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In this paper, a novel sulfonic acid containing magnetic methylene-based organosilica

with core-shell structure (Fe3O4@OS − SO3H) is synthesized, characterized and its

catalytic application is investigated for biodiesel production via esterification of carboxylic

acids with alcohols. The Fe3O4@OS − SO3H was synthesized via co-condensation

of tetraethyl orthosilicate (TEOS) and 1,2-bis(triethoxysilyl)methane (BTEM) around

magnetite nanoparticles. The Fe3O4@OS − SO3H nanocatalyst was characterized by

using FT-IR, PXRD, TGA, VSM, TEM and SEM techniques. The catalytic study showed

that the Fe3O4@OS − SO3H nanocomposite can be used as an effective, powerful,

selective and recyclable catalyst for the esterification of carboxylic acids with alcohols at

70◦C under solvent-free conditions. This nanocatalyst was recovered and reused several

times without significant decrease in efficiency and stability.

Keywords: magnetic nanocatalyst, biodiesel production, esterification, recoverable catalyst, solvent-free

conditions

INTRODUCTION

Recently, the use of magnetic nanoparticles has received increasing attention in various industrial
and medical applications, such as magnetic resonance imaging (Qiao et al., 2009; Liu et al., 2014;
Ni et al., 2017), magnetic recording (Dai et al., 2010), drug delivery (Häfeli et al., 2009; Zhang J.
et al., 2013), cancer treatment through magnetic hyperthermia (Lartigue et al., 2011; Kandasamy
et al., 2018; Mejías et al., 2018), catalytic industry (Pourjavadi et al., 2012; Wang et al., 2013;
Kainz and Reiser, 2014; Iglesias et al., 2015; Ghorbani-Vaghei and Izadkhah, 2018), and spintronic,
optoelectronic, and electronic devices (Gandhi et al., 2018; Obeid et al., 2019). In general, the
performance and application of these nanoparticles are influenced by their proper design and
synthesis. To date, various magnetic nanoparticles have been synthesized, including pure metal
nanoparticles (Fe, Co, Ni), metal oxides (Fe3O4, γ-Fe2O3), ferrites (MFe2O4, M = Cu, Ni, Mn,
Mg, Co, or Zn), and metal alloys (FePt, CoPt) (Meng et al., 2011; Seinberg et al., 2012; Aissou
et al., 2013; Wang et al., 2015; Antonello et al., 2017). Among different magnetic materials, iron
oxides are usually the best due to their lower toxicity and good magnetic properties compared with
those of other particles. However, these MNPs are highly sensitive to oxidation and aggregation
as well as chemically reactive because of their high surface area (Liu et al., 2008; Demirer et al.,
2015; Wu et al., 2016; Kolhatkar et al., 2017). These problems limit their widespread applications.
Creating a suitable organic or inorganic coating on the surface of magnetic NPs is an efficient way
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to overcome these problems. Biopolymers such as dextran,
polysorbates, polyaniline, chitosan, and polyethylene glycol;
organic surfactants; silica; carbon; and bioactive substances such
as liposomes, peptides, and ligands/receptors are important
coatings for the protection of magnetic nanoparticles (Colombo
et al., 2012; Zhang et al., 2013; Esfahani et al., 2014; Bohara
et al., 2016; Kudr et al., 2017; Kalhor and Zarnegar, 2019). Since
silica is recognized as “generally safe” in the FDA grouping and
because of its poor chemical permeability and high availability
of silanol groups on its surface for any modification, it has
received much attention among researchers (Chen et al., 2010;
Li et al., 2012; Mondal et al., 2012; Maleki et al., 2017; Hajian
and Ehsanikhah, 2018; Abaeezadeh et al., 2019; Mirbagheri
and Elhamifar, 2019; Nikoorazm and Erfani, 2019; Ramazani
et al., 2019; Vahidian et al., 2020). In particular, modification
of the surface of magnetite nanoparticles with organosilica
precursors, in addition to protecting the magnetic properties
of these NPs, increases the surface hydrophobicity due to
the presence of organic groups. In fact, this hydrophobicity
increases the application of core-shell-structured organosilica-
coated magnetite NPs in catalytic and adsorption processes.
The modification of magnetic silicas with organic functional
groups is achieved via the simultaneous co-condensation of
mono- or bis(trialkoxysilyl)organic units and tetraalkoxysilanes
(TMOS or TEOS) over magnetic Fe3O4 NPs (Li et al., 2012;
Elhamifar et al., 2018; Mirbagheri and Elhamifar, 2019). Some of
recently developed magnetic nanostructures with silica shells are
Fe3O4@SiO2@PMMA (Chen et al., 2010), Fe3O4@mesoporous
SBA-15 (Mondal et al., 2012), Fe3O4@MCM-41@Cu-P2C
(Nikoorazm and Erfani, 2019), Fe3O4@MCM-41-Im@MnPor
(Hajian and Ehsanikhah, 2018), CoFe2O4@B2O3-SiO2 (Maleki
et al., 2017), and Fe3O4@nSiO2@PMO (Li et al., 2012).

On the other hand, due to the environmental pollution caused
by fossil fuels and the non-renewability of their sources, the
need for new energy sources in today’s world is increasingly
felt. Biodiesels, monoalkyl esters of long-chain fatty acids, have
attracted the attention of many researchers as one of the clean
renewable fuels. Using biodiesel reduces carbon dioxide emission
into the environment (Yang et al., 2008; Kondamudi et al., 2009;
Haas et al., 2010; Hu et al., 2012). Biodiesel is produced from
vegetable or animal oils. With the growing population and the
limitation of water and soil resources for food supply, not only
does the use of edible oils as fuel destroy food sources but also
it is not economically viable. Therefore, the use of non-edible
oils as feedstock for biodiesel fuel production is more attractive.
Some of non-edible oils for biodiesel production are Putranjiva
oil (Putranjiva roxburghii), neem oil (Azadirachta indica), Honge
oil (Pongamia pinnata), and Jatropha curcas oil (Jatropha curcas
L.) (Pan et al., 2018; Zhang et al., 2018a,b; Adeniyi et al., 2019).

The usual method for biodiesel production is the esterification
of carboxylic acids and/or alcohols in the presence of
homogeneous catalysts (Lien et al., 2010; Socha and Sello, 2010;
Lam et al., 2019). However, this strategy suffers from problems
such as catalyst and product separation and non-recoverability of
the catalyst. Therefore, the recent methods have been developed
based on the use of heterogeneous catalysts. Nevertheless, the
use of heterogeneous catalysts in industrial applications also

faces limitations such as mass transfer resistance and being
time consuming. Nanocatalysts, due to their high surface area
and high catalytic activity, can solve the above problems (Chen
et al., 2007; Elhamifar et al., 2014; Dimian and Rothenberg,
2016; Laskar et al., 2018; Zhang et al., 2019). Especially, magnetic
nanocatalysts are a good option in this regard because their easy
magnetic separation avoids catalyst wastage and increases their
reuse compared with filtration. Accordingly, a set of different
magnetic nanocatalysts has been designed and used in biodiesel
production (Hu et al., 2011; Chiang et al., 2015; Dos Santos-
Durndell et al., 2018; Xie et al., 2018; Gardy et al., 2019; Sarno and
Iuliano, 2019; Touqeer et al., 2019; Xie and Huang, 2019). Some
of recently developed nanocatalysts are Fe3O4/Au@CA-L (Sarno
and Iuliano, 2019), Fe3O4/MCM-41/ECH/Na2SiO3 (Xie et al.,
2018), TBD-Fe3O4@silica (Chiang et al., 2015), KF/CaO–Fe3O4

(Hu et al., 2011), Fe3O4@MIL-100 (Fe) (Xie and Huang, 2019),
Fe3O4-PDA-Lipase (Touqeer et al., 2019), SO4/Mg-Al-Fe3O4

(Gardy et al., 2019), and Mag/Si (Dos Santos-Durndell et al.,
2018).

In continuation of the abovementioned studies, in this
study, due to the importance of biodiesel fuels and magnetic
organosilica NPs in the catalyst world, we have prepared and
developed a novel sulfonic acid containing magnetic organosilica
as an effective, powerful, recyclable, and reusable nanocatalyst in
the esterification process to produce biodiesel products.

EXPERIMENTAL SECTION

Preparation of Fe3O4@OS-SH
For this purpose, Fe3O4 and Fe3O4@SiO2 MNPs were
first synthesized according to methods presented by us
in previous research studies (Elhamifar et al., 2018; Neysi
et al., 2019). Then, Fe3O4@OS MNPs were prepared via
co-condensation of tetraethyl orthosilicate (TEOS) and 1,2-
bis(triethoxysilyl)methane (BTEM) around Fe3O4@SiO2 NPs.
For this, 0.5 g of Fe3O4@SiO2 was completely dispersed in
a mixture of H2O (12mL) and EtOH (50mL) for 30min.
After that, ammonia (2mL, 25%) was added in the reaction
vessel, and the resulting mixture was stirred at RT for 10min.
Then, tetraethyl orthosilicate (TEOS, 1 mmol) and 1,2-
bis(triethoxysilyl)methane (BTEM, 1mmol) were simultaneously
added in the reaction vessel, and this combination was stirred
at RT for 16 h. Next, the resulting product was collected using
a magnetic field and washed several times with H2O and
EtOH. The obtained material was dried at 70◦C and called
Fe3O4@OS. For the preparation of Fe3O4@OS-SH, 0.5 g of
Fe3O4@OS was dispersed in dry toluene (25mL) for 30min.
Then, (3-mercaptopropyl)trimethoxysilane (1 mmol) was added
to the reaction flask, and the mixture was refluxed. After 24 h,
the resulting material was separated using a magnet and washed
with EtOH and H2O. The final product was dried at 70◦C for 6 h
and called Fe3O4@OS-SH (Tai et al., 2017).

Preparation of the Fe3O4@OS-SO3H
Nanocatalyst
For this, 0.5 g of Fe3O4@OS-SH was completely dispersed in
MeOH (20mL) under ultrasonic conditions for 20min. Then,
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H2O2 (35%, 5mL) was added to the reaction vessel, for oxidation
of SH groups to SO3H counterparts, and the resulting mixture
was stirred at RT for 24 h. After this process, the resulting
product was collected by using a magnetic field and washed three
times with H2O and EtOH. To ensure complete protonation,
the obtained material was acidified in a H2SO4 solution (0.1M,
25mL) for 5 h. Then, the solid product was collected using an
external magnet, washed completely with deionized water, dried
at 70◦C for 12 h, and denoted as Fe3O4@OS-SO3H.

Procedure for the Determination of the
Acidity of Fe3O4@OS-SO3H
For this, 50mg of Fe3O4@OS-SO3Hwas dispersed in an aqueous
solution of sodium chloride (1M, 25mL) for 20min, and it
was then stirred at room temperature for 72 h. After this, an
inverse titration was carried out on the resultingmixture by using
NaOH (0.05M), and the loading of sulfonic acid groups on the
Fe3O4@OS-SO3H surface was calculated (2.1 mmol g−1).

General Procedure for the Esterification of
Carboxylic Acids in the Presence of the
Fe3O4-OS-SO3H Nanocatalyst
For this purpose, carboxylic acid (5 mmol), alcohol (2 mmol),
and Fe3O4@OS-SO3H nanocatalyst (0.03 g) were added into a
reaction vessel, and this mixture was stirred vigorously at 70◦C.
The progress of the reaction was monitored by TLC and GC.
After finishing the process, ethyl acetate (5mL) was added,
and the catalyst was collected using an external magnet. Then,
the residue was decanted with a mixture of ethyl acetate and
H2O to remove unreacted carboxylic acid. The organic phase

was separated and dried over anhydrous Na2SO4. A pure ester
product resulted after evaporation of the solvent.

Procedure for the Hot Filtration Test
This test was also performed on the esterification of acetic acid
by 1-octanol under optimized conditions. For this, after about
50% of the reaction had been completed, it was stopped and
the catalyst was separated using an external magnetic field. The
catalyst-free residue was allowed to continue to undergo reaction
under optimum conditions. After about 20 h, no noticeable
conversion was observed, confirming no leaching of active
sulfonic acid moieties during reaction conditions.

RESULTS AND DISCUSSION

Firstly, Fe3O4 and Fe3O4@SiO2 NPs were first prepared
according to our reported methods (Elhamifar et al., 2018;
Neysi et al., 2019). Then, Fe3O4@OS was synthesized via
co-condensation of TEOS and BTEM around Fe3O4@SiO2

NPs. Next, the surface of Fe3O4@OS NPs was chemically
modified with (3-mercaptopropyl)trimethoxysilane groups to
give Fe3O4@SiO2-SH nanomaterial. Finally, the SH moieties of
the latter material were oxidized in the presence of H2O2 to
deliver the desired Fe3O4@OS-SO3H nanocatalyst (Scheme 1).
Fe3O4@OS-SO3H was characterized using various techniques,
namely, FT-IR, PXRD, VSM, TEM, SEM, and TGA.

Firstly, the FT-IR spectroscopy technique was used to
identify the functional groups of the prepared nanomaterials
at each step (Figure 1). The observed peak at 576 cm−1 for
all samples is related to the stretching vibrations of the Fe-O
bonds. For Fe3O4@SiO2, Fe3O4@OS, and Fe3O4@OS-SO3H, the

SCHEME 1 | Preparation of the Fe3O4@OS-SO3H nanocatalyst.
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FIGURE 1 | FT-IR spectra of (A) Fe3O4, (B) Fe3O4@SiO2, (C) Fe3O4@OS, and

(D) Fe3O4@OS-SO3H nanomaterials.

asymmetric and symmetric stretching vibrations of the Si-O-Si
bonds appeared at 930 and 1,079 cm−1. The peaks at 2,800–2,930
cm−1 can be attributed to the stretching vibration of aliphatic
C-H bonds of propyl moieties (Figures 1C,D). Importantly, for
the Fe3O4@OS-SO3H nanomaterial, the peak observed around
1,105 cm−1 is assigned to the S=O stretching vibration of the
sulfonic acid groups (Figure 1D), indicating successful oxidation
of SH to SO3Hmoieties.

In the following, the surface acidity of the Fe3O4@OS-
SO3H nanocatalyst was evaluated by FT-IR spectroscopy using
pyridine as a probe molecule. Figure 2A shows the FT-IR
spectrum of the nanocatalyst before pyridine adsorption, where
no special bands corresponding to pyridine are observed in the
region 1,400–1,700 cm−1. In contrast, Figure 2B shows that
after pyridine adsorption, three peaks clearly appear in regions
1,487, 1,542, and 1,640 cm−1. These emerging bands are due
to the interaction of pyridine with Brønsted acid sites to form
pyridinium ions, confirming well the immobilization and high
stability of sulfonic acid groups on the Fe3O4@OS support
(Hamoudi and Kaliaguine, 2003; Adam et al., 2012; Upare et al.,
2013).

The powder X-ray diffraction (PXRD) analysis of Fe3O4,
Fe3O4@OS, and Fe3O4@OS-SO3H nanomaterials showed six
sharp peaks at 2θ: 30.15, 35.73, 43.38, 54.09, 57.37, and 62.89
degrees, corresponding to Miller indices of 220, 311, 400,
422, 511, and 440, respectively (Figure 3) (Zhang et al., 2014;
Liu et al., 2015). The results of this analysis prove that the
Fe3O4 crystalline structure is preserved during the modification
processes (Figure 3). Also, the broad peaks appearing at 2θ= 20–
25 degrees in Figures 3B,C are related to organosilica, confirming
the formation of an organosilica shell around the Fe3O4 core. It
also should be noted that the observation of later peaks at 2θ =

20–25 degrees in Figure 3C confirms the chemical stability of the
organosilica shell during the surface modification process by the
sulfonic acid group (Lee et al., 2008; Wang et al., 2012).

FIGURE 2 | FT-IR spectra of (A) Fe3O4@OS-SO3H nanocatalyst and (B)

Fe3O4@OS-SO3H nanocatalyst after pyridine adsorption.

The magnetic properties of Fe3O4, Fe3O4@SiO2, Fe3O4@OS,
and Fe3O4@OS-SO3H nanomaterials were investigated by
vibrating sample magnetometer (VSM) analysis. The results of
this analysis showed that all samples have a superparamagnetic
behavior with no hysteresis, remanence, and coercivity. The
magnetic saturation of Fe3O4, Fe3O4@SiO2, Fe3O4@OS, and
Fe3O4@OS-SO3H nanomaterials were 75, 55, 47, and 38 emu/g,
respectively. The decrease in saturation magnetization, after
each step, confirms successful chemical immobilization of silica
precursors and sulfonic acid moieties on the surface of the Fe3O4

NPs (Figure 4). Also, this confirms the high magnetic properties
of all prepared materials, which are very important for their easy
separation in the chemical processes.

The morphology of the particles at different steps of
nanocatalyst preparation was investigated by using SEM
(Figure 5). This showed a spherical morphology with a uniform
size of the particles at different stages. Also, this confirmed
that the size of the NPs increased at each step compared with
that at the previous step. Especially, the SEM of Fe3O4@OS-
SO3H clearly showed the presence of spherical particles with
an average size of 70 nm (Figure 5D). These types of particles
are very good candidates in the catalytic, chromatography, and
adsorption processes.

The transmission electron microscopy (TEM) image also
showed that the designed nanocatalyst has a core-shell structure
with a black core (magnetite particles) and a gray shell
(organosilica layer) (Figure 6).

Thermogravimetric analysis (TGA) was used for the
investigation of the thermal stability of Fe3O4@OS and
Fe3O4@OS-SO3H nanocomposites (Figure 7). As shown, the
TGA of both Fe3O4@OS and Fe3O4@OS-SO3H samples has
approximately the same pattern. This shows three weight losses.
The first weight loss (about 3%) below 150◦C corresponds
to the removal of adsorbed water and alcoholic solvents
remaining from the preparation process. The second weight
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FIGURE 3 | PXRD patterns of the (A) Fe3O4, (B) Fe3O4@OS, and (C)

Fe3O4@OS-SO3H nanomaterials.

loss (about 8%) between 180 and 250◦C is due to the removal
of supported propanethiol/propanesulfonic acid moieties.
The main weight loss (about 22%) cleared between 251 and
600◦C is due to the removal of incorporated methylene
groups in the shell framework. These results prove the high
thermal stability of the Fe3O4@OS and Fe3O4@OS-SO3H
nanocomposites and confirm well immobilization/incorporation
of propanethiol/propanesulfonic acid and methylene groups
onto/into the material framework.

After successful characterization of Fe3O4@OS-SO3H, its
catalytic activity was investigated in esterification of carboxylic
acids to produce biodiesel products. In order to achieve the

FIGURE 4 | VSM diagram of the (A) Fe3O4, (B) Fe3O4@SiO2, (C) Fe3O4@OS,

and (D) Fe3O4@OS-SO3H nanomaterials.

optimum conditions, the condensation between acetic acid and
1-octanol was selected as the model reaction. The effects of
temperature, catalyst loading, and catalyst type were investigated
under solvent-free conditions (Table 1). The obtained results
proved that the catalyst loading is very effective in the progress of
the reaction and the best result was delivered in the presence of
0.03 g of the designed catalyst (Table 1, entries 1–4). The reaction
was also affected by temperature, and the best conversion was
obtained at 70◦C (Table 1, entries 4-6). Figure 8A illustrates
the influence of temperature on the progress of this process.
In the following, to show the exact role of supported sulfonic
acids in the catalytic process, the activity of Fe3O4@OS-SH
and Fe3O4@OS was studied and the result was compared with
that of Fe3O4@OS-SO3H (Table 1, entry 4 vs. entries 7 and
8). Interestingly, both sulfonic acid-free nanomaterials delivered
no ester product under the same conditions as Fe3O4@OS-
SO3H, confirming that the esterification process is completely
catalyzed by supported -SO3H moieties. Next, the effect of the
molar ratio of 1-octanol to acetic acid was investigated. The
results of this study showed that the yield of the desired ester
is improved from 35 to 94% as the 1-octanol:acetic acid molar
ratio changed from 0.5:5 to 2:5. It is also important to note that
when the 1-octanol:acetic acid molar ratio was increased to 3:5,
no significant change in the reaction yield was observed (Table 1,
entry 4 vs. entries 9-11, Figure 8B). The effect of time on the
progress of the esterification process proved that the conversion
of starting materials increases steadily with increasing reaction
time (Table 1, entry 4 vs. entries 12–15, Figure 8C). Accordingly,
the use of 0.03 g of Fe3O4@OS-SO3H, 70◦C, and solvent-free
conditions were chosen as optimum conditions.

After optimization of the reaction conditions, the catalytic
activity of Fe3O4@OS-SO3Hwas investigated in the esterification
of different carboxylic acids and alcohols (Table 2). The synthesis
of ester products with high yields in this process proved that
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FIGURE 5 | SEM images of the (A) Fe3O4, (B) Fe3O4@SiO2, (C) Fe3O4@OS, and (D) Fe3O4@OS-SO3H nanomaterials.

FIGURE 6 | The TEM image of the Fe3O4@OS-SO3H nanocatalyst.

Fe3O4@OS-SO3H is a powerful and efficient nanocatalyst for the
preparation of a set of different esters applicable as biodiesel.

One of important properties of nanocatalysts is the
recyclability and reusability of these materials without a
significant change in their activity and structure. Therefore,
next, the recyclability and reusability of Fe3O4@OS-SO3H were
studied in the condensation of acetic acid and 1-octanol as a
model reaction. The results showed that the Fe3O4@OS-SO3H
nanocatalyst can be recycled and reused several times without a
significant decrease in efficiency (Figure 9).

FIGURE 7 | TG analysis of Fe3O4@OS (A) and Fe3O4@OS-SO3H (B)

materials.

The IR and PXRD analyses of the recycled nanocatalyst were
next performed to study its chemical and structural stability
under the applied conditions.

As shown in Figure 10, the FT-IR spectrum of the recovered
nanocatalyst is approximately the same as the FT-IR spectrum of
the fresh nanocatalyst, confirming the high chemical stability of
the Fe3O4@OS-SO3H nanocatalyst under the applied conditions.

Frontiers in Energy Research | www.frontiersin.org 6 May 2020 | Volume 8 | Article 78

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Shaker and Elhamifar Biodiesel Production via Esterification

FIGURE 8 | Effects of reaction parameters in the esterification of acetic acid by 1-octanol: (A) reaction temperature, (B) molar ratio of 1-octanol to acetic acid, and (C)

reaction time.

TABLE 1 | Effects of catalyst loading, temperature, and catalyst type in the esterification of acetic acid by 1-octanol.

Entry Catalyst Catalyst amount Molar ratio

(1-octanol/acetic acid)

T(◦C) Time (h) Yield (%)a

1 — — 2:5 70 14 —

2 Fe3O4@OS-SO3H 0.01 g 2:5 70 14 34 ± 0.66

3 Fe3O4@OS-SO3H 0.015 g 2:5 70 14 51 ± 0.49

4b Fe3O4@OS-SO3H 0.03 g 2:5 70 14 94 ± 0.06

5 Fe3O4@OS-SO3H 0.03 g 2:5 50 14 39 ± 0.61

6 Fe3O4@OS-SO3H 0.03 g 2:5 RT 14 11 ± 0.89

7 Fe3O4@OS-SH 0.03 g 2:5 70 14 —

8 Fe3O4@OS 0.03 g 2:5 70 14 —

9 Fe3O4@OS-SO3H 0.03 g 0.5:5 70 14 35 ± 0.65

10 Fe3O4@OS-SO3H 0.03 g 1:5 70 14 63 ± 0.37

11 Fe3O4@OS-SO3H 0.03 g 3:5 70 14 94 ± 0.06

12 Fe3O4@OS-SO3H 0.03 g 2:5 70 3 12 ± 0.88

13 Fe3O4@OS-SO3H 0.03 g 2:5 70 6 34 ± 0.66

14 Fe3O4@OS-SO3H 0.03 g 2:5 70 9 57 ± 0.43

15 Fe3O4@OS-SO3H 0.03 g 2:5 70 12 74 ± 0.26

a Isolated yields. bBold values indicate the optimum condition.
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TABLE 2 | The esterification of carboxylic acids with alcohols in the presence of

the Fe3O4@OS-SO3H nanocatalysta.

Entry R R’OH Time (h) Yield (%)b

1 CH3 CH3(CH2)16CH2OH 17 91 ± 0.09

2 PhCH2CH2 CH3(CH2)16CH2OH 21 90 ± 0.1

3 Ph CH3(CH2)16CH2OH 24 88 ± 0.12

4 CH3(CH2)7CH=CH(CH2)7 CH3(CH2)16CH2OH 22 90 ± 0.1

5 CH3 CH3(CH2)6CH2OH 14 94 ± 0.06

6 CH3(CH2)7CH=CH(CH2)7 CH3(CH2)6CH2OH 19 89 ± 0.11

7 CH3 CH3(CH2)5CHOHCH3 18 92 ± 0.08

8 Ph CH3(CH2)5CHOHCH3 24 89 ± 0.11

aReaction conditions: carboxylic acid (5 mmol), alcohol (2 mmol), and catalyst (0.03 g).
b Isolated yields.

FIGURE 9 | Reusability of the Fe3O4@OS-SO3H nanocatalyst.

The PXRD of the recovered Fe3O4@OS-SO3H also showed
six peaks at 2θ = 30.18, 35.68, 43.30, 54.12, 57.37, and 62.91
degrees, which are in good agreement with the PXRD pattern
of the fresh nanocatalyst. This analysis confirms the high
stability of the crystalline structure of Fe3O4 nanoparticles
during several reuse stages. It also important to mention that
the appearance of a broad peak at 2θ = 20–25 degrees,
corresponding to the organosilica layer, proves that the
organosilica shell remains after several times of recycling and
reuse (Figure 11).

Next, a hot filtration test was performed to investigate the
nature of the catalyst under the applied conditions. For this,
after completion of about 50% of the esterification process, the

FIGURE 10 | FT-IR spectrum of the recovered Fe3O4@OS-SO3H nanocatalyst.

FIGURE 11 | PXRD pattern of the recovered Fe3O4@OS-SO3H nanocatalyst.

TABLE 3 | The comparison study between the efficiency of the present catalyst

with that of other catalystsa.

Entry Catalyst Conditions Recovery

times

Reference

1 GO Cat. 50 wt%, 100◦C, 24 h 5 Chen et al.,

2017

2 S-MIL-101 Cat. 0.05 g, 70◦C, 7 h 3 Hu et al., 2020

3 GO Cat. 0.1 g, 120◦C, 6 h 4 Gao et al., 2015

4 SO4/Mg-Al-Fe3O4 Cat. 4 wt%, 95◦C, 5 h 5 Gardy et al.,

2019

5 Fe3O4@OS-SO3H Cat. 0.03 g, 70◦C, 14 h 6 This work

aGO, graphene oxide; MIL, Material Institute Lavoisier.

catalyst was removed using a magnetic field and the progress
of the residue mixture was monitored. Interestingly, no further
conversion was observed in this case. This result confirms no
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leaching and the high stability of supported sulfonic acidmoieties
under reaction conditions.

Finally, the catalytic performance of the Fe3O4@OS-SO3H
nanocatalyst was compared with that of a number of previously
reported catalysts in the esterification process (Table 3). As
demonstrated, the efficiency of the present catalyst is much
higher than that of most of previously reported systems in terms
of recycling times, reaction time, and reaction temperature. These
findings may be attributed to the magnetic properties and good
lipophilicity of the present catalyst.

CONCLUSION

In summary, in the present study, for the first time a novel
sulfonic acid containing magnetic methylene-based organosilica
with a core-shell structure (Fe3O4@OS-SO3H) was prepared
as an effective nanocatalyst for biodiesel production. The SEM
and TEM images of Fe3O4@OS-SO3H demonstrated spherical
particles with a core-shell structure for this material. The FT-
IR analysis confirmed the successful immobilization of sulfonic
acid groups on the Fe3O4@OS nanostructure. The VSM analysis
proved the good magnetic properties of Fe3O4@OS-SO3H, and
PXRD analysis confirmed the high stability of Fe3O4 NPs

during the modification process. TG analysis proved the good
immobilization of sulfonic acid and methylene functional groups
onto/into the material framework and showed the high thermal
stability of the Fe3O4@OS-SO3H nanocatalyst. The Fe3O4@OS-
SO3H nanocatalyst was effectively applied in the esterification of
carboxylic acids as an effective process for biodiesel synthesis.
Also, this catalyst could be recycled and reused several times with
its activity kept.
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