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Prototyping innovative energy devices is a complex multivariable dimensioning

problem. For the case of magnetocaloric systems, one aims to obtain an optimized

balance between energy conversion performance, useful power generated, and power

consumed. In these devices, modeling is entering a mature phase, but dimensioning

is still time consuming. We have developed a technique that dimensions any type

of magnetocaloric system by training statistical learning classifiers that are used to

simulate the computation of a very large number of systems with different combinations

of parameters to be dimensioned. We used this method in the dimensioning of a

magnetocaloric heat pump aiming at optimizing the temperature span, heating power,

and coefficient of performance, obtaining an f-score of 95%. The respective classifier was

used to mimic over 940 thousand computed systems. The gain in computation time was

300 times that of computing numerically the system for each combination of parameters.

Keywords: magnetocaloric, machine learning, statistical method, caloric materials, dimensioning algorithm

1. INTRODUCTION

One of the goals of the 2030 United Nations agenda for sustainable development is to “ensure access
to affordable, reliable, sustainable and modern energy for all.” One way for energy consumption
to become more sustainable is to increase the energy efficiency of common household devices,
such as water heaters. In this context, magnetocaloric systems have been pointed out as a reliable
alternative to vapor compression technology for heat pumps and refrigerators (Gschneidner and
Pecharsky, 2008; Yu et al., 2010; Kitanovski et al., 2015a). In fact, the coefficient of performance
(COP) can attain high values when compared to the vapor compression systems (Yu et al.,
2003). Magnetocaloric systems rely on magnetizing and demagnetizing magnetocaloric materials
(MCM) for creating temperature gradients instead of compressing and expanding gases (Tishin
and Spichkin, 2003; Kitanovski et al., 2015b). Therefore, the magnetocaloric technology does not
require the use of nocive gases. One important breakthrough that increased the research on the
development of new magnetocaloric systems was the use of the active magnetic regenerative cycle,
where themagnetocaloric material acts as both the refrigerant and regenerator (Barclay and Steyert,
1982). This cycle allowed to increase the potential temperature span several times.

Because the regenerator is the core element of magnetocaloric systems, their thermal properties
(Franco et al., 2012; Moya et al., 2014; Lyubina, 2017) and geometries are of paramount
importance. In that respect, several geometries have been considered (Nielsen et al., 2013; Lei
et al., 2017). In particular, parallel plates regenerators and packed spheres have been pointed out
as the most practical designs (Engelbrecht et al., 2013; Tušek et al., 2013; Aprea et al., 2017;
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Trevizoli et al., 2017). Although such designs show some
level of simplicity, several parameters must be dimensioned.
In that respect, several works aiming the dimensioning of
prototypes have been performed. Li et al. (2008) optimized
an active magnetic regenerative refrigerator with a second-
law analysis. Nielsen et al. (2010) investigated the influence
of the plate and channel thickness, cycle frequency and fluid
motion on the performance of a magnetocaloric refrigerator.
Roudaut et al. (2011) analyzed the implication of several
parameters on the number of units, utilization factor, and axial
conductivity. Li et al. (2012) dimensioned an active magnetic
refrigerator by using an analytical model. Tagliafico et al. (2012)
performed a parametric investigation on the frequency and fluid
mass flow rate. The same authors, along with Aprea et al.,
used dimensioned models for the optimization (Aprea et al.,
2013; Tagliafico et al., 2013). Risser et al. (2013) improved a
numerical model aiming the optimization of the design of a
magnetocaloric refrigerators. Trevizoli et al. (2014) and Trevizoli
et al. (2016) included thermomagnetic phenomena and losses in
their numerical model. Moreover, the same authors identified the
most appropriate parameters and operating conditions following
an entropy generation minimization analysis of active magnetic
regenerators (Trevizoli and Barbosa, 2017). Bouchekara et al.
(2014) created a multiobjective optimization model. Niknia et al.
(2016) included configuration losses in their parametric study.
Finally, Roy et al. (2017) used a genetic algorithm in their
multiobjective optimization model. Although these parametric
investigations achieved the goal of dimensioning magnetocaloric
systems, the development of a complete and reliable systematic
dimensioning technique has been hindered by the computational
cost of performing brute force computation, i.e., of systematically
performing the numerical computation of systems with a large
number of combinations of parameters to be dimensioned.
For instance, for only 7 parameters, and only considering 10
different values for each one, it would be necessary to compute
ten million different systems to figure out which values fulfills
the requirements.

One way to reduce the number of computed systems for
dimensioning procedures is by predicting, through statistical
learning classifiers, the outcome of a dimensioned system, if
such a method is computationally more efficient assuming
trustworthy predictions. Generally speaking, statistical learning
classifiers have recently been used in solving several problems
in Physics, e.g., in predicting non-linear theories for multiscale
modeling of heterogeneous materials (Matouš et al., 2017),
in proposing strategies for systems with invariance properties
(Ling et al., 2016), or in guiding the creation of improved
closure models for computational physics applications (Parish
and Duraisamy, 2016). In this work we present a new
method for dimensioning magnetocaloric systems.We exemplify
the method for a reciprocating heat pump with parallel
plates regenerators. We optimize the method by testing
with the statistical learning classifiers K-nearest neighbors
(KNN), multilayer Perceptron (MLP), support vector machines
(SVM), and random forests (RF). The performance of the
method is showed for the temperature span, heating power
and COP.

FIGURE 1 | Geometry for the unidimensional active magnetic refrigerator

model. The fluid is static, while the MCM, hot and cold heat exchangers

(HHEX and CHEX, respectively) moves cyclically in the horizontal direction.

Heat is transferred between the fluid and the 3 remaining elements (h).

2. MAGNETOCALORIC MODEL

The full process of obtaining the dataset by using the heatrapy
python framework is described in this section (hea, 2018). The
modeled system is unidimensional and is described in Silva et al.
(2018) for hydraulic active magnetic regenerative systems. As
depicted in Figure 1, it consists of four elements: one fluid,
one MCM, one hot heat exchanger (HHEX), and one cold heat
exchanger (CHEX). One should note that this process can easily
be substitute by other numerical algorithms, e.g. by using other
commercial softwares with similar numerical approaches.

2.1. Governing Equations and Boundary
Conditions
The governing equations are the following (Petersen et al.,
2008a,b; Nielsen et al., 2009, 2011; Aprea and Maiorino, 2010;
Lienhard, 2017):

ρsCH,s
∂Ts

∂t
−
∂

∂x

(

ks
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where T is the temperature, x the position, t the time, ρ the
density of the material, CH the specific heat at constant H, k the
thermal conductivity,V the velocity of the fluid, and the subscript
s and f defines the type of material, solid or fluid, respectively.
Qsf is the heat transfer power per volume between the solids and
fluid. In the present model one considers the fluid framework so
that the fluid is static (V = 0) and the other three components
are moving forward and backward as shown in Figure 1. In this
context, the convective term of Equation (2) vanishes and the
overall problem is reduced to a heat conduction problem. The
equations were solved by using the Crank-Nicholsen implicit
finite difference method with the “implicit_k(x)” solver of
the heatrapy package (Silva et al., 2018):
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where i and n stand for the space and time index, 1x and
1t stand for the space and time steps respectively and γi =

4ρn+1
i Cn+1

i 1x2

1t .The used 1x and 1t were 0.001 m and 0.01 s,
respectively. Note that the heatrapy package was validated for
magnetocaloric fluidic systems (Silva et al., 2019b).

The magnetocaloric effect was considered by using a
temperature step change (Silva et al., 2018):

Tn+1
i = Tn

i ±1T±
ad
(Tn

i ), (4)

where - and + stand for the removal and application ofH, so that
1T+

ad
and 1T−

ad
account for the adiabatic temperature change

when applying and removing H, respectively. The 1T+
ad
(T) and

1T−
ad
(T) curves were obtained with the specific heat CH(T)

curves forH=0 andH=1T, which were calculated with the Weiss,
Debye and Sommerfeld models for Gd (Petersen et al., 2008b;
Silva et al., 2018).

To obtain temperature span values, and since this work
exemplifies magnetocaloric systems with the case of heat pumps,
insulation was imposed for the HHEX, and the CHEX was kept
at a fixed operating temperature. On the other hand, to obtain
heating power quantities the temperature of both reservoirs
were kept at fixed values. The fixed temperature boundary
conditions were modeled by keeping constant the temperature
of the boundary point:

Tn+1
b

= Tn
b , (5)

where b is the boundary position. Thermal insulation is modeled
by keeping the temperature of the previous point equal to the
boundary point:

Tn
b±1 = Tn

b . (6)

For more information about the implementation of these
conditions consult (Silva et al., 2012, 2014, 2016, 2019a,c).

2.2. Used Materials and Parameters to Be
Dimensioned
The used values for CH , 1Tad, ρ, and k for Gd were extracted
from Petersen et al. (2008b). While CH and 1Tad is strongly
dependent on temperature, ρ and k can be considered as being
fixed at 7,900 Kg/m3 and 10.5 W/(mK). Water was chosen for
the fluid and copper for both the heat exchangers (HEXs). All the
physical properties of the used materials in the modeled system
are listed in Table 1.

Seven different parameters were considered in the
dimensioning of the magnetocaloric heat pump, and are
the inputs of each performed simulation:

1. Operating frequency of the heat pump (ν), with values ranging
from 0.01 to 4.51 Hz.

2. Thickness of each parallel plate (ǫ), with values ranging from
0.5 to 2.5 mm.

3. Distance between parallel plates (dp−p), with values ranging
from 0.5 to 2.5 mm.

4. MCM axial length (lMCM), with values ranging from 1
to 10 cm.

TABLE 1 | Physical properties of the used materials in the modeled system (mat,

2019).

Material Cp J/(KgK) k W/(mK) ρ Kg/m3 1T+

ad
(K) 1T−

ad
(K)

Water 4,200 0.6 1,000 0 0

Gd t.d. t.d. 7,900 t.d. t.d.

Cu 385 401 8,933 0 0

t.d. stands for temperature-dependent.

5. HEX axial length (lHEX), with values ranging from 1 to 10 cm.
6. Distance between the MCM and heat exchangers (d), with

values ranging from 1 to 10 cm.
7. Stroke of the water pump, or motion amplitude of the fluid (s),

with values ranging from 1 to 10 cm.

2.3. Performance Variables
In the present investigation three performance variables were
considered: the temperature span of the heat pump, heating
power, and COP.

The temperature span of a magnetocaloric heat pump 1T is
the temperature difference between the HHEX (Thot) and CHEX
(Tcold) when the CHEX is at a fixed temperature and the HHEX
is insulated:

1T = Thot − Tcold. (7)

These values are calculated when attaining the stationary state
criteria, which in the present case occurs when the temperature
change between two consecutive cycles is less than 10−6.

The heating power per sectional area (Pheat) is the energy per
time and area that, within one cycle in the stationary state, the
system is pumping to the HHEX. To obtain this value one must
fix both temperatures splitted below the no load temperature
span. In the present case the zero temperature span condition
was chosen, i.e., both HEX were fixed at the same temperature
(ambient temperature).

One of the most important performance quantities is the COP
of a magnetocaloric system, which relates the energy needed, in
the form of work, to pump a useful quantity of heat within one
cycle. For the case of heat pumps it follows the formula:

COP =
Pheat

Pwork
, (8)

where Pwork is the average power per sectional area within a cycle
in the stationary state required to pump the heat from the cold to
the hot reservoirs. This power can be approximated by

Pwork =
Pmax × s× ν

smax × νmax
, (9)

where smax and νmax are the maximum stroke and maximum
operating frequency considered, i.e., 10 cm and 4.51 Hz,
respectively. Pmax is the total maximum power that need to be
given to the motor that moves the magnets and to the water
pump. Most of the losses are indirectly incorporated in Equation
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FIGURE 2 | Histogram of the 3,000 computed systems, for the (A) temperature span, (B) cooling power, and (C) COP.

(9), e.g., viscous losses. In the present case it was considered
Pmax=5 × 106 Wm−2, which was the value to obtain a COP=3
for zero temperature span when using a frequency of 0.5 Hz and
stroke of 2 cm. Note that, e.g., a Pwork of 10

6 Wm−2 means that
a regenerator with a cross section of 1m2 will require 106 W of
working power. A more realistic regenerator of 2cm2, with the
same Pwork, will require 200W of working power.

2.4. Dataset
The obtained dataset was extracted from 3,000 simulations, each
one considering random values with a uniform distribution of
the 7 input variables, known in statistic learning as predictors.
The computation time for the 3,000 simulations was 2 months
using 25 cores (Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz).
This corresponds to approximately 4 years of computation
if using a single core. The histograms for the performance
variables are shown in Figure 2. Note that the count number
axis is logarithmic. The large majority of temperature spans,
cooling powers and COPs are below 5K, 5× 105 Wm−2

and 5, respectively.
The goal of the present work is to dimension a magnetocaloric

system without the need to perform intensive computation. For
that end a method of predicting the output of computed systems
is here exposed by using classifiers. The first step is to classify
the 3,000 simulations into acceptable or not acceptable for the
defined requirements. This new variable, goal G, will determine
the class of each performed simulation. If it complies with
the requirements G=1, if not G=0. After classifying the dataset
one must balance the data, so that there are equal numbers
of simulations with G=0 and G=1. To that end, the exceeding
number of the most popular G value is removed randomly. At
the end of the first treatment, each predictor must be normalized
to 1, and is divided into a training dataset (60% of the data) and a
testing dataset (40% of the data).

3. CLASSIFIERS

A classifier is an algorithm that maps input data to a specific class.
Classifiers must be trained with training data for that purpose.
In the present case, the trained classifiers must characterize a
given system with G=0 or G=1. Seven different classifiers were
considered in this work to find the most reliable method for

dimensioning the system described above. Each one will be
described and tested below for a requirement of a minimum
temperature span of 4K. The whole analysis in this work was
performed by using the Python sklearn module (skl, 2018).

3.1. K-Nearest Neighbors
The K-nearest neighbors (KNN) classifier is known as one of the
most simple and straightforward classifier to implement (James
et al., 2013). In the present case, the K nearest input parameters
of the training dataset is used to determine theG variable. For that
end, the average G for the K nearest neighbors is calculated by

Pr(y) =
1

K

∑

i∈ZK

G(zi), (10)

where y is the vector that represents all the seven input
parameters (predictors) of the machine that we want to predict
the performance, and z represents the input parameters vector of
one computed system of the training dataset. Taking Z as the set
of all z vectors, ZK is a subset of Z that includes the K nearest z
vectors to y. If Pr(x) > 0.5, than G=1, otherwise G=0. Depending
on the K value, different prediction performances may arise, as
depicted in Figure 3 for the error of the test dataset, i.e., fraction
of bad predictions. For K values below ∼ 13, the model results
in under-fitting, i.e., larger values for K improves the precision of
the model. For K values above ∼ 13, the model results in over-
fitting, i.e., larger values for K increases the complexity of the
model beyond reality. Therefore K = 13 shows an error of less
than 12%: 88% of the predictions are correct.

3.2. Multilayer Perceptron
The Perceptron is one of the most famous classifiers (Bishop,
2006). It is well-known for its high accuracy, although its
interpretation can be often complex. It consists of applying edge
factors to the predictor nodes and inference of the class by using
an activation function. By using hidden layers, instead of one for
the predictor nodes as seen in Figure 4, the resulting classifier,
known as multilayer Perceptron, is one of the most accurate.
The value of each of the hidden nodes and output nodes is
determined by

Nm,j = βm,j +
∑

q∈Nm−1

αm,j,qNm−1,q, (11)
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where Nm,j is the node value in layer m and index j, βm,j is a bias
value, Nm−1 is the node set of layer m − 1, and αm,j,q are the
coefficients for the determination of the node value Nm,j.

In this work a multilayer Perceptron was created for
predicting the goal G. In that respect, a backpropagation
algorithm was used and the best parameter for the perceptron

FIGURE 3 | Error rate as a function of K neighbors for the KNN classifier.

was obtained by choosing the ones which showed the best
performance according to a three-fold cross validation method
(James et al., 2013). The parameter that were varied were the
regularization term (α), which accounts for the a penalty to avoid
the node coefficients αm,j,q to be very large, from 10−8 to 10−1, the
learning rate (τ ), which accounts for the weight of each training
datum in the classifier, from 0.001 to 1, and the number (h) of
nodes of the hidden layer. For this assessment only one hidden
layer was used. The fitting procedure showed that if using h = 6,
τ = 0.1, and α = 10−6 the resulting average f-score of 95%
was largest. The f-score is the harmonic mean of the precision,
which is the fraction of true positives over true positives plus false
positives, and the recall, which is the fraction of true positives
over the sum of true positives and false negatives. The resulting
classifier shows a precision, recall and f-score for G=0 of 96, 94,
and 95%, respectively, and 95, 96, and 95% for G=1, respectively.

3.3. Support Vector Machines
Support vector machines are classifiers that rely on hypersurfaces
that divide different classes (Bishop, 2006; James et al., 2013). This
division is dictated by the so-called kernel K. Different kernels
represent different types of hypersurfaces, and depends on the
predictor vector y and on the set of training data vectors Z.
This way, each predictor point y is classified with the following
function:

{

G = 1 if η0 +
∑

i∈Z σiK(y, zi) > 0,
G = 0 if η0 +

∑

i∈Z σiK(y, zi) < 0,
(12)

FIGURE 4 | Used multilayer Perceptron model, with M hidden layers.
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TABLE 2 | Precision, recall, and f-score for G=0 and G=1 of the 4 support vector machine kernels.

Linear Polynomial RBF Sigmoid

G Precision (%) Recall (%) f-score (%) Precision (%) Recall (%) f-score (%) Precision (%) Recall (%) f-score (%) Precision (%) Recall (%) f-score (%)

0 92 90 91 96 93 94 94 94 94 90 91 91

1 91 93 92 93 97 95 95 95 95 92 90 91

Note that the precisions and recalls are very similar for all kernels.

where η0 is a bias coefficient, and σi are prefactors. Each σi must
be> 0 and< C, whereC is the so-called tuning parameter (James
et al., 2013). While η0 and σi values are determined during the
training procedure, C must be pre-defined. In the present work
four different kernels were considered, which will be described in
the following. The respective precisions, recalls, and f-scores are
in Table 2.

3.3.1. Linear
The linear kernel for the support vector machine is simply the
internal product of y and z:

K(y, z) = 〈y, z〉. (13)

Generally speaking, this classifier divides the two classes by
a hyperplane. By using a three-fold cross validation, a fitting
procedure was performed by varying C from 0.001 to 100. The
fitting procedure showed that if using C = 100 the resulting
average f-score of 92% was largest.

3.3.2. Polynomial
The polynomial kernel for the support vector machine is

K(y, z) = (λ〈y, z〉 + r)u, (14)

where λ is a prefactor, r is a static coefficient and u is the
polynomial degree. In this case the hypersurfaces are no longer
linear, but follows a polynomial approach. By using a three-fold
cross validation, a fitting procedure was performed by varying C
from 0.001 to 1,000, by varying λ from 0.0001 to 1, by varying r
from 0 to 1, for u =2 and u =3. The fitting procedure showed that
if using C = 10, λ = 0.1, u=3, and r = 1 the resulting average
f-score of 95% was largest.

3.3.3. RBF
The radial basis function (RBF) kernel for the support vector
machine is

K(y, z) = φ · exp(−φ ‖ y− z ‖2), (15)

where φ is a prefactor. This classifier can use closed volumes for
the classification. By using a three-fold cross validation, a fitting
procedure was performed by varyingC from 10−10 to 1010 and by
varying φ from 10−15 to 105. The fitting procedure showed that
if using C = 10, 000 and φ = 0.01, the resulting average f-score
of 94% was largest.

3.3.4. Sigmoid
Finally, the sigmoid kernel for the support vector machine is

K(y, z) = tanh(ψ〈y, z〉 + w), (16)

where tanh is the hyperbolic tangent, ψ is a prefactor and w is a
static coefficient. By using a three-fold cross validation, a fitting
procedure was performed by varying C from 0.01 to 10,000, by
varying ψ from 0.0001 to 1, and by varying b from 0 to 1. The
fitting procedure showed that if using C = 1, 000, ψ = 0.01, and
b = 0 the resulting f-score of 91% was largest.

3.4. Random Forest
A decision tree classifier consists in stratifying, or segmenting,
the predictor space into a number of simple regions (James et al.,
2013). Although for some very simple problems decision trees are
very easy to interpret, it does not have the same level of predictive
accuracy when comparing to other classifiers. A Random forest
classifier is a tree-based model that consists in building decision
trees on bootstrapped training samples (James et al., 2013).

In the present work a fitting procedure with three-fold cross-
validation was performed in order to obtain the best number of
estimators, i.e., best number of predictor space segments. In that
respect, it was considered a number of estimators ranging from
1 to 100. The best performance was obtained for 71 estimators.
The resulting classifier showed a precision, recall and f-score for
G=0 of 95, 91, and 93%, respectively, and 92, 96, and 94% for
G=1, respectively. These numbers show that for the present case,
random forests are comparable to other classifiers.

4. STATISTICAL MODELING

So far, only the requirement of a minimum temperature span
of 4K was considered. In this section, other requirements will
be taken into account (temperature span, heating power, and
COP), which will allow us to conclude which of the classifiers
are more suited for each performance variable and for each range
of values. In that respect, a continuous range of performance
variables was investigated for all the classifiers described above,
by using a fitting procedure that uses a three-fold cross validation.
The details of the fitting parameters will be described below.

The variables for the fitting procedure of the KNN classifier
were the number of K neighbors. For the linear kernel of the SVM
it was varied the C value from 0.001 to 100. For the polynomial
kernel, the C value ranged from 0.001 to 1,000, γ from 0.0001 to
1, and the considered polynomial degree was choosen between 2
and 3. For the RBF and sigmoid SVMs, the C value was varied
from 10−10 to 1010 and from 0.01 to 10,000, respectively. While
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FIGURE 5 | Precision and recall of the temperature span from 4K to 20K, for the two possibilities of the G variable (0 and 1), and the respective f-score average. In the

f-score plot it is also shown the balanced dataset size.

φ ranged from 10−15 to 105, ψ of the sigmoid kernel ranged
from 0.0001 to 1, respectively. Moreover, the b value was varied
from 0 to 1. Only the number of estimator was considered for
the random forests fitting. Finally, for the multilayer Perceptron
the α coefficient, the learning rate τ , and number of hidden
nodes ranged from 10−8 to 10−1, from 0.001 to 1 and from
1 to 19, respectively.

4.1. Temperature Span
A range of temperature spans from 4K to 20K was considered
in this work. Figure 5 shows the precision and recall for the
two possible G values, as well as the average of the f-score.

One can observe that the larger the temperature span the more
fluctuations we have. This is due to the fact that the balanced
dataset reduces with the temperature span, i.e., the larger the
temperature span the less simulation from the dataset we have.
Still, the accuracy of the predictions, i.e., the average f-score, is
& 90% for almost all classifiers and within the whole range of
minimum temperature spans. Only the KNN classifier has an
average f-score . 90%. In fact, only for a temperature span of
16K and 20K other classifiers show smaller f-scores than the KNN
one. From Figure 5 one can also note that, generally speaking, the
precision and recall have similar values for all classifiers, so that
the large f-scores does not result from only one of the precision
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FIGURE 6 | Precision and recall of the heating power from 0.25× 106 to 0.95× 106 Wm−2, for the two possibilities of the G variable (0 and 1), and the respective

f-score average. In the f-score plot it is also shown the balanced dataset size.

or recall values. One interesting result is that the random forest
classifier behaves in a similar manner as the support vector
machine and multilayer Perceptron classifiers. Although they
have very similar results, the multilayer Perceptron classifier
is the one with the largest average (also over the temperature
span) f-score.

4.2. Heating Power
The used values for the heating power ranged from 0.25× 106

to 0.95× 106 Wm−2. The precision and recall metrics can be
seen in Figure 6. In this case the fluctuations already occur for

the small heating power values, and increases with the heating
power. These fluctuations have to do with the fact that the
requirements are very strict for the considered range so that the
balanced dataset size is very small. In fact, the balanced dataset
has less than 250 simulations already for 0.25× 106 Wm−2, and
reduces with the required heating power. By comparing with
the temperature span requirement analysis, the balanced dataset
decreases from 1,000 to 250 computed systems. Such low number
of computed systems decreases the f-score, i.e., the predictor
accuracy, from & 90% to & 80%. Moreover, with such small
numbers one cannot conclude which classifier is more accurate
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FIGURE 7 | Precision and recall of the COP span from 2 to 10, for the two possibilities of the G variable (0 and 1), and the respective f-score average. In the f-score

plot it is also shown the balanced dataset size.

in predicting the G variable. Either one needs to reduce the
heating power requirement for the same dataset, or increase the
number of computed systems in the dataset. This shows clearly
the importance of having a robust number of balanced datasets
after defining the requirements.

4.3. COP
The used COP values ranged from 2 to 10. Similarly to the
previous cases, the high intensity of the f-score fluctuations
increases with the COP, as observed in Figure 7. Nevertheless,
it is clear that the KNN is the worse classifier. This can be

seen in Figure 7 in the f-score plot, where for COP=2 the KNN
classifier has an f-score of ∼ 85% while the other classifiers have
an f-score above 93%. The balanced dataset size is between that of
the heating power analysis and temperature span analysis, which
explains why only above COP ∼ 7, the f-score starts to show
values below 90% for SVM, random forests and MLP classifiers.

5. SYSTEM DIMENSIONING

In the previous section, the performance of different classifiers
were analyzed for individual requirements, i.e., either aminimum
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temperature span, a minimum heating power or a minimum
COP. In this section, one will impose a requirement involving
all the three performance variables, through a three-fold
filtering procedure, for a multilayer Perceptron and use the
resulted classifier for dimensioning the 7 input parameters by
computing simulations.

5.1. Three-Fold Filtering
To describe the overall process of dimensioning one will use
an example with a requirement of 15K for the minimum
temperature span, of 0.5× 106 Wm−2 for the minimum heating
power, and a 3 for the minimum COP. By using the 3,000
computed systems used in the dataset of this work, and following
the procedure described in the dataset subsection, i.e., procedure
of balancing and normalizing the dataset, one arrives at 36
simulations with G=0 and 36 with G=1. With this resulting
dataset, a multilayer Perceptron was trained with 60% of the data.
The testing used 40% of the data, which resulted in an average
f-score of 95%. This f-score shows the high performance of the
classifier even though only 72 simulations were used.

5.2. Dimensioning by Computing
Simulations
The method here proposed involves the computation of a large
number of simulations with the trained classifier described in
the previous subsection. We highlight the difference between
the computation of simulations and the computation of systems
used for obtaining the dataset. For the example shown above,
the computation of simulations was performed for 8 values of
ν ranging from 0.625 to 5 Hz, 7 of ǫ ranging from 0.357 to
2.5 mm, 7 lp ranging from 0.357 to 2.5 mm, 7 lMCM ranging
from 1.423 to 10 cm, 7 lHEX ranging from 1.423 to 10 cm, 7
d ranging from 1.423 to 10 cm, and 7 s ranging from 1.423
to 10 cm, i.e., a total of 941,192 different combinations. The
computation of simulations resulted in 894,287 combinations
of input parameters with G=0, and 46,905 combinations with
G=1. Since the final goal is to pick up 1 combination, a
filtering procedure must be handled. For the present example,
the filtering of the 46,905 combinations with ν < 1Hz,
lMCM ≤ 8cm, 3cm≤ s ≤ 5cm, d ≤ 2cm, lp ≥1mm,
and d ≥1mm, resulted in 4 combinations. In all the possible
combinations, the frequency ν was 0.625 Hz, s was 4.286 cm,
lMCM was 7.143 cm, ǫ was 1.071 mm, lp was 1.071 mm, and
d was 2.857cm. The only difference between the 4 possible
combinations was the length of the heat exchangers that needs
to be between 1.423 and 5.714 cm, i.e., the length of the heat
exchangers does not influence considerably the performance of
the system.

5.3. Summary of the Procedure
Figure 8 summarizes the method presented in this work for
the dimensioning of magnetocaloric systems with statistical
learning classifiers. First, a robust dataset must be computed.
Then the requirements, defined by a parameter G (goal)
must be applied to the dataset. Then, the dataset must
be balanced and normalized. The resulting data is used to
train and test a classifier (in the present case a multilayer

FIGURE 8 | Scheme for the procedure to dimension magnetocaloric systems

with statistical learning classifiers.

Perceptron). If the resulting f-score is not acceptable one
needs to increase the initial dataset and proceed with the
workflow. If the f-score is acceptable, the classifier is used
to mimic a very large number of simulations to produce
a dataset of computed simulations, i.e., a huge number of
mimicked simulations defined by a very large number of
combinations of input parameters. Finally, since a significant
number of combinations of parameters results in G=1, one
needs to filter the input parameters of the dataset of
computed simulations.

5.4. Computational Cost
The statistical learning method for dimensioning magnetocaloric
systems proposed in this work can reduce by orders of magnitude
the time consumed in computing numerically the performance
of systems. In the example treated in this section it was mimicked
the computation of 941,192 different systems by using a dataset
of 3,000 simulations. It took approximately 4 years×core of
computation for obtaining the 3,000 computed systems. If
computing numerically the 941,192 different systems it would
take approximately 1,250 years×core of computation, which is
unfeasible. In the present study 25 different cores were used at
the same time, so that the final computation time was 2 months.
Since the computation of simulations lasted only a few hours,
i.e., contributes marginally for the overall computation time, the
time consumed with the present method is approximately 1

300 of
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the time consumed if performing the computation of the 941,192
systems with a brute force approach.

6. CONCLUSIONS

We presented a method for the dimensioning of magnetocaloric
systems by using statistical learning classifiers. The method
consists in training a classifier and using it to mimic the
numerical computation of a very large number of systems with
different combinations of variables, e.g., frequency. With the
resulting computed simulations, and by filtering some input
variables, one is able to obtain a few combinations for the
defined requirements.

We tested several statistical learning classifiers, and found
out that, apart from the K-nearest neighbors classifier, support
vector machines, multilayer Perceptrons and random forests
present similar behaviors with high f-scores. We applied the
method to one example where the heatrapy package was used to
produce 3,000 computed systems, and showed that a multilayer
Perceptron resulted in an f-score of 95% for a requirement
of temperature span above 4K, heating power above 0.5× 106

Wm−2 and COP above 3. By mimicking 941,192 computed
systems with the multilayer Perceptron classifier, and by filtering
the 7 input parameters, we arrived at 4 different combinations of
input variables. We emphasize that this method can be applied to
any model (or software) for producing the dataset.
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NOMENCLATURE

Greek

α Perceptron edge factor
β Perceptron bias coefficient
1 Difference
ǫ Thickness of parallel plates (mm)
η SVM bias coefficient
λ Polynomial SVM prefactor
ν Frequency (Hz)
φ RBF SVM prefactor
ψ Sigmoid SVM prefactor
ρ Density (kgm−3)
σ SVM prefactor

Superscript

n Time index

Roman

C Specific heat at constant H (Jkg−1K−1)
CHEX Cold heat exchanger
COP Coeficient of performance
d Distance (mm)
G Goal variable
H Magnetic field (Am−1)
h Number of hidden layers
HEX Heat exchanger
HHEX Hot heat exchanger
K Number of nearest neigbors, or kernel
k Thermal conductivity (Wm−1K−1)
KNN K-nearest neigbors
l Axial length (mm)

M Number of hidden layers
MCM Magnetocaloric material
MLP Multilayer Perceptron
N Perceptron node
P Power (W)
Pr Probability function
Q Heat transfer power per volume (Wm−3)
r Polynomial SVM static coefficient
RBF Radial basis function
RF Random forest
s Stroke (mm)
SVM Support vector machine
T Temperature (K)
t Time (s)
u Polynomial degree
V Velocity (ms−1)
w Sigmoid SVM static coefficient
x Position (m)
y Predictors vector
Z Set of all training parameter vectors
z Training parameter vector
Subscript

ad Adiabatic
f Fluid
H At constant magnetic field
i Space index, or predictor index
j Perceptron node index
m Perceptron layer index
max Maximum
p Parallel plate
s Solid
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