i J

G
is,i + 6G

t,iφ
G
i =

∑

G′ 6G′→G
s,i φG′

i +
χG

keff

∑

G′ ν6G′

f ,iφ
G′

i

(6)

where i is the index of the coarse-mesh cell, is is the index of
the surface of cell i, G represents the CMFD group index. JGis,i
represents the surface-averaged net current across the surface is.
Ais
i is the area of surface is and Vi is the volume of cell i, φG

i is
the cell-averaged scalar flux on the coarse mesh. And the coarse-
mesh cross-sections are generated by energy-condensation and
area-averaging from the MOC fine-mesh cross-sections. The
homogenized cross-section for cell i is

6G
x,i =

∑

g ∈ G
r ∈ i

6
g
x,rφ

g
rVr

∑

g ∈ G
r ∈ i

φ
g
rVr

(7)

In order to conserve the neutron balance between the CMFD
and MOC problems, a non-linear diffusion coefficient term is
introduced to correct the difference between the inter-cell current
calculated by the transport solution and approximated by the
Fick’s Law. The net current across the surface is is expressed as:

JGis,i = −D̂G
is,i

(

φG
i+1−φG

i

)

− D̃G
is,i

(

φG
i+1+φG

i

)

(8)

where is is the surface between cell i and cell i+1. JGis,i is the actual
net current produced from the MOC solution. The parameter
D̂G
is,i is the coupling coefficient determined by the ordinary finite

difference method and expressed in Equation (9-a), and D̃G
is,i is

the non-linear diffusion coefficient correction factor as shown in
Equation (9-b)

D̂G
is,i =

2DG
i D

G
i+1

DG
i h

i+1
is + DG

i+1h
i
is

(9a)

D̃G
is,i =

−D̂G
is,i

(

φG
i+1−φG

i

)

− JGis,i
(

φG
i+1+φG

i

) (9b)

where DG
i is the diffusion coefficient of cell i, and hiis is the

thickness of cell i along the surface is.
Going back to Equation (6) and inserting the surface net

current JGis illustrated in Equation (8), the finite difference form
of the CMFD diffusion equation can be condensed down matrix
form to get the generalized eigenvalue problem:

Mφ =
1

keff
χFφ (10)

where M represents neutron migration by diffusion and
scattering. F represents the neutron generation by fission. The
CMFD equations in 2-D form a five-stripe sparse linear system
which is usually solved using the iterative methods.

Frontiers in Energy Research | www.frontiersin.org 3 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

Then the multi-group CMFD can be solved numerically.
Upon convergence of the CMFD eigenvalue problem, a
prolongation is performed by scaling the scalar flux of MOC fine
mesh and the angular fluxes at the core boundaries with the ratio
of the converged scalar flux φG

i,cmfd
to the scalar flux φG

i, moc which

is generated from the MOC solution:

φ
g
r = φ

g
r ×

φG
i,cmfd

φG
i, moc

, ∀ r ∈ i (11a)

ϕ
g

l
= ϕ

g

l
×

φG
i,cmfd

φG
i, moc

, ∀ l ∈ surface of i (11b)

where ϕ
g

l
is the boundary angular flux of track l.

Two-Level CMFD
For large scale problems, the multi-group CMFD is still time-
consuming. As a result, the few-group based CMFD (FG CMFD)
formulation has been successfully applied to accelerate the multi-
group CMFD calculation (Cho et al., 2002; Joo et al., 2004).
Hence, the multi-group MOC calculation can be accelerated
by the two-level CMFD technique. The multi-group CMFD
(MG CMFD) calculation is directly accelerated by the few-group
CMFD (FG CMFD) calculation. The FG CMFD is the group-
condensed CMFD which has the same coarse mesh geometry as
MG CMFD.

The FG CMFD has a similar formulation as illustrated in
Equation (6) and the few-group constants are simply calculated
using multi-group constants and multi-group spectra as:

6FG
x,i =

∑

G∈FG 6G
x,iφ

G
i

∑

G∈FG φG
i

(12)

where FG is the energy group index in the FG CMFD equation.
In order to obtain the non-linear diffusion coefficient

correction factor, condensed few-group surface currents are
calculated as:

JFGis,i =
∑

G∈FGJ
G
is,i (13)

Here, the multi-group currents are calculated using the MG
CMFD solution and Equation (8). Then the coupling coefficient
and the nonlinear diffusion coefficient correction factor of FG
CMFD can be calculated by Equation (9) in which the multi-
group quantities are replaced by that of few-group.

With the group-condensed constants, FG CMFD calculation
which is also an eigenvalue problem as shown in Equation
(10) can be performed. Once the desired FG CMFD solution
is obtained, an additional update is needed for the MG CMFD
scalar flux before the subsequent MG CMFD calculation. The
multi-group scalar flux prolongation can be achieved simply by
multiplying the ratio of the converged few-group scalar flux
φFG
i,cmfd

to the few-group scalar flux φMG→FG
i,cmfd

generated by theMG

CMFD solution:

φG
i = φG

i ×
φFG
i,cmfd

φMG→FG
i,cmfd

(14)

Iteration Algorithm
The iteration algorithm of MOC neutron transport calculation
with two-level CMFD acceleration is illustrated in Figure 1.
First, the homogenized multi-group constants for all cells and
all the cell surfaces are calculated. The few-group constants
are determined from the multi-group constants. The CMFD
calculation begins from the few-group calculation and moves
to the multi-group calculation if FG CMFD converges or the
number of iterationsmeets the user setting. Then themulti-group
scalar fluxes are updated by the converged few-group scalar flux,
as shown in Equation (14). The multi-group iteration continues
until the MG CMFD converges or the maximum number of
iterations is reached. After the multi-group CMFD calculation is
completed, the scalar fluxes of MOC fine mesh and the angular
fluxes at the domain boundaries need to be scaled using the MG
CMFD solution. Then the MOC neutron transport calculation
is performed after the evaluation of the total source. When
the MOC neutron transport calculation is finished, the overall
convergence is checked using the keff and the MOC scalar flux.

IMPLEMENTATION ON GPU

MOC Parallelization on GPU
The GPU is designed to perform the compute-intensive and
highly parallel computations. Hence, the basic idea of GPU
programming is transferring the compute-intensive parts of
the application to the GPU, and the sophisticated flow control
parts still remain at CPU. For the MOC neutron transport
calculation, there is an enormous amount of parallel rays tracing
across the computational domain. These relatively independent
rays quite suitable for massive parallelization. Therefore, the
ray parallelization is involved to implement the MOC neutron
transport calculation on GPU.

Figure 2 illustrates the flowchart of the GPU-based MOC
neutron transport calculation. The initialization which includes
the preparation of cross-section and track information is
performed on the CPU. Then those information is copied to
the GPU global memory. Then the total source which including
the fission source and scattering source is evaluated on GPU.
And each of the GPU threads handles the source evaluation of
one energy group for one fine-mesh. After the source evaluation,
the transport sweep is performed. In order to reach the optimal
performance on GPU, our former research (Song et al., 2019)
recommends to deploy the loop over rays and the loop over
energy groups onto the GPU threads, as illustrated in Figure 2.

CMFD Parallelization on GPU
As shown in Figure 1, the group constants condensation, the
linear system construction and linear system solving are three
main parts which can be parallelized on GPU for CMFD
calculation. It is quite direct to parallelize the group constants
condensation, the evaluation of group constants of coarse mesh
i and CMFD group G is assigned to a GPU thread. Hence the
groups constants for all coarse meshes and all CMFD groups are
evaluated simultaneously and independently. As for the linear
systemwhich is constructed explicitly, the generation of elements

Frontiers in Energy Research | www.frontiersin.org 4 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

FIGURE 1 | The solution procedure for two-level CMFD accelerated MOC.

FIGURE 2 | Flowchart of the MOC neutron transport calculation on GPU.

Frontiers in Energy Research | www.frontiersin.org 5 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

in each row of matrix M and vector F is assigned to each
GPU thread.

The third main part is to solve the sparse linear system, as
shown in Equation (10). And the power iteration is used in
this study for obtaining the eigenvalue and its corresponding
normalized eigenvectors. However, for the problems we are
primarily interested in, solving the linear system directly is
prohibitively costly, since the directed inversion of matrix M is
expensive. Hence, it is replaced by solving the linear system using
the iterative method:

Mφ(n) =
1

keff
(n−1)

χFφ(n−1) (15)

where n is the power iteration index.
The goal of a linear system solver is to solve for x in the

linear system:

Ax=b (16)

Here, x,b ∈ R
n, A ∈ R

n× n.
In this study, we applied three methods to solve the linear

system iteratively: the Jacobi method, the successive over-
relaxation (SOR) method, and the preconditioned generalized
minimum residual (PGMRES)method. These three linear system
solvers are implemented on both CPU and GPU, and the
performance of these solvers are compared and analyzed.

Jacobi Method
For the linear system of equations described by Equation (16),
the diagonal elements, aii, of A are all non-zero. It starts with the
decomposition of matrix A.

A=L+D+U (17)

where, D=diag (a11, · · ·, ann) is the diagonal matrix containing
the diagonal elements of A, L is the strict lower part, and U is the
strict upper part.

Then the Jacobi method can be organized as following
matrix form:

x(k+1)=GJx
(k)+gJ ,GJ=−D−1 (L+U) , gJ=D−1b (18)

where the superscript indicates the iteration number.
The parallelization of the Jacobi method on GPU is

straightforward because the Jacobi scheme is naturally
parallelizable. As a result, n GPU threads are invoked and
each of the threads performs the calculation of one x in vector
x, namely:

x
(k+1)
i =

1

aii

(

−
∑

j 6=iaijx
(k)
j + bi

)

, i = 1, · · ·, n (19)

Successive Over-relaxation (SOR)
The successive over-relaxation (SOR) method is one of the well-
known iterative methods. The SOR formulation can be defined
by introducing the over-relaxation factor ω:

x(k+1)=Gsx
(k)+gs,Gs= (D+ωL)−1 [(1−ω)D− ωU] , gs= (D+ωL)−1 b

(20)

A necessary condition for the SOR method to be convergent is
that 0<ω<2. Choosing ω<1 results in under-relaxation, which
can help stabilize a divergent of this method. Choosing ω > 1
results in over-relaxation, which can accelerate the convergence
in certain situations.

For the parallelization of SOR, a red-black ordering strategy is
used. In Equation (10), the solution estimated at iteration

(

k+ 1
)

of cell i is only depends on the solution of its six immediate
neighbors at iteration

(

k
)

. If all the cells in a computational
domain are colored in a checkerboard-like manner, then, during
the calculation, the red cells only need data from the black cells.
Thus, red-black SOR is a high parallelizable algorithm. At a given
step, half of the cells can be updated simultaneously.

Preconditioned Generalized Minimum Residual

(PGMRES) Method
The preconditioned generalized minimum residual (PGMRES)
method (Saad and Schultz, 1986) is one of the most popular
Krylov methods for solving the non-symmetric linear system.
The basic idea of PGMRES is to produce a n × n Hessenberg
matrix and the corresponding basis V , then the approximate
solution x(n) is found by minimizing the residual norm ‖r‖2 =
∥

∥b− Ax(n)
∥

∥

2
. The methodology and fundamental properties of

PGMRES method can be found in many literatures (Van der
Vorst and Vuik, 1993).

The performance of the GMRES method is usually improved
significantly via preconditioning. A preconditioner M whose
inverse satisfies M−1≈A−1 in some sense should be relatively
inexpensive to apply. The preconditioner is designed to improve
the spectral properties of A, making the system converge
faster. In this study, the left preconditioning technique is
utilized in the GMRES method, which is based on solving the
linear system as M−1Ax=M−1b. A preconditioner applied to
Algorithm 1 would appear in lines 1 and 4. The preconditioner
investigated in this work is the Jacobi preconditioner. The
Jacobi preconditioner is the diagonal matrix which contains the
diagonal elements of the sparse matrix A. The inversion of the
Jacobi preconditioner can be easily performed done with a small
computation burden.

The main computational components in the PGMRES
method are: (1) Sparse matrix-vector product; (2) Vector
operations; (3) Preconditioning operation; (4) Solving the least-
square problem. The implementation of these four parts on GPU
is discussed as follows.

In this study, the sparse matrix A and the preconditioner
M are stored with the compressed sparse row (CSR) format
which is widely used as a general-purpose sparse matrix storage
format. As illustrated in Algorithm 1, the sparse matrix-vector
product (SpMV) is one of the major components which are
highly parallelizable in the PGMRES method. To parallel the
SpMV for a matrix with the CSR format, the multiplication
of one row of the matrix with the vector is simply assigned
to one thread. As a result, the computation of all threads
is independent.

There exist several other GPU-friendly operations in the
PGMRES method, such as the vector addition, dot production
of two vectors, and vector scaling. These procedures can be easily

Frontiers in Energy Research | www.frontiersin.org 6 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

parallelized by assigning the operation of elements of vectors to
the GPU threads. The reduction is involved when calculating the
2-norm of the vector and performing the dot product of two
vectors. The reduction operation is also performed on GPU by
utilizing the shared memory. The parallel reduction is performed
to sum up all partial results which are saved into the shared
memory by the GPU threads.

One important aspect of the PGMRES method is the
preconditioning operation. The incomplete-LU preconditioning
technique is implemented to provide an incomplete factorization
of the coefficient matrix. It requires a solution of lower and upper
triangular linear system in every iteration of PGMRES method.
In order to implement the preconditioning operation, the sparse
triangular solve implemented in the cuSPARSE library (NVIDIA
cu SPARSE Library) is used.

The least-square problem is solved by the QR factorization of
the Hessenberg matrix. Since this procedure is naturally serial, a
series of Givens rotation is performed to solve the least-square
problem on GPU with serial execution.

NUMERICAL RESULTS

The numerical tests were conducted on a workstation with Intel
Core i9-7900X Processor (3.30 GHz, 10-core) and an NVIDIA
GeForce GTX 1080Ti (1.5 GHz, 3584 CUDA cores, 11GB
memory) running 64-bit Linux systems. All tests are performed
with double-precision arithmetic.

Accuracy of the Implementation
The 2-D C5G7 benchmark (Lewis et al., 2003) is usually used
to verify the accuracy of the algorithm. Figures 3A–C illustrate
the assembly and core configuration of this benchmark with
the boundary conditions. The fuel assembly is constructed with
17 by 17 of square pins. And the geometry of fuel pin is
shown in Figure 3B. Seven-groupmacroscopic cross-sections are
specified. For spatial discretization, the whole computing domain
is divided into 51 by 51 pins. Each pin is subdivided into 5
radial subdivision and 8 azimuthal divisions, as illustrated in
Figure 3B. All tests are performed with the 0.03 cm ray spacing
and 56 azimuthal angles. Tabuchi-Yamamoto (Yamamoto et al.,
2007) polar quadrature sets are used. The stopping criteria for
convergence are εkeff<10−6 and εflux<10−5.

The computations are performed with and without two-level
CMFD acceleration. Table 1 shows the eigenvalue and power
distribution of the benchmark, along with the reference Monte
Carlo solution. Compared to the reference results, the absolute
difference of eigenvalue is 6 pcm which is under the stochastic
uncertainty of the reference. The power distribution shows
good agreement. And the maximum relative pin power error
is <1.4%. The results demonstrate desired agreement for both
eigenvalue and the power distribution. Moreover, the CMFD
acceleration maintains the desired accuracy compared to the
MOC calculation.

Overall Performance of Two-Level CMFD
and GPU Acceleration
In this section, the overall performance of two-level CMFD
and GPU acceleration is studied. In order to exploit the full

FIGURE 3 | (A) Core configuration for the 2-D C5G7 benchmark problem.

(B) Fuel pin layout. (C) Benchmark fuel pin compositions.

computing power of GPU, a series of cases are performed with
a fictitious quarter-core problem. The quarter core contains 21
UO2 fuel assemblies and 20 MOX fuel assemblies from the
2-D C5G7 benchmark problem. Those assemblies are aligned
in a checkerboard pattern as illustrated in Figure 4. The mesh
division and computing parameters maintain the same as the

Frontiers in Energy Research | www.frontiersin.org 7 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

TABLE 1 | Runtime, Eigenvalue, and Power Distribution Results for 2-D C5G7

Benchmark.

Metric value

Reference MOC MOC with

two-level CMFD

Eigenvalue

keff

(1keff . pcm)

1.18655

± 9.5 pcm

1.18648

−6 pcm

1.18648

−6 pcm

Pin power data

Max. pin power

(relative error)

Min. pin power

(relative error)

2.498

±0.16%

0.232

±0.58%

2.496

0.08%

0.234

1.16%

2.496

0.08%

0.234

1.16%

Assembly power

Inner UO2 Assy

(relative error)

MOX Assy

(relative error)

Outer UO2 Assy

(relative error)

492.8

±0.10%

211.7

±0.18%

139.8

±0.20%

492.4

0.07%

211.8

0.06%

139.8

0.11%

492.4

0.07%

211.8

0.06%

139.8

0.11%

Pin power distribution

MAX error

AVG error

RMS error

MRE error

– – – – – – –

0.32%

0.34%

0.27%

1.38%

0.22%

0.01%

0.17%

1.38%

0.22%

0.01%

0.17%

MAX error, Maximum relative pin power percent error.

AVG error, Average pin power percent error.

RMS error, Root mean square of the pin power percent error distribution.

MRE error, Mean relative pin power percent error.

aforementioned 2-D C5G7 benchmark problem, except the
overall convergence criterion of flux which is set to be 10−4. The
convergence criteria for keff and flux of MG CMFD calculation

are εkeff <5 × 10−7 and εflux<5 × 10−5. And the related

convergence criteria of FG CMFD are εkeff<2.5 × 10−7 and

εflux<2.5× 10−5.

Convergence Performance of Different Linear System

Solvers
In order to characterize the convergence performance of different
linear system solvers, Three cases are executed with MG CMFD
acceleration on GPU. Based on a series of tests, the maximum
number of iterations of MG CMFD and the maximum number
of linear iterations per CMFD calculation are both set to be 30.
The Krylov subspace dimension of the PGMRES solvers is set
to 2. Then Figure 5 illustrates the overall convergence history of
the keff with the Jacobi, SOR, and PGMRES solvers. As shown in
Figure 5, the PGMRES solver shows a better convergence rate.
Moreover, the SOR solver has a medium rate of convergence, and
it needs more iterations to achieve convergence when the Jacobi
solver is involved.

Overall Performance of Two-Level CMFD on GPU
A series of runs are performed to evaluate the overall
performance of two-level CMFD and GPU acceleration. The
sensitivity study has been performed with varied upper limits of
the number of CMFD iterations and the number of linear solver

FIGURE 4 | A mock PWR quarter core.

FIGURE 5 | Convergence history of keff of the different linear system solvers

for the mock quarter-core problem.

iterations. Moreover, the impact of different Krylov subspace
dimensions to the overall performance is also examined and it
is set to 2. After the sensitivity study, the best results for each
execution are listed in Table 2.

From Table 2, the following observations can be made based
on the numerical results:

(1) The GPU shows great performance advantages compared
to the CPU. The comparison of the case (0a) and case (0b)
shows that the GPU-based MOC calculation achieves about
25x speedup compared to the serial CPU-based calculation.
This observation is consistent with the results drawn in our
former research (Song et al., 2019).

(2) The CMFD acceleration can significantly reduce the
number of iterations. For both CPU-based and GPU-based
calculation, about 100x speedup is provided by two-level

Frontiers in Energy Research | www.frontiersin.org 8 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

TABLE 2 | Results of the mock quarter-core problem with or without CMFD and GPU acceleration.

Cases # of

iter.

Overall

runtime (s)

MOC

runtime (s)

CMFD

runtime (s)

of MG

CMFD iter.

of FG

CMFD iter.

Speedup

(0a) CPU_MOC 1640 40035.6 – Ref.

(0b) GPU_MOC 1640 1615.7 – 25

(1a) CPU_MG_Jacobi(a) 12 358.2 306.8 48.7 516 – – – – – – 112

(1b) CPU_MG_SOR 12 344.1 308.8 32.4 356 – – – – – – 116

(1c) CPU_MG_PGMRES 12 361.8 306.6 52.6 250 – – – – – – 111

(1d) CPU_2L_Jacobi(a) 12 329.1 308.2 18.0 178 1,780 122

(1e) CPU_2L_SOR 12 325.9 308.3 14.9 108 916 123

(1f) CPU_2L_PGMRES 12 327.8 306.4 18.6 103 717 122

(2a) GPU_MG_Jacobi 12 21.1 12.2 5.5 720 – – – – – – 1,897

(2b) GPU_MG_SOR 12 21.5 12.5 5.7 600 – – – – – – 1,864

(2c) GPU_MG_PGMRES 12 26.6 12.3 11.0 324 – – – – – – 1,503

(2d) GPU_2L_Jacobi 12 16.9 12.2 1.3 240 3,600 2,376

(2e) GPU_2L_SOR 12 16.7 12.2 1.1 180 1,800 2,402

(2f) GPU_2L_PGMRES 12 18.7 12.3 3.2 120 960 2,141

(a)MG and 2L represent the multi-group and two-level CMFD acceleration, respectively.

CMFD acceleration. Moreover, the GPU acceleration for
CMFD calculation is about 13x [case (1d) vs. case (2d)
and case (1e) vs. case (2e)] for cases using Jacobi solver
and SOR solver. While the GPU acceleration for CMFD
calculation is about 5.8x [case (1f) vs. case (2f)] when
PGMRES solver is used. Compared to the serial CPU-based
MOC calculation (case (0a)], the overall speedup of case (2e)
is contributed by 3 aspects: (1) the speedup provided by
the CMFD acceleration which can significantly reduce the
number of iterations (about 100x), (2) GPU acceleration on
MOC neutron transport calculation (about 25x), (3) GPU
acceleration on CMFD calculation (about 13x). And in case
(2e), the CMFD calculation contributes about 7% of overall
runtime. As a result, over 2,400x [case (0a) vs. case (2e)]
speedup is obtained when the two-level CMFD and GPU
accelerations are applied simultaneously.

(3) Although the Jacobi method has the maximum degree of
parallelism on GPU, a relatively large number of CMFD
iterations is needed because of the poor convergence
performance of the Jacobi method, as illustrated in Figure 5.
However, the SOR method can maintain the desired
parallelism by adopting the red-black ordering strategy. On
the other hand, it also can keep the relative high convergence
rate compared to the Jacobi method, which results in a
reduction in the number of CMFD iterations. Hence, the
SOR-based calculations show better performance than the
Jacobi-based calculations. The number of CMFD iterations
is relatively reduced when the PGMRES solver is involved.
And the overall performance of PGMRES-based calculations
on CPU is comparable to the Jacobi-based and SOR-based
calculations. Nevertheless, the performance degradation of
PGMRES-based calculations is observed on GPU. The
detailed analysis is discussed in the following sections. As a
result, the SOR-based calculations show better performance
compared against other cases with the Jacobi and PGMRES

solver in the same group [such as the comparison of the cases
(1a), (1b), and (1c)].

(4) The FG CMFD is effective to accelerate the CMFD
calculation. Compared to the cases with MG CMFD
calculations, over 50% improvement in 2 L CMFD
calculations is observed by comparing the execution
time of CMFD calculations.

Detailed Execution Time of CMFD
Calculation
The execution time of CMFD calculation is contributed by three
parts, (1) cross-sections generation (xs_gene), (2) linear system
construction (linSys_cons), (3) linear system solving (Ax = b).
Figure 6 shows the execution time of different partitions of
CMFD calculation for the cases listed in Table 2. As shown, for
CPU calculation, the generation of multi-group cross-sections
contributes a considerable part to the overall CMFD calculation,
especially for the two-level CMFD calculation. However, since
the xs_gene procedure is performed with thread parallelization
on GPU, the execution time of xs_gene is significantly reduced to
<0.2 s on GPU. For all cases, the execution time for constructing
the linear system is <0.1 s. Moreover, Figure 6 indicates that the
FG CMFD acceleration can significantly reduce the execution
time of solving the linear system in 2 L CMFD calculation.
When applying the PGMRES method on GPU, the performance
improvement for linear system solving is about 3.7 x which is
relatively small compared to the other two methods. The detailed
performance analysis of the linear solvers will be performed in
future work.

Current work is focused on the 2-D CMFD calculation
on GPU. However, simulation of practical problem is usually
focused on 3-D calculations. The CMFD equations in 2-D
form a five-stripe sparse linear system, while it is a seven-
stripe sparse linear system on the 3-D geometry. Since the
iterative methods applied in this work are general methods for

Frontiers in Energy Research | www.frontiersin.org 9 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

FIGURE 6 | (A) Time break down of CMFD calculations on CPU. (B) Time break down of CMFD calculations on GPU.

solving the CMFD linear systems. Hence, the related linear
system solvers can be directly applied to solve the 3-D CMFD
problems. And the performance is supposed to be consistent
in 3-D cases.

In addition, the large-scale problems usually need to be solved
with parallel strategy such as spatial domain decomposition. The
scalability and efficiency to computing the large-scale problems
with multiple GPUs need to be examined.

As for the further performance optimization, the
MOC calculation contributes the majority of runtime
for the simulation of 2-D neutron transport calculations
on GPU. This observation is supposed to be consistent
in 3-D simulations. Hence, in order to improving the
overall performance, more efforts should be focused on
the optimization of GPU-based MOC calculation in 3-D
situation. In addition, when the spatial domain decomposition
and multiple GPUs are involved, the performance of 3-D
CMFD calculation may be impacted by the communication
between decomposed domains. And it may further impact the
overall performance.

CONCLUSION

In this work, a two-level CMFD acceleration technique was
implemented on both CPU and GPU to accelerate the 2-D MOC
neutron transport calculation. In the two-level CMFD scheme, a
few-group CMFD problem is used as a lower-order accelerator
to the standard pinwise multi-group CMFD problem. Several
linear system solvers, i.e., Jacobi solver, SOR solver with red-
black ordering, and the PGMRES solver, are applied and the
performance was examined under the CMFD framework. The
overall performance of CMFD acceleration on both CPU and
GPU is compared to evaluate the effectiveness of CMFD and
GPU acceleration.

The numerical calculations are performed with 2-D C5G7
benchmark problem and an extended 2-D mock quarter-core
problem and the following conclusions can be drown:

(1) For the 2-D C5G7 benchmark, the difference of eigenvalue
is 6 pcm and the power distribution shows good agreement
compared against the reference solution. The results
of calculations with and without two-level CMFD
acceleration provide desired accuracy in both eigenvalue
and power distribution.

(2) As a linear system solver, the PGMRES solver shows
a better convergence rate with minimum number of
iterations. While the number of iterations of Jacobi solver
is tripled compared to the PGMRES solver at the same
convergence level. And the SOR solver has a medium rate
of convergence.

(3) It appears that SOR is a suitable method for solving the linear
system under the CMFD framework on both CPU and GPU.
For CPU-based CMFD calculation, the PGMRES method
has comparable performance to the SOR method, because
the arithmetic complexity of the PGMRES method can be
counteracted by its remarkable convergence characteristics.
However, since the Jacobi method and SOR method can
reach a relatively high degree of parallelism on GPU,
the performance of these two methods is better than the
PGMRES method. When the two-level CMFD and GPU
accelerations are applied simultaneously, the overall speedup
is contributed by 3 aspects: 1) the CMFD acceleration
which can significantly reduce the number of iterations
(about 100x), 2) GPU acceleration on MOC neutron
transport calculation (about 25x), 3) GPU acceleration
on CMFD calculation (about 13x for SOR method). As
a result, it reaches about 2,400x speedup on GPU with
two-level CMFD acceleration compared to the CPU-based
MOC calculation.

(4) The CMFD calculation contributes about 7% (for cases with
Jacobi and SOR solver) and 17% (for cases with PGMRES
solver) of the overall runtime. The procedure for solving
the linear system contributes to the majority of the runtime
of the CMFD calculation. Moreover, the results show that
the FG CMFD acceleration is effective to accelerate the MG
CMFD execution.

Frontiers in Energy Research | www.frontiersin.org 10 July 2020 | Volume 8 | Article 124

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

This work demonstrates the high potential of the two-level
CMFD technique and GPUs to accelerate the practical
whole-core neutron transport calculation. Based on the
numerical results, GPUs provide a high-performance advantage
for accelerating both MOC and CMFD calculations. Since the
PGMRES method is still preferred in that it can solve various
linear systems with a wide range of numerical properties, more
efforts need to be concentrated on the performance optimization
of the PGMRES method on GPU. Moreover, the main purpose
is to perform the 3-D whole-core MOC neutron transport
simulation on GPU under CMFD framework. Hence, in the
future, more efforts will be focused on the 3-D CMFD calculation
on GPU with the detailed performance analysis. In addition,
the efficiency comparison of different solvers and the study of
the parallelization will be included with practical computational
cases. Furthermore, the scalability to computing the large-scale
problems on large-scale parallel machines also needs to be
examined in the future.

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/supplementary material.

AUTHOR CONTRIBUTIONS

PS, ZZ, and LL contributed to the ideas and designs of this
study. PS implemented the algorithm through programming
and wrote the first draft of the manuscript. ZZ helped to
design and organize the cases for validating the algorithm. LL
helped to perform the numerical analysis and organize the
database. QZhang and QZhao explained the details of linear
algebra used in this work and provided technical support during
programming. All authors helped to revise the manuscript and
approve the submitted version.

FUNDING

This work is supported by the funds provided by the
following sources: Science and Technology on Reactor
System Design Technology Laboratory, Heilongjiang Province
Science Foundation for Youths [QC2018003], Nuclear Power
Technology Innovation Center, Fundamental Research Funds
for the Central Universities [grant number GK2150260178],
the Research on Key Technology of Numerical Reactor
Engineering [J121217001], and the National Key R&D Program
of China [2018YFE0180900].

REFERENCES

Askew, J. R. (1972). A characteristics formulation of the neutron transport

equation in complicated geometries. AEEWM 38:1108.

Boyd, W., Shaner, S., Li, L., Forget, B., and Smith, K. (2014). The OpenMOC

method of characteristics neutral particle transport code. Ann. Nucl. Energy

68, 43–52.

Boyd, W. R., Smith, K., and Forget, B. (2013). “A massively parallel method of

characteristics neutral particle transport code for GPUs,” in Proceedings of the

International conference on Mathematics and Computational Method Applied

To Nuclear Science and Engineering (M&C 2013), (Sun Valley).

Chen, J., Liu, Z., Zhao, C., He, Q., Zu, T., Cao, L., et al. (2018). A new

high-fidelity neutronics code NECP-X. Ann. Nucl. Energy 116, 417–428.

doi: 10.1016/j.anucene.2018.02.049

Cho, J. Y., Joo, H. G., Kim, K. S., and Zee, S. Q. (2002). Cell based

CMFD formulation for acceleration of whole-core method of characteristics

calculations. J. Korean Nucl. Soc. 34, 250–258.

Cho, N., Lee, G. S., and Park, C. J. (2003). Partial current-based CMFD acceleration

of the 2D/1D fusion method for 3D whole-core transport calculations. Trans.

Am. Nucl. Soc. 88:594.

Choi, N., Kang, J., and Joo, H. G. (2018). “Performance comparison of linear

system solvers for CMFD acceleration on GPU architectures,” in Transactions

of the Korean Nuclear Society Spring Meeting (Jeju).

Godfrey, A., Collins, B., Kim, K. S., Lee, R., Powers, J., Salko, R., et al. (2016). VERA

benchmark results for Watts Bar nuclear plant unit 1 cycle 1-12,” in The Physics

Reactor Conference (PHYSOR 2016) (Sun Valley).

Han, Y., Jiang, X., and Wang, D. (2014). CMFD and GPU acceleration on

method of characteristics for hexagonal cores. Nucl. Eng. Des. 280, 210–222.

doi: 10.1016/j.nucengdes.2014.09.038

Jong, M. D., Ploeg, A. V. D., Ditzel, A., and Vulk, K. (2017). Fine-grain parallel

RRB-solver for 5-/9-point stencil problems suitable for GPU-type processors.

Electron Transc Numer Ana. 46, 375–393.

Joo, H. G., Cho, J. Y., Kim, K. S., Lee, C. C., and Zee, S. Q. (2004). “Methods

and performance of a threedimensional whole-core transport code DeCART,”

in Proceedings of the PHYSOR2004 (Chicago).

Jung, Y. S., Shim, C. B., Lim, C. H., and Joo, H. G. (2013). Practical

numerical reactor employing direct whole core neutron transport and

subchannel thermal/hydraulic solvers. Ann. Nucl. Energy 62, 357–374.

doi: 10.1016/j.anucene.2013.06.031

Kang, J., and Joo, H. G. (2018). “GPU-based parallel krylov linear system solver for

CMFD calculation in nTRACER,” in Transactions of the Korean Nuclear Society

Spring Meeting (Jeju).

Kochunas, B., Collins, B., Jabaay, D., Downar, T. J., and Martin, W. R.

(2013). “Overview of development and design of MPACT: Michigan parallel

characteristics transport code,” in International Conference on Mathematics &

Computational Methods Applied To Nuclear Science & Technology (Sun Valley).

Kochunas, B., Collins, B., Jabaay, D., Stimpson, S., Salko, R., Graham, A., et al.

(2015). “VERA core simulator methodology for PWR cycle depletion,” in

Joint International Conference on Mathematics and Computation (M&C),

Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC)

Method (Nashville).

Lewis, E. E., Palmiotti, G., Taiwo, T. A., Blomquist, R. N., Smith, M. A.,

and Tsoulfanidis, N. (2003). Benchmark Specifications for Deterministic

MOX Fuel Assembly Transport Calculations without Spatial Homogenization.

(Organization for Economic Co-operation and Development’s Nuclear

Energy Agency).

Li, R., and Saad, Y. (2012). GPU-accelerated preconditioned iterative linear solvers.

J Supercomput. 63, 443–466. doi: 10.1007/s11227-012-0825-3

Liang, L., Zhang, Q., Song, P., Zhang, Z., Zhao, Q., Wu, H., et al. (2020).

Overlapping communication and computation of GPU/CPU heterogeneous

parallel spatial domain decomposition MOC method. Ann. Nucl. Energy

135:106988. doi: 10.1016/j.anucene.2019.106988

Liu, Z., Wu, H., Chen, Q., Cao, L., and Li, Y. (2011). A new three-

dimensional method of characteristics for the neutron transport

calculation. Ann. Nucl. Energy 38, 447–454. doi: 10.1016/j.anucene.2010.

09.021

NVIDIA cu SPARSE Library (2019). Avaliable online at: https://docs.nvidia.com/

cuda/cusparse/index.html (accessed May 01, 2020).

Ryu, M., Jung, Y. S., Cho, H. H., and Joo, H. G. (2015). Solution of the BEAVRS

benchmark using the nTRACER direct whole core calculation code. J Nuclear

Sci Technol. 52, 961–969. doi: 10.1080/00223131.2015.1038664

Saad, Y., and Schultz, M. H. (1986). GMRES: A generalized minimal residual

algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput.

7, 856–869. doi: 10.1137/0907058

Frontiers in Energy Research | www.frontiersin.org 11 July 2020 | Volume 8 | Article 124

https://doi.org/10.1016/j.anucene.2018.02.049
https://doi.org/10.1016/j.nucengdes.2014.09.038
https://doi.org/10.1016/j.anucene.2013.06.031
https://doi.org/10.1007/s11227-012-0825-3
https://doi.org/10.1016/j.anucene.2019.106988
https://doi.org/10.1016/j.anucene.2010.09.021
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://doi.org/10.1080/00223131.2015.1038664
https://doi.org/10.1137/0907058
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Song et al. GPU Accelerated Two-Level CMFD

Smith, K. S. (1984). Nodal method storage reduction by non-linear iteration.

Transac. Am. Nuclear Soc. 44:265.

Song, P., Zhang, Z., Liang, L., Zhang, Q., and Zhao, Q. (2019). Implementation

and performance analysis of the massively parallel method of characteristics

based on GPU. Ann. Nucl. Energy. 131, 257–272. doi: 10.1016/j.anucene.2019.

02.026

Song, P., Zhang, Z., and Zhang, Q. (2020). Implementation of the

CPU/GPU hybrid parallel method of characteristics neutron transport

calculation using the heterogeneous cluster with dynamic workload

assignment. Ann. Nucl. Energy. 135:106957. doi: 10.1016/j.anucene.2019.

106957

TOP500 official site (2019). Avaliable online at: https://www.top500.org/>

(accessed May 11, 2019).

Tramm, J. R., Gunow, G., He, T., Smith, K. S., Forget, B., and Siegel,

A. R. (2016). A task-based parallelism and vectorized approach to

3D Method of Characteristics (MOC) reactor simulation for high

performance computing architectures. Comput. Phys. Commun. 202, 141–150.

doi: 10.1016/j.cpc.2016.01.007

Van der Vorst, H. A., and Vuik, C. (1993). The superlinear convergence behaviour

of GMRES. J. Comput. Appl. Math. 48, 327–341.

Wang, D., and Xiao, S. (2018). A linear prolongation approach to stabilizing

CMFD. Nucl. Sci. Eng. 190, 45–44. doi: 10.1080/00295639.2017.14

17347

Yamamoto, A., Tabuchi, M., Sugimura, N., Ushio, T., and Mori, M. (2007).

Derivation of optimum polar angle quadrature set for the method of

characteristics based on approximation error for the Bickley function. J. Nucl.

Sci. Eng. 44, 129–136. doi: 10.1080/18811248.2007.9711266

Zhang, Z., Wang, K., and Li, Q. (2013). Accelerating a three-dimensional MOC

calculation using GPU with CUDA and two-level GCMFDmethod. Ann. Nucl.

Energy 62, 445–451. doi: 10.1016/j.anucene.2013.06.039

Zhu, A., Jarrett, M., Xu,. Y., Kochunas, B., Larsen, E., Downar, T., et al.

(2016). An optimally diffusive Coarse Mesh Finite Difference method to

accelerate neutron transport calculations. Ann. Nucl. Energy 95, 116–124.

doi: 10.1016/j.anucene.2016.05.004

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Song, Zhang, Liang, Zhang and Zhao. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Energy Research | www.frontiersin.org 12 July 2020 | Volume 8 | Article 124

https://doi.org/10.1016/j.anucene.2019.02.026
https://doi.org/10.1016/j.anucene.2019.106957
https://www.top500.org/
https://doi.org/10.1016/j.cpc.2016.01.007
https://doi.org/10.1080/00295639.2017.1417347
https://doi.org/10.1080/18811248.2007.9711266
https://doi.org/10.1016/j.anucene.2013.06.039
https://doi.org/10.1016/j.anucene.2016.05.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	GPU Based Two-Level CMFD Accelerating Two-Dimensional MOC Neutron Transport Calculation
	Introduction
	Background
	Method of Characteristics (MOC)
	Two-Level CMFD Formulation
	Multi-Group CMFD Formulation (MG CMFD)
	Two-Level CMFD

	Iteration Algorithm

	Implementation on GPU
	MOC Parallelization on GPU
	CMFD Parallelization on GPU
	Jacobi Method
	Successive Over-relaxation (SOR)
	Preconditioned Generalized Minimum Residual (PGMRES) Method

	Numerical Results
	Accuracy of the Implementation
	Overall Performance of Two-Level CMFD and GPU Acceleration
	Convergence Performance of Different Linear System Solvers
	Overall Performance of Two-Level CMFD on GPU

	Detailed Execution Time of CMFD Calculation

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

