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In order to model fluctuation process characteristics of photovoltaic (PV) outputs, this

paper proposes a novel mixed Gaussian model with the expectation maximization (EM)

algorithm. Firstly, random components of PV outputs are obtained through computing the

difference between the measured data of PV output and its theoretical outputs. Secondly,

the EM algorithm is used to determine the weight of different Gaussian distribution

functions. Finally, the mixed Gaussian model is obtained by linearly superimposing

these Gaussian functions with the weight. Based on the simulation results on the

measured data in Xichang City, China, the effectiveness of the proposedmodel is verified.

Furthermore, this model has proven to be significantly better than other traditional models

including t location-scale (TLS) distribution model.

Keywords: PV output modeling, fluctuation characteristics, probability density distribution, expectation

maximization algorithm, mixed Gaussian models

INTRODUCTION

Photovoltaic (PV) power generation is developing rapidly in recent years due to technology
maturity and cost reduction (Li Y. et al., 2018a). In 2017, the global PV market grew strongly.
Newly installed capacity exceeded 98 GW, an increase of 28.95% over the same period of last year.
Global installed capacity has exceeded 402.5 GW, showing a good momentum of development. In
the traditional countries such as the United States and Japan, the newly installed capacity reached
10.6 and 7 GW, respectively, which still maintained a strong development momentum. In terms
of the development of the PV industry, China has been at the leading level. In 2018, the newly
installed capacity of PV power generation exceeded 43 GW in China, down 18% from the previous
year, and the cumulative installed capacity exceeded 170 GW. It is expected that the growth of
PV installed capacity in China will continue to decrease in 2019, but under the strong demand of
emerging countries such as the United States, the European Union and India, it is expected that
the global installed capacity will still reach 111.3 GW. However, PV output has the characteristics
of randomness and volatility, and the distributed PV distribution points are wide area, a great
difference between regions, large fluctuation probability in 1 day, and high difficulty in forecasting.
Large-scale access will bring tremendous challenges to the reliability of the power grid operation.
In order to better understand the impact of distributed PV grid-connected power systems, it is
necessary to study its mathematical model and fluctuation characteristics.

Literature Review
In the aspect of distributed PV power generation estimation method, the literature
(Lappalainen and Valkealahti, 2017) uses the mathematical model of irradiance conversion and
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PV experiment to verify the influence of optical radiation changes
caused by cloud movement on the output of PV arrays through
a large amount of data. Literature (Cojocariu et al., 2015)
established a model of PV cell (PVC) by equivalent modeling,
and obtained the working parameters and characteristics of PVC.
Literature (Zhao et al., 2017) analyzes the effects of different
physical processes on PV output, decomposes the weather
physical process into large-scale weather processes and medium-
microscale weather processes, and then uses the t location-scale
(TLS) distribution to model the random components. However,
the classification of physical processes emphasizes meteorological
physical factors, ignoring the influence of other components,
and the boundary of attenuation modeling is rather vague.
Literature (Xia et al., 2017) analyzes the measured output of
PV power plants, decomposes the PV output sequence into
three components: the ideal output normalization curve, the
amplitude parameter and the random component, and uses
the amplitude parameter sequence to verify the validity of
the TLS distribution function fitting. In summary, the existing
analytical methods for the modeling of factors affecting PV
output are relatively imprecise, and the division of influencing
factors is relatively one-sided, and the statistical analysis of
random components is also relatively imprecise. Most of
the research focuses on fitting through the more popular
single probability density distribution function. It is necessary
to determine the distribution function with better fitting to
describe the digital characteristics of the random component of
PV output.

Contributions of This Paper
The main contributions of this paper are as follows:

(1) A novel solution methodology—to obtain the fluctuation
component of PV output accurately a new approach is
proposed. According to the theory of the least square method,
the theoretical attenuation force closest to the actual output
is obtained, and the fluctuation component is obtained
by comparing the actual output data with the theoretical
attenuation force.

(2) A new mixed Gaussian model—a three-weight mixed
Gaussian (TM-G) model based on the expectation
maximization (EM) algorithm is proposed for the first
time, which can be obtained from the actual data. Compared
with common single probability density distribution,
the proposed approach gives better fitting effects for the
fluctuation component.

(3) The simulation results using actual PV output data in
Xichang City, China validate the effectiveness of the proposed
approach, which provides an effective way for PV output
prediction. The simulation results verify the effectiveness and
superiority of the presented approach.

PV POWER GENERATION MODEL

The basic principle of PV power generation is to convert
solar energy into electric energy by using PV panel module
according to PV effect. The output of PV power generation

is affected by many conditions (Li et al., 2019). The type
of components will affect the conversion efficiency of light
radiation; the installation method will lead to the difference
of the dip angle; while the geographical location, distribution
of light resources and topographical conditions are directly or
indirectly related to the intensity of light radiation received
by PV (Raiti, 2006; Cabrol Nathalie, 2014; Alsadi and Nassar,
2017; Gueymard et al., 2018; Li Y. et al., 2018b; Heinisch
et al., 2019), especially the characteristics of distributed PV with
“multiple points on multiple sides” leading to the complexity of
its model establishment. In this paper, the PV power generation
output model has divided into a theoretical output part and a
volatility output part according to the available measurement.
For the measurable theoretical output part, the model with solar
radiation intensity as the reference variable is used to model, and
the attenuation theory output model is established by data fitting;
the volatility component is the random component, which is an
unmeasurable output component. Specifically, the output of the
PV output is affected by short-term disturbances.

Define the distributed PV theory output Pthp in the region
(Yang and Liu, 2011):

Pthp = Pstc
Ia

Istc
(1)

where: Pstc is the output of the PV panel under standard
conditions (solar radiation intensity Istc = 1,000 W/m2,
temperature Tstc = 298K); Ia is the solar radiation intensity
without considering the attenuation component.

According to the above analysis, the solar radiation intensity
Ia without occlusion plays a decisive role in the theoretical part
Pthp of PV power generation. The total solar radiant energy Ia
that can be received on the PV panel mainly includes three
parts: direct radiant energy Ib, scattered radiant energy Id and
surface reflected radiant energy Ir. However, since a large part
of the ground reflection radiation is ineffective for the silicon
cells commonly used today, the surface reflection radiation can
be ignored.

Thus, the total solar radiation intensity at t is:

Ia = Ib + Id (2)

Using Equation (2), we can simulate the solar radiation intensity
Ia at any time on the earth under the influence of no attenuation
component. Substituting Ia into Equation (1) yields an in-region
PV deterministic output Pthp.

DIRECT RADIATION INTENSITY

Direct solar radiation Ib is the main component of solar
radiation. The intensity of direct solar radiation in a place can
be expressed as:

Ib = 0.56S sin ρ(e−0.56M + e−0.095M)

×[1+ 0.033 cos( 2π(N+10)
365 )] (3)
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where: S is the solar constant, which is about 1,366 W/m2; N is
the day of the year; ρ is the solar incident angle, which is the
difference between the solar zenith angle θZ and the PV panel
inclination angle β ;M is airmass, related to altitude.

M =

{

P(a)
P0 sinαs

αs ≥ 30◦

P(a)
P0Ŵ

αs < 30◦
(4)

Ŵ =

√

[1229+ (614 sinαs)
2]− 614 sinαs (5)

where: a is the measured ground elevation; P(a) is the measured
atmospheric pressure; P0 is the standard atmospheric pressure.
αs is the local solar elevation angle, which is complementary to
the solar zenith angle θZ.

SCATTERING RADIATION INTENSITY

Due to the action of air molecules and aerosol particles,
the solar radiation energy is redistributed in various
directions to form scattered radiation in a certain regularity.
According to the Berlage formula, the solar scatter intensity Id
is (Zhang et al., 2014):

Id =
k[0.729+ 0.153E] sinαs

2− 2.8 ln 0.271−0.153E
M

(6)

E = e−0.56M + e−0.095M (7)

sinαs = sinφ sin δ + cosφ cos δ cosωs (8)

where: k is a parameter related to air quality. φ is the latitude
of the area; δ is the declination angle of the sun; ωs is the solar
hour angle.

The solar declination angle varies with the season and is
calculated by:

δ = 23.45 sin[
π

2
(
α1

N1
×
α2

N2
×
α3

N3
×
α4

N4
)] (9)

where: N1 = 92.975 is the number of days from the vernal
equinox to the summer solstice; α1 is the number of days

calculated from the vernal equinox date; and so on, N2 = 93.269,
N3 = 89.865, N4 = 89.012.

The solar hour angle is represented by ωs, which increases by
15◦ every hour due to the earth’s rotation. At the same time, the
time difference affects the time angle. In the UTC/GMT+08:00
where Beijing time is located, the interval longitude is 120◦ east
longitude. The calculation formula of the time angle ωs based on
Beijing time in a certain area is:

ωs = (12− t)× 15◦ + (120◦ − ψ) (10)

where: ψ is the local longitude; t is the hour.

THEORETICAL OUTPUT COMPONENT
EXTRACTION

Theoretical Output Attenuation Model
Actual PV power generation is affected by many practical
conditions, and the theoretical output will be attenuated without
considering the volatility. The daily attenuation coefficient Ki

is used to characterize the attenuation of the PV output. The
expression is:

Ki =

n
∑

u=1
fi(u)yi(u)

n
∑

u=1
f 2i (u)

(11)

where: Ki is the attenuation coefficient of the i-th day; yi(u) and
fi(u) are the measured force values of the u-th sampling point
on the i-th day and the PV theoretical output value of the u-th
sampling point on the i-th day, respectively; n is the number of
sampling points on the i-th day.

The above formula uses the least squares method to find the
fitting coefficient with the accurate fitting, so that the sum of
the squared residuals of the theoretical output and the measured
force is the smallest, that is the optimization problem that
matches the theoretical model with the measured data.

FIGURE 1 | Volatility output component model.
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TABLE 1 | Daily attenuation coefficient Ki .

Date Ki

July.20.2018 0.6550

July.21.2018 0.3965

July.25.2018 0.5359

August.09.2018 0.6900

Fluctuation Extraction
In addition to the existence of measurable regular components,
PV output will also cause random fluctuations in PV output
due to short-term disturbances such as temperature changes,
cloud and debris, and machine failure. The attenuation theory
output combines the effects of the sun-ground motion and
the attenuation component, and the difference between the
measured output force of the PV and the theoretical output of
the attenuation represents the random output component of the
PV output.

Based on the measured force data, this paper uses MATLAB as
the simulation experiment platform to simulate the wave volume
extractionmodel. This paper selects the historical data of Xichang
City (1 d, 15 min/point) on July 20th, 21st, 25th, and August 9th,
2018. Xichang City is located in the plateau of 101◦46′∼102◦25′

east longitude and 27◦32′∼28◦10′ north latitude, with an average
elevation of 1,500m. The selected data sets have different weather
and solar radiation intensity, and are represented in different
scenarios. Among them, the weather on August 9 was good,
the output was stable, and there was no large fluctuation. On
July 20, 21, and 25, the PV output fluctuated strongly and the
instantaneous power fluctuated greatly. Figure 1 shows the 4-
day solar radiation intensity model, and the daily attenuation
coefficient K i is shown in Table 1.

PROBABILITY DISTRIBUTION FITTING OF
RANDOM COMPONENTS

Analysis of the Distribution Function Fitting
Index
The numerical characteristics of continuous random variables are
often described visually through the probability density function.
When using the probability density function method to study the
digital characteristics of the PV output fluctuation component,
the theoretical distribution function with its high fittingmatching
degree is usually selected. The characteristics can be used to
describe the fluctuation characteristics of the PV output. The
fitting effect can be quantified by a series of index values. The
judgment of the index value on the fitting quality is generally
from the angle of error or the perspective of variation correlation.
The better the fitting effort, the better the explanatory ability of
the independent variable to the dependent variable, the higher
the percentage of the change caused by the independent variable
is, and the denser the observation point is near the regression line.

The error class indicator is non-negative, and a smaller value
of this indicator means better fitting performance.

The mean absolute error (MAE) is the average of the absolute
values of the deviations of all individual observations from the
arithmetic mean. Its expression is:

MAE =
1

n

∑

i

∣

∣

(

gi − yi
)∣

∣ (12)

where: yi is the functional value of the fitting function for the
fluctuation magnitude; gi is the actual probability value of the
fluctuation magnitude;

The root means square error (RMSE) is also called the
standard deviation of the regression system. It represents the
error between the estimated value of the model and the original
value (Lv et al., 2014; Li et al., 2017). The calculation formula is:

RMSE =

√

1

n

∑

i

(gi − y)
2

(13)

where y is the mean of the actual probability values.
The range of correlation indicators is [0, 1], and the closer to 1,

the higher the degree of association between them, the better the
fitting effect. The correlation coefficient R is used to describe the
correlation between the fitting value of the random component
of the PV output power and the actual value. The expression is:

R =
Cov(gi, yi)

√

Var(gi)Var(yi)
(14)

where: Cov() is the covariance function and Var() is the
variance function.

The coefficient of determination determines the degree of
closeness of the correlation. In multiple regression analysis, the
decision coefficient is the square of the correlation coefficient.
Define it as R2 and calculate it as:

R2 =

∑

i
(gi − y)2

∑

i
(gi − y)2 +

∑

i
(yi − gi)

2
(15)

The adjusted coefficient of determination is the correction
of the decision coefficient. As the number of independent
variables increases, R2 will continue to increase. Therefore, when
examining the fitting function of the distribution function model
of different number distribution parameters, the distribution
must be considered. To achieve the universality of parameter
comparison, the variable Rad is defined to represent the
correction decision coefficient (Cui et al., 2016):

Rad = 1− (1− R2)
p− 1

p− 1− q
(16)

where: p is the dimension of the data sequence; q is the number
of data; the judgment condition of Rad for the fitting and fitting is
the same as R2.

However, since Rad normalizes the decision coefficients of
different dimensional data sequences and simultaneously uses the
contrast of different dimensional fitting effects, Rad is generally
smaller than R2.
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FIGURE 2 | Cumulative probability distribution of random components of PV

output in Xichang City on July 20, 2018.

FIGURE 3 | Probability distribution fitting of random components of PV output

in Xichang City on July 20, 2018.

Single Probability Distribution Fitting Effect
Analysis
To quantitatively describe the probability distribution of random
component sequences, this paper analyzes the measured data
of distributed PV output and analyzes the effect of the
single distribution function model on the probability density
distribution characteristics of random components of PV output.
Based on the probability density function method to analyze
the fluctuation characteristics of PV output, it is necessary to
select the appropriate probability density distribution function,
and compare the component parameter sequences with the
commonly used normal distribution, Logistic distribution and
TLS distribution.

To eliminate the influence of the dimension difference
between the indicators, the random component data is
normalized, and the expression is:

U∗
i =

Ui

|Uimax|
(17)

FIGURE 4 | Cumulative probability distribution of random components of PV

output in Xichang City on August 9, 2018.

FIGURE 5 | Probability distribution fitting of random components of PV output

in Xichang City on August 9, 2018.

where: Ui is the random component of the PV output.
Figures 2–5 illustrate the stochastic component cumulative

probability density distribution function and probability fitting
curve of distributed PV output in Xichang City for 2 days. For
ease of analysis, August 9th is selected as a typical day with stable
outputs; while July 20th is chosen as another typical day with
strong volatility. It can be seen from the above figures that the
TLS distribution has a good fitting effect using single probability
density functions.

To compare the fitting effects of the three distribution
functions more clearly, Tables 2, 3, respectively show the index
values of the corresponding fitting effects for 2 days.

Comparing the fitting effect index values, it can be seen
that the TLS distribution has a relatively good fitting effect on
both conditions, and has a lower error coefficient and a higher
correlation coefficient. However, even if the TLS distribution fits
well in the three popular single distributions, the fit is not ideal

Frontiers in Energy Research | www.frontiersin.org 5 August 2019 | Volume 7 | Article 76

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Wang et al. Fluctuation Process Characteristics of Photovoltaic Outputs

TABLE 2 | Index value of data fitting effect in Xichang City on July 20, 2018.

Distribution Function MAE RMSE R R2 Rad

TLS 0.1971 0.2666 0.9012 0.8121 0.8081

Logistic 0.2637 0.3635 0.8038 0.6461 0.6436

Normal 0.2631 0.4076 0.7482 0.5599 0.5537

TABLE 3 | Index value of data fitting effect in Xichang City on August 9, 2018.

Distribution function MAE RMSE R R2 Rad

TLS 0.1948 0.2585 0.9595 0.9207 0.9191

Logistic 0.1980 0.2698 0.9518 0.9059 0.9053

Normal 0.3041 0.4071 0.8962 0.8032 0.8005

from the direction of the data index. TLS distribution can be used
to describe the probability density distribution characteristics of
PV force fluctuation under the condition that the fitting effect is
not exact.

ERROR CORRECTION

The fitting error of the single probability density distribution
function for PV output random variables is large (Cui et al., 2011;
Zou et al., 2014; Shen et al., 2015; Yang and Dong, 2016). To
reduce the fitting error, a mixed probability density distribution
function is introduced to fit.

The mixed probability density function distribution model
is obtained by linearly combining multiple single probability
distribution models according to different weight. The mixed
distribution has a good fitting, flexible shape and strong
applicability. The density function of a finite mixed distribution
can be expressed as:

f (x, θ) =

n
∑

i=1

αig(x)e

k
∑

j=1
Pj(x)Qj(θ)−S(θ)

(18)

where:
n
∑

i=1
αi = 1,0≤αi≤1.

This paper comprehensively investigates the mixed Gaussian
distribution model and compares several single distribution
functions to obtain the probability distribution function with the
best fitness.

In order to obtain the optimal mixed probability density
distribution model, a mixed Gaussian probability distribution
model is established (Yang et al., 2017; Li et al., 2018). The mixed
Gaussian distribution model is a linear superposition of a single
Gaussian component, and the goal is to provide a probabilistic
model (multimodal probability density distribution) that is more
fitting than a single distribution. As a convex function of multiple
single distribution combinations, it has a good fitting effect
on the probability distribution sequence of PV output random
components with convex structure features, and the fitting of
the edge samples of the data set is more accurate. The mixed

FIGURE 6 | Comparison of probability distribution of volatility components in

Xichang City on July 20, 2018.

FIGURE 7 | Comparison of probability distribution of volatility components in

Xichang City on August 9, 2018.

Gaussian probability density distribution function is a latent
variable parameter model, and the parameters are solved by EM
algorithm clustering. The EM algorithm is a general method
for finding the maximum likelihood solution of a probability
model with latent variables. The calculation results are stable and
accurate. Therefore, it is of certain significance to apply it to
the Gaussian mixture probability density fitting analysis of PV
output fluctuation. The following formula is a Gaussian mixture
model formula.

G(x) =

W
∑

w=1

ξwN(x |µw,6 ) (19)

where
W
∑

w=1
ξw = 1 is the mixing factor.

N(x |µw,6 ) = (2π)−
i
2 |6|−

1
2 e−

1
2 (x−µ)

K6−1(x−µ) (20)
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TABLE 4 | Weight value of mixed probability density distribution of Xichang data

on July 20, 2018.

Distribution Model Weights w1 Weights w2 Weights w3

DM-G 0.8011 0.1989 –

TM-G 0.3163 0.6434 0.0403

TABLE 5 | Fitting index value of probability density distribution of Xichang data on

July 20, 2018.

Distribution function MAE RMSE R R2 Rad

TLS 0.1971 0.2666 0.9012 0.8121 0.8081

Normal 0.2631 0.4076 0.7482 0.5599 0.5537

DM-G 0.1828 0.2513 0.9188 0.8441 0.8408

TM-G 0.0694 0.0941 0.9938 0.9876 0.9874

TABLE 6 | Weight value of mixed probability density distribution of Xichang data

on August 9, 2018.

Distribution model Weights w1 Weights w2 Weights w3

DM-G 0.2030 0.7970 —

TM-G 0.8058 0.0808 0.1134

TABLE 7 | Fitting index value of probability density distribution of Xichang data on

August 9, 2018.

Distribution function MAE RMSE R R2 Rad

TLS 0.1948 0.2585 0.9595 0.9207 0.9191

Normal 0.3041 0.4071 0.8962 0.8032 0.8005

DM-G 0.1954 0.2566 0.9585 0.9187 0.9170

TM-G 0.1533 0.2128 0.9741 0.9488 0.9478

where i is the total number of the used mixed Gaussian
distribution, µ is its mean vector, andΣ is its covariance matrix.

To verify the superiority of the mixed Gaussian probability
density distribution function, the calculated data of the random
component of Xichang City were used for analysis and
verification. Firstly, random component data is normalized, and
then the data is fitted and analyzed by TLS, normal distribution,
double-weight mixed Gaussian distribution (DM-G) and TM-
G function models, and the index values are used to compare
the fit of them. The data of July 20th and August 9th of
2018 in Xichang City are processed and analyzed. The fitting
effect diagrams of the probability components of the volatility
components are shown in Figures 6, 7. The weight distribution
parameters of the mixed Gaussian distribution model are shown
in Tables 4, 6; while the values of the fitting indicators are shown
in Tables 5, 7.

Comparing the data in the above table, the same type of
distribution, the larger the weight, the better the fitting effect.
The TM-G is superior to other models in both error angle

and correlation angle. In the analysis of PV output fluctuation
characteristics based on the probability density function method,
the TM-G model is more suitable for analyzing the fluctuation
characteristics of PV outputs. However, the fitting accuracy
of the three-mixed model has reached 95%. Increasing the
number of mixtures will increase the complexity of the model
and the training time. Therefore, this work does not continue
to explore.

CONCLUSIONS

To describe the fluctuation characteristics of PV output, a mixed
Gaussian distribution model was proposed to characterize its
distribution characteristics. Based on the simulation results of the
actual data of Xichang City, China, the conclusions of this paper
are as follows:

(1) Based on the actual data, a theoretical model of PV output
attenuation is established, and the fluctuation component of
PV output is obtained by comparing the attenuated output
model with the actual data.

(2) The important finding of this paper is that the TM-G model
can be used to fit the fluctuation of PV output accurately.
Furthermore, the fitting effect of the TM-G model is more
accurate than the single probability distribution, which paves
the way for the forecast of PV output.

(3) This work provides a universal methodology for analyzing
fluctuation characteristics of PV outputs, which can be used
for wide-area distributed PV aggregation analysis.

The future work will focus on the multi-step prediction method
of ultra-short-term PV output by using historical output data and
correlation analysis. It can provide a reference for the control of
PV power plants and the formulation of dispatching plans for
power grids.
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NOMENCLATURE

Pthp PV theory output (kW)

Pstc PV output (kW)

Ia Solar radiation intensity (W/m2 )

Ib Direct radiant (W/m2 )

Id Scattered radiant (W/m2 )

Ir Surface reflected radiant (W/m2 )

ρ Solar incident angle (◦ )

θZ Solar zenith angle (◦ )

β PV panel inclination angle (◦ )

M Airmass

a Altitude (km)

P(a) Measured atmospheric pressure (kPa)

P0 Standard atmospheric pressure (kPa)

αs Local solar elevation angle (◦ )

k Parameter about air quality

ϕ Latitude (◦ )

δ Declination angle of the sun (◦ )

ωs Solar hour angle (◦ )

ψ Longitude (◦ )

t Time (h)

Ki Daily attenuation coefficient

yi (u) Measured force values of the u-th sampling point on the i-th day (kW)

fi (u) PV theoretical output value of the u-th sampling point on the i-th day (kW)

n Number of sampling points

yi Function value of the fitting function

gi Actual probability value

y Mean of the actual probability values

R Correlation coefficient

Cov() Covariance

Var() Variance

R2 Coefficient of determination

Rad Adjusted coefficient of determination

p Dimension of the data sequence

q Number of data

Ui Random component

µ Mean vector

Σ Covariance matrix

Frontiers in Energy Research | www.frontiersin.org 9 August 2019 | Volume 7 | Article 76

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Mixed Gaussian Models for Modeling Fluctuation Process Characteristics of Photovoltaic Outputs
	Introduction
	Literature Review
	Contributions of This Paper

	PV Power Generation Model
	Direct Radiation Intensity
	Scattering Radiation Intensity
	Theoretical Output Component Extraction
	Theoretical Output Attenuation Model
	Fluctuation Extraction

	Probability Distribution Fitting of Random Components
	Analysis of the Distribution Function Fitting Index
	Single Probability Distribution Fitting Effect Analysis

	Error Correction
	Conclusions
	Data Availability
	Author Contributions
	Funding
	References
	Nomenclature


