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The term “performance prediction” commonly denotes the analysis of building designs,

for instance, in view of their future energy demand. The notion of “performance gap” is

invoked, when actual performance of buildings does not match preceding predictions.

There has been a recent trend to attribute the so-called energy performance gap

predominantly (sometimes even entirely) to user behavior. As a consequence, a number

of research efforts (subsumed hear as “the performance gap research program”) pursue

more accurate predictions of user behavior and the exploitation of user-related energy

efficiency potential via behavioral modification. In the present contribution, we critically

revisit the premises and orientation of these efforts. Firstly, we suggest to situate the

related discourse within a structured conceptual framework to objectively discuss the

spectrum of potential contributors to the errors in building energy use predictions.

Secondly, we examine the frequently purported utility of probabilistic methods and

uncertainty analysis as an effectual remedy to the problem of performance gap.

Keywords: buildings, energy, performance gap, prediction, simulation

INTRODUCTION

Numeric simulation tools can support the analysis of buildings’ physical behavior (Clarke,
2007). An instance of such behavior pertains to buildings’ energy demand for heating, cooling,
lighting, and ventilation (De Wilde, 2018; Hensen and Lamberts, 2019). Frequently, the notion
of “performance prediction” is used to denote the analysis of building designs, for instance,
in view of their future energy demand. When actual performance of buildings does not match
previous predictions, a further notion, namely “performance gap” is invoked. As such, the
disagreement between buildings’ simulated and actual energy performance can be the result of
multiple sources of uncertainty, including assumed building properties, internal processes, and
external boundary conditions (i.e., weather). Whereas, such causes and their relative role in
prediction errors may have to be identified on a case by case basis, there has been a recent trend to
attribute the so-called performance gap predominantly (sometimes even entirely) to user behavior
(Yan et al., 2015; Hong et al., 2016; Jia et al., 2017; Yoshino et al., 2017). As a consequence,
numerous research efforts in the building energy use domain pursue both better predictions of
user behavior (Wagner et al., 2018; Mahdavi and Tahmasebi, 2019) and the exploitation of user-
related energy efficiency potential via behavioral modification (Ueno et al., 2005). In the present
contribution, we critically revisit these efforts, subsumed under the heading of “the performance
gap research program,” from a 2-fold perspective. Firstly, a structured conceptual framework is
proposed to objectively discuss the spectrum of potential occupant-related contributors to the
errors in simulation-based energy use predictions. The entailed logical analysis suggests that
the a priori identification of the human factor as responsible for the performance gap may be
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misleading. Secondly, the frequently promoted probabilistic
methods and uncertainty analysis are considered in view of
their potential as an effective remedy to the problem of
performance gap. Thereby, a key question pertains to the
usefulness of uncertainty analysis for buildings’ energy evaluation
processes in those cases where the assumed priors are not
empirically grounded.

THE PERFORMANCE GAP RESEARCH
PROGRAM

To start with a disclaimer, there is, to our knowledge, no explicitly
formulated performance gap research program. However, a
cursory review of a number of recent and ongoing research efforts
reveals certain recurrent leitmotivs that may be interpreted as
a kind of implicit research program (Menezes et al., 2012;
Andersen et al., 2016). The premises and arguments of this
research program could be stated as follows:

(i) Buildings’ actual (monitored) energy use can deviate
frequently and largely from prior computational (typically
simulation-based) predictions. This circumstance underlies
the performance gap parlance.

(ii) Even in case of similar buildings (identical designs in terms
of geometry and layout, identical construction features, and
same location in terms of urban context and microclimate)
monitored energy use magnitudes can vary significantly.
Such differences must thus be due to differences in
occupancy patterns and behavior.

(iii) From statements i and ii above it follows that, in order to
close the performance gap, more accurate predictions of
occupancy patterns and behavior are needed that must take
the stochastic nature of occupancy-related phenomena and
processes into account.

(iv) To address the need stated in statement iii, we need to a)
replace conventional (schedule-based) occupant presence
and (rule-based) behavioral models with stochastic models
and b) routinely conduct concomitant uncertainty analysis.

(v) Independent of modeling challenges, the mere fact
of people’s significant impact on buildings’ energy
performance underlines the need for concerted efforts and
campaigns to encourage and guide building occupants
toward energy-conscious and energy-efficient behavior.

We only briefly address a few of the inconsistencies of this
program in the following (we refrain from an extensive analysis
not only to circumvent the straw man fallacy criticism, but also
because, as it will become more clear later, we want to focus on a
specific aspect of this program):

Statement i above is as such largely correct: It is backed
by empirical evidence. Statement ii appears likewise plausible.
However, it must be dealt with cautiously: Even in case of
seemingly identical building objects, we cannot simply exclude
differences and inconsistencies in construction quality and details
as well as quality fluctuations in building systems installations.
Moreover, despite the unitary appearance of certain building
objects (say, terrace houses), there may be differences, for
instance in terms of solar exposure (e.g., due to the site layout)

and air flow patterns. However, the main flaw of the research
program, as described above, is to assume that statements iii and
iv simply follow from statements i and ii. The entailed deduction
here entails a threefold fallacy:

• First, there is not clear at all if predictions of future occupancy
patterns and behavior (particularly in case of unknown
populations) can be arbitrarily enhanced.

• Second, it is not established that the replacement of schedules
and rules with stochastic models inevitably results in higher
predictive accuracy of the values of energetically relevant key
performance indicators (Mahdavi et al., 2018). Note that the
emulation of the probabilistic look of energy use dynamics is
not the same as provision of accurate predictions of future
energy use.

• Third, even if we grant that significant improvements in
occupancy-related predictions are possible (for instance, in
case of existing buildings, and known populations), it does
not follow that performance gap—in the sense of energy
performance predictions for building designs—can be closed:
This circumstance should be utterly clear, if we just reflect
upon the difficulties—if not the impossibility—of mid-term
and long-term weather predictions.

Nonetheless, rather than continuing with the exposition of the
argumentative flaws in the performance gap research program
in its entirety, we would like to draw attention to its—
rather innocent sounding—second and last statements (items
ii and v in the above formulation). The tacit assumptions
here is not only that people’s influence on buildings’ energy
performance is significant, but also that occupants generally
have at their disposal the options and possibilities to reduce
the negative implications of this influence (i.e., wasteful
energy use): All they need to do is to simply acquire and
display the right disposition and attitude toward energy-
conscious behavior. It appears as though, from this tacit
assumption, and without sufficient reflection, the occupant-
centric performance gap research program derives a kind
of preeminent standing for probabilistic modeling endeavors
and behavioral modification projects (Hong et al., 2016).
Notwithstanding the importance of the latter initiatives, we
suggest that there is still a need for a deeper and more
systematic reflection on the ways by which people can influence
buildings’ energy use. Specifically, it is important to better
understand the nature and categories of such influence, if
meaningful occupancy-related energy efficiency potentials are
to be exploited. Toward this end, in the next section of
the present contribution, we suggest and discuss a possible
categorization of people’s role in buildings’ energy performance
together with assessment of the extent to which both improved
modeling techniques and informational campaigns could spark a
positive impact.

REFLECTIONS ON THE OCCUPANTS’
INFLUENCE SPACE

As alluded to in the introduction, people’s assumed impact on
buildings’ energy performance has triggered a number of research
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efforts into the patterns and implications of occupants’ control-
oriented behavior in buildings. However, at times it appears
that such efforts are made without prior deep reflection on
nature, conditions, mechanisms, and scope of behavior impact
on energy performance. It may be thus beneficial to reflect upon
the logical space of occupants’ influence possibilities. Ideally, such
reflection should lead to a categorized list of occupant-related
issues together with the mechanisms by which they influence
energy usage.

A possible starting point for such a categorization effort could
be a previously formulated distinction between people’s passive
and active effects on building performance in general and energy
use in particular (Andersen et al., 2007). Passive effects are the
mere consequence of people’s presence in buildings. Focusing
on energy-relevant matters, sensible, and latent heat emission
by occupants contribute to the so-called internal energy gains
and can thus influence buildings’ heating and cooling loads.
Other emissions related to occupants’ presence in buildings (e.g.,
carbon dioxide and various pollutants) may not have direct
relevance to buildings’ heat transfer processes, but are relevant
to required ventilation rates, be those modulated centrally
or directly by occupants (e.g., via operation of windows for
natural ventilation). Active effects are, on the other hand, the
result of occupants’ interactions with those building elements,
components, and systems that are either explicitly meant
to facilitate indoor environmental control (heating, cooling,
ventilation, and lighting) or indirectly influence buildings’
thermal balance (i.e., due to heat emission by computers and
associated peripherals, electronic equipment, etc.). Note that
indoor environmental control devices encompass both envelope
elements (such as windows and blinds) and technical systems (for
heating, cooling, and ventilation). The scope of energy-relevant
implications of occupants’ interactions with these devices is
obviously a function of their availability and the extent to which
they can be manipulated. For instance, the lighting systems in an
office may be:

(i) centrally controlled,
(ii) operated based on occupancy sensing,
(iii) operated based on daylight sensing,
(iv) switched on and off by occupants,
(v) manipulated by occupants using a dimmer (for continuous

control of the light levels).

In instances i to iii above, occupants typically cannot directly
or actively influence the device state (and, consequentially,
neither the resulting energy ramifications). As with the lighting
systems, heating, cooling, and ventilation systems may be
centrally controlled or they may afford some level of occupant
interaction, from rudimentary on/off alternatives to extended
menus for definition and scheduling of assorted set-points
to define preferred ranges for indoor environmental variables
such as temperature and humidity. Consequently, the extent of
occupants’ impact on energy use depends on the availability,
type, and resolution of systems control opportunities, which
may greatly differ from one building to another, even within
typologically similar building populations (e.g., residential or
commercial buildings).

This brief analysis points to the problematic nature of general
and global statements regarding the scope and magnitude
of occupants’ influence on buildings’ energy use. Even if
we, notwithstanding all the above mentioned caveats, identify
occupant behavior as a major contributor to the performance
gap, we should be careful about the coherence of the associated
research program: It can be hardly exhausted in pottering around
with stochastic modeling methods or formalistic (empirically
ungrounded) uncertainty analysis exercises. Likewise, to be
effective, occupancy-centric energy efficiency arguments and
campaigns need to be ideally based on a prior understanding of
not only the diversity of occupants’ needs and preferences, but
also the actual degree of control-relevant affordance offered by
the targeted buildings and their technical systems.

Consider a number of building devices such as envelope
elements (windows, shades), electrical equipment (luminaires,
fans), and building systems terminals (i.e., interfaces of
building systems with indoor spaces (e.g., radiators, diffusors).
The following Table 1 provides an illustrative summary
representation of these devices together with:

(a) presumed reasons why the occupants would operate them,
(b) how (by which means) the occupants could operate them,
(c) the kind of energy source that could be affected by

occupant actions,
(d) the reasons why occupant-based actions could lead to

energy inefficiency.

We refer to this representation as illustrative, as it is not meant to
be either exhaustive or highly detailed. For instance, devices are
organized in a number of broad categories (first column). With
“tangible” purpose of operation (second column) we refer to the
circumstance that devices might be operated because of reasons
other than the commonly assumed default ones: For instance,
windows might be opened to respond to a psychological need to
establish immediate connection to the outside environment, or
they may be closed to escape perceived noise and air pollution.
Likewise, in certain situations, shades could be applied due
to privacy concerns, rather than solar radiation, or daylight
control. Nonetheless, the summary representation of Table 1

allows to pinpoint some of the challenges of the aforementioned
occupant-centric energy efficiency research program. The second
column of Table 1 summarizes a listing of why occupant would
make use of device control opportunities (if available). They
basically correspond to the reasons why we make buildings
in the first place, namely to respond to occupants’ need for
healthy and comfortable indoor environments. Assuming (i)
occupants are conscious of their needs, (ii) these needs are
“reasonable,” (iii) buildings’ control devices in general and means
of occupants’ interactions with these devices in particular are
properly conceived and implemented, we are left only with a
rather limited number of energy efficiency opportunities in the
patterns of occupant behavior (see last column of Table 1).

With the “presence” aspect we simply mean the following:
When occupants are absent, provision of services—and
associated energy use—is obviously not necessary. Technical
solutions may be adopted to address at least certain dimensions
of this problem (e.g., occupancy sensing for lighting controls)
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TABLE 1 | Summary representation of buildings’ control devices with associated functionality, interface, relevant energy demand categories, and sources of inefficient

operation.

Device/equipment Tangible purpose of

operation

Common means of

occupant-based control

Affected kind of energy

demand

Sources of occupant-centric

energetic inefficiency

Windows Air quality, thermal comfort Manual and/or mechanically

supported operation

Heating and cooling Presence, improper operation,

“unusual” comfort preferences

Shades Visual comfort, thermal

comfort

Manual and/or mechanically

support operation

Heating and cooling,

electricity (due to lighting)

Presence, improper operation

Luminaires Visual comfort Physical or digital

switches/dimmers

Internal thermal gains,

electricity

Presence, “unusual”

preferences

Fans Thermal comfort Physical or digital

switches/dimmers

Electricity, thermal gains,

cooling

Presence, “unusual”

preferences

Radiators Thermal comfort Physical valves, physical and/or

digital thermostats

Heating and cooling Presence, “unusual”

preferences

Diffusers Thermal comfort, air quality Physical and/or digital

nubs/actuators

Heating and cooling Presence, “unusual”

preferences

HVAC system Thermal comfort, air quality Physical and/or digital

thermostats

Heating, cooling, ventilation Presence, “unusual”

preferences

such that all systems would automatically revert back to default,
most energy-efficient states in the absence of occupants. Of
course proper occupant behavior could also remediate this
problem—for instance when occupants would simply turn
off the lights when leaving rooms in a building. However,
proper behavior is not merely a matter of occupants’ attitude
and consciousness. The design and configurations of building
systems’ hardware and software can both facilitate or impede
proper behavior. For instance, heating and cooling systems
would have to offer not only the possibility to schedule the course
of set-point temperatures (to account for presence, time of the
day/week, different rooms, different activities), but implement
the possibility in terms of an intuitive and practical user interface.

Table 1 includes also, in the last column, the phrase “unusual”
comfort preferences. But are comfort preferences out of the
common ranges unreasonable? It seems sensible to remind
occupants of the potential of adaptive measures (e.g., adjusting
the clothing levels) in lieu of very high (low) heating (cooling) set-
points. But what is to be done if occupants thus addressed remain
unresponsive? What is to be done in cases where occupants
in residential buildings insist on winter-time natural ventilation
due to their attachment to a very purist notion of fresh air,
other than perhaps confronting them—via dedicated energy use
monitoring—with the economic implications of their behavior?

Another energetically detrimental mode of occupant behavior
involves “improper” device operation. Instances of such
improper control regime includes, for example, intensive winter-
time (summer-time) natural ventilation when the building is in
heating (cooling) mode. Likewise, under temperate conditions
and when glare-free daylight is available, it would be unwise to
keep shades closed and deploy electrical lighting. Also in these
kinds of scenarios, the design and configuration of building
control systems could contribute to or impede energy-conscious
behavior. As it is not always straight-forward for occupants to
gauge the type and time of proper control actions, presumably

systems that would provide relevant information (outdoor
conditions, heating/cooling systems’ operational states) could
be beneficial.

Be that as it may, it is not clear how we can integrate the above
considerations pertaining to occupant presence, their comfort
preferences, and the appropriateness of their control-oriented
behavior into a coherent solution to the problem of performance
gap as relevant to the prediction of buildings’ future energy
requirements. Granted, would we knew, at the design stage,
the attitudinal stance (energy-consciousness) and the technical
savviness of a building’s future occupants (information level
concerning optimal building control strategies), we would be
probably in a better position to more reliably predict its future
energy performance. Likewise, had we at our disposal reliable
models to gauge the short-term, mid-term, and long-term effects
of energy-relevant informational (or feedback) campaigns, we
probably could do a better job of energy use predictions. But
short of cases involving existing buildings with known occupant
populations, it is difficult to fathom how we could become
into possession of such kinds of information and such kinds of
models. Note that it is not at all clear to which extent the typically
modest sources of information that are currently available could
be generalized, given the diversity of building types, locations,
and populations.

The preceding principal analysis of the dependence of
buildings’ energy use on occupants’ presence and behavioral
patterns was not meant to belittle the importance of the quest for
more advanced and versatile models of such patterns. Aside from
the utility of data-driven occupancy models (particularly in case
of operational optimization of existing buildings), all research
geared toward a better understanding of occupant behavior is
ultimately of great value to the building design and operation
community. Rather, the objective was in a sense to point to an
argumentative gap in the so-called performance gap research
program (as outlined in the section The Performance Gap
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Research Program of this contribution). Improving the detail
level and realistic feel of our occupancy models is in and of itself
not a warrant for the closure of performance gap. Likewise, the
extent and longevity of behavioral modification campaigns on
buildings’ energy use depend on a complex set of variables and
are not necessarily generalizable for all kinds of building types,
locations, and populations. Having said this, the performance
gap research program may have the potential to incrementally
improve energy demand assessment procedures, especially if the
coverage and density of observational information regarding
occupant behavior significantly increases in future. A relevant
question in this context is as follows: In the absence of
such rich and comprehensive empirical information on user
behavior, can certain types of formal and simulation-supported
analysis methods and tools nonetheless aid building design and
operation professionals in view of systematic energy performance
specification and projection, while taking the occupancy factors
into account? We briefly address some aspects of this possibility
in the next section of the paper.

SENSITIVITY AND UNCERTAINTY
ANALYSIS

In the foregoing discussion, we alluded to two shortcomings
of the performance gap research program as commonly
approached. The first shortcoming, addressed above, concerns
the a priori assumption of occupants’ behavior as a kind
of default contributor. The second shortcoming is implied
in the assumption that replacing single-value performance
predictions with distributions of key performance indicator
values could alleviate the performance gap problem, even if
such distributions are based on insufficient empirical data. To
give this assumption the benefit of doubt, in the following
we examine two possibilities, whereby potential beneficiaries of
building performance simulation are provided with distributions
of predicted performance indicator values as opposed to single
values. The first possibility (see section Illustration of the
Performance Consequences of the Diversity of Occupants’
Preferences) explores intuitive data presentation formats that
are meant to visualize the consequences of the variation
in occupancy-related model input assumptions on simulation
results. The second possibility (see section Impact of Set-Point
Distributions on Estimated Building Energy Demand) examines
the effect of input variable distributions on the corresponding
distributions of computed performance indicator values. Finally,
we explore the possibility that, even though basic user-related
regarding building occupants may be subject to inter-occupant
diversity, their statistical distributions may be similar (see section
Occupancy Presence Patterns in Office Buildings). This would
mean that even if—without authentic empirical information—
the assumptions regarding the basic value of such user-
related data would be arbitrary, the assumptions regarding
their stochastic distribution would not. Toward this end, the
case study quoted in section Occupancy Presence Patterns in
Office Buildings considers the variables pertaining to occupants’
presence in an office building.

TABLE 2 | Assumptions concerning the three occupant categories (“H,” “M,” “L”)

regarding heating and cooling set-points, indoor illuminance threshold for

operating electrical lighting, and vertical irradiance threshold [incident on the

façade] for operating shades [adapted from Mahdavi et al. (2018) with permission

from A. Mahdavi, M. Taheri, and F. Tahmasebi].

Occupant categories Set-points [◦C] Light [lx] Shade [W.m−2]

Heating Cooling

“L” 19 26 300 100

“M” 21 24 500 200

“H” 22 23 700 300

Illustration of the Performance
Consequences of the Diversity of
Occupants’ Preferences
A typical way occupants can influence buildings’ energy demand
is related to their comfort-related preferences in view of indoor
environmental conditions. A recent effort (Mahdavi et al., 2018)
explored the degree to which the consideration of diversity in
occupants’ comfort-related preferences (as expressed in terms
of various system operation set-points) can influence buildings’
energy performance (as expressed via key performance indicators
such as annual heating and cooling demand). Thereby, a mid-
rise office building in Vienna, Austria was simulated with
varying compositions of occupants in terms of their relative
preferences concerning such set-points. In the absence of
empirically-based information, the study was conducted based
on the assumption of three general groups of occupants with
differing preference ranges and corresponding—hypothesized—
positive and negative energy performance implications. These
implications were expressed in terms of typical performance
indicators such as annual and peak heating and cooling loads:

(i) A first group of occupants (“H”) was assumed to have
a narrower range of acceptable indoor environmental
conditions expected to result in a higher energy demand.

(ii) A second group of occupants (“M”) was assumed to have
more moderate expectations expected to result in a medium
energy use level.

(iii) A third group of occupants (“L”) was expected to have the
most flexible expectations expected to have lower energy
demand implications.

The assumptions with regard to heating, cooling, lighting,
and shading set-points for the three groups of occupants are
summarized in Table 2. Furthermore, a number of scenarios
with different compositions of occupants from the three above
mentioned groups were defined and the implications of these
scenarios for the simulated values of relevant key performance
indicators were studied.

Figures 1, 2 illustrate the deviation of typical performance
indicators (annual and peak heating and loads) from the
benchmark (i.e., 100% type “H” occupants). The ratio of the
number of offices with type “H” occupants to the total number
of offices is shown on the x-axis, whereas the deviation of the
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FIGURE 1 | Deviation of the annual heating demand from the benchmark,

depending on the fraction of H, M, and L in total population. Reproduced from

Mahdavi et al. (2018) with permission from A. Mahdavi, M. Taheri, and F.

Tahmasebi.

FIGURE 2 | Deviation of the peak heating load from the benchmark,

depending on the fraction of H, M, and L in total population. Reproduced from

Mahdavi et al. (2018) with permission from A. Mahdavi, M. Taheri, and

F. Tahmasebi.

key performance indicator from the benchmark is given on the
y-axis. To better visualize the energy-related influence of the
different buildings’ populations, Figures 3, 4 illustrate the lines of
equal deviation of the annual heating and cooling demand from
the benchmark. The deviations depend on the ratio of the three
groups of occupants (“H,” “M,” and “L”) to the total population.

This case study illustrates both the potential and the
limitations of efforts to predict occupants’ influence on buildings’
future energy performance. The study shows the theoretically
ascertainable impact of the variability of the most basic modeling
assumptions such as heating and cooling set-point temperatures
on buildings’ energy use predictions. Given a specific context
(climatic region, urban context, building typology, building
systems, and fabrics), the sensitivity of key performance indicator

FIGURE 3 | Lines of equal deviation (from −5 to −20%) of the annual heating

demand from the benchmark, depending on the fraction of H, and M in total

population. Reproduced from Mahdavi et al. (2018) with permission from A.

Mahdavi, M. Taheri, and F. Tahmasebi.

FIGURE 4 | Lines of equal deviation (from −10 to −50%) of the annual cooling

demand from the benchmark, depending on the fraction of H, and M in total

population. Reproduced from Mahdavi et al. (2018) with permission from A.

Mahdavi, M. Taheri, and F. Tahmasebi.

values (KPIs) to model input variations can be computed and
visualized. But in the absence of real (empirically secured)
estimation of the relevant population’s traits and distributions
(e.g., thermal comfort preferences of future occupants), the utility
of the computed ranges of KPIs remain rather limited.

Impact of Set-Point Distributions on
Estimated Building Energy Demand
As mentioned before, it has been suggested that, instead of
mere single numbers, energy performance calculation results
should include uncertainty ranges. As sensible as this suggestion
is, it does not specify the basis for the specification of such
uncertainty ranges. Again, there may be a theoretical possibility,
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that computed uncertainty ranges for performance indicators
could be, to a certain extent, resistant to the ranges and shapes
of associated input data distributions. A recent case study
explored this possibility via systematic simulation runs applied
to a sample building in Italy (Berger et al., 2020). Thereby,
we considered the implications of different distribution shapes
and ranges of occupancy-related input data assumptions for
computed values of key performance indicators such as annual

heating demand. To exemplify the results of this study, consider
five different distributions of computed annual heating demand
of a typical residential building in Milan, Italy as shown in
Figure 5. The question is, what constitutes the informational
value of these very different distributions for those who aremeant
to interpret and utilize the simulation results? In the present
case, the diversity of the distributions is the consequence of
the—arbitrarily assumed—input data variations with regard to

FIGURE 5 | Computed annual heating demand distributions as a consequence of assumed input variable distributions (see Figure 6). Reproduced from Berger et al.

(2020) with permission from C. Berger, E. Primo, D. Wolosiuk, V. Corrado, and A. Mahdavi.

FIGURE 6 | Assumed heating temperature set-point distributions toward computation of annual heating demand (see Figure 5). Reproduced from Berger et al.

(2020) with permission from C. Berger, E. Primo, D. Wolosiuk, V. Corrado, and A. Mahdavi.
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heating temperature set-point frequencies, namely three normal
distributions with three different widths, namely narrow (N_N),
standard (N_S), and wide (N_W) as well as one left-skewed
distribution (S_L) and one right-skewed distribution (S_R)
(see Figure 6). It could be argued that the simulation results’
distribution would be more persistent (less prone to variation
of input variable distributions), if more than one input variable
would be simultaneously and randomly varied in the course of
Monte Carlo simulations. Figures 7, 8 display the results of a
preliminary test of this possibility. Figure 7 shows three very
different distributions of computed heating demand (qa,h) of the

FIGURE 7 | Computed distributions of annual heating demand as a

consequence of assumed input variable distributions (see Figure 8).

Reproduced from Berger et al. (2020) with permission from C. Berger, E.

Primo, D. Wolosiuk, V. Corrado, and A. Mahdavi.

aforementioned residential object. In this case, two key input
variables, namely heating temperature set-point (θsp−h) and air
change rate (ACH) were concurrently randomized each with
three different distribution functions (A, B, and C) as shown
in Figure 8. As these preliminary results seem to suggest, there
is no evidence that extensive yet arbitrary variations of input
data distributions must result in reproducible and consistent
distributions of computed key performance indicator values.
As with the previous case study, we must conclude that the
mere inclusion of uncertainty ranges in declaration of energy
performance predictions may be of limited value, as long as the
underlying input data variations are not empirically grounded.

Occupancy Presence Patterns in Office
Buildings
A recent study explored the statistical variance of the defining
markers of presence patterns in an office building area in
an educational building (see Mahdavi and Tahmasebi, 2015
for details). Such markers include, for example, occupants’
first arrival times (FA), last departure times (LD), presence
duration (PD), number of transitions between occupied and
vacant states (NT), working hours (WH), absence duration (AD),
and fraction of presence (FOP). Whereas, the mean values of
such markers could be arguably assumed to be very different
amongst different office workers, we could speculate that their
statistical distributions could be similar. Table 3 summarizes,
for the eight occupants working in this area and for some
of the aforementioned markers, the observed presence data in
terms of three basic statistics, namely mean, standard deviation,
coefficient of variation (CV). Despite the small number of
occupants, the values of the eight markers for all occupants
were processed in terms of probability distribution box plots.

FIGURE 8 | Selected distributions of input variables θsp−h and ACH toward computation of annual heating demand (see Figure 7). Reproduced from Berger et al.

(2020) with permission from C. Berger, E. Primo, D. Wolosiuk, V. Corrado, and A. Mahdavi.
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TABLE 3 | Summary of the statistical analysis results [adapted from Mahdavi and Tahmasebi (2015) with permission from A. Mahdavi and F. Tahmasebi].

Indicators Statistical measures Occupants

P1 P2 P3 P4 P5 P6 P7 P8

FA Mean 11.1 8.7 9.7 9.8 9.6 10.0 10.0 9.4

Standard deviation 1.2 1.1 1.2 1.2 1.4 1.3 1.4 0.7

CV 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

LD Mean 18.0 16.7 18.2 18.0 17.7 17.6 18.3 16.2

Standard deviation 1.4 0.8 1.6 1.7 1.8 1.6 1.2 1.1

CV 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1

NT Mean 4.7 5.4 5.6 5.0 5.0 4.8 5.6 5.0

Standard deviation 1.9 1.8 2.2 2.1 2.1 2.0 1.9 1.6

CV 0.4 0.3 0.4 0.4 0.4 0.4 0.3 0.3

WH Mean 6.9 8.0 8.6 8.3 8.1 7.6 8.3 6.8

Standard deviation 1.8 1.4 1.9 1.9 2.1 2.0 1.8 1.3

CV 0.3 0.2 0.2 0.2 0.3 0.3 0.2 0.2

AD Mean 3.6 3.6 4.5 4.3 4.5 4.2 4.4 3.6

Standard deviation 1.5 1.3 1.7 1.7 1.8 1.7 1.6 1.2

CV 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.3

FOP Mean 0.49 0.55 0.48 0.48 0.47 0.46 0.48 0.48

Standard deviation 0.16 0.14 0.16 0.15 0.15 0.15 0.13 0.13

CV 0.33 0.26 0.33 0.32 0.33 0.34 0.28 0.28

FIGURE 9 | First arrival time boxplot. Reproduced from Mahdavi and

Tahmasebi (2015) with permission from A. Mahdavi, and F. Tahmasebi.

Figures 9–11 provide instances of such box plots (for FA, WH,
and FOP). The results support a number of observations:

Statistically speaking, some indicators (PD, NT, FOP) appear
to display a normal (symmetrical) distribution pattern, whereas
others (FA, LD, WH) are non-symmetric (see Figures 9–11).
Specifically, as one could expect, FA is left skewed (most arrivals
occur before noon) and LD is right skewed (most departures
occur after noon). Likewise, WH is plausibly right skewed, as
the probability of shorter than normal working hours is higher
than extremely long ones. Certain markers (FOP, NT) show a
somewhat higher level of consistency across multiple occupants

FIGURE 10 | Working hours boxplot. Reproduced from Mahdavi and

Tahmasebi (2015) with permission from A. Mahdavi, and F. Tahmasebi.

(as expressed in the values of the statistics considered), suggesting
that their values might be less prone to occupants’ diversity.

More importantly, considering CV as a classical statistical
dispersion measure applied to the distribution of the markers’
values, we notice that its values do not vary much across different
occupants (see Table 3). If confirmed by more extensive studies
in the future, this finding could be of significance: Whereas the
absolute averaged long-term values of occupancy patternmarkers
are very different from one occupant to another, the extent
of variance (or dispersion) of the values could be statistically
similar, consistent, and—at least to a certain degree—resistant
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FIGURE 11 | Fraction of presence boxplot. Reproduced from Mahdavi and

Tahmasebi (2015) with permission from A. Mahdavi, and F. Tahmasebi.

to occupants’ diversity. Consequently, basic information about
the shape of distribution (normal, skewed, etc.) together with
the dispersion information can provide a reliable basis for the
randomization of typical occupancy schedules. This in turn can
provide the basis for stochastic occupancy models suitable for
deployment in building performance simulation applications.
Needless to say, the credence of the above conclusions needs
to be re-examined in future studies involving different settings,
different building types, and generally a much broader empirical
data set based on a much larger number of occupants.

CONCLUSION

We provided a critical analysis of the “performance gap” notion
and the associated research program. This program identifies
occupants as a major contributor to the observed discrepancies
between predicted and actual energy performance of buildings.
Consequently, it assigns priority to more accurate predictions of
user presence and behavior in buildings (typically, via pursuit of
probabilistic modeling approaches) as well as efforts to encourage
more energy-conscious user behavior (typically, via information
campaigns or dynamic energy-centric feedback mechanisms).

Notwithstanding the value of such efforts, we argued that
their premises and potential have not been sufficiently and
realistically gauged. Toward this end, we suggested the need
for a more systematic assessment of the scope of users’ energy-
relevant impact on buildings’ performance. To facilitate the
related discourse, we introduced a structured representation of
the items and categories of a conceptual user influence space.
This representation suggests, that not all user-related energy
inefficiency factors can be ameliorated by users themselves.
Whereas, in certain cases waste of energy can be indeed caused
by improper user behavior, in other instances poorly designed,
configured, and operated environmental control systems might
carry the bulk of responsibility. Likewise, it is not clear what is the
relative weight of seemingly unreasonable user-desired indoor
environmental conditions in buildings’ total energy use, and if

and to which extent occupants should or could be convinced
toward rethinking their preferences. Given these observations,
we concluded that one should be careful with across-the-board
declaration of human behavior as the central contributor to
performance gap and wasteful energy use.

We further addressed the potential for and usefulness of
the frequently promoted probabilistic methods and uncertainty
analysis in view of their potential as an effective remedy to
the performance gap dilemma. Thereby, a key question pertains
to the usefulness of uncertainty analysis for buildings’ energy
evaluation processes in those cases where the assumed priors
are not empirically grounded. As such, we suggested that
morphological incorporation of stochastic features in occupancy-
related model input data does not necessarily translate into
more accurate predictions of occupancy patterns and behavior
as relevant to specific building designs. Simply replacing
conventional (schedule-based) occupant presence and (rule-
based) behavioral models in simulation tools with stochastic
models must not result in higher predictive accuracy of the values
of energetically relevant key performance indicators.

Finally, we also reflected on the potential of various forms
of uncertainty analyses in the context of the performance
gap problems. Toward this end, we considered a number
of cases studies, whereby potential beneficiaries of building
performance simulation are provided with distributions of
predicted performance indicator values as opposed to single
values. The results of the related treatment can be summarized
as follows: Adequate data presentation formats can effectively
visualize the consequences of the variation in occupancy-related
model input assumptions for the simulation results. However, the
value of such visualizations is proportional to the validity and
robustness of the underlying empirical information. Likewise,
the results of computational energy performance modeling can
be of course presented not only in terms of single values, but
in terms of distributions of computed performance indicator
values. However, the utility of such distributions is again limited,
if they are not based on empirically grounded information on the
corresponding distributions of the input variable values.

Given the multiple layers of genuine uncertainty concerning
the long-term evolution of a number of salient variables related
to buildings and their internal and external boundary conditions,
we might have to bid farewell to the idea that the so-called
performance gap can be entirely closed. This does not mean
that we should not aspire to a higher fidelity level with regard
to occupant-specific assumptions when projecting buildings’
future performance. Emulation of the stochastic feel of realistic
occupancy patterns may be useful in view of a number of
specific building engineering questions and problems. But a
specific modeling formalism, in and of itself, does not warrant
more accurate predictions into the future. Ultimately, availability
of ever more comprehensive repositories of actual occupancy
information (covering multiple climatic boundary conditions,
building types, populations) could provide the basis for more
reliable behavioral models and derivative building codes and
standards as well as energy policies. While not fully closing the
performance gap, this could indeed significantly improve the
consistency and transparency of future evidence-based building
design and operation processes and practices.
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