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Lignocellulosic biomass derived fuels and chemicals are a promising and sustainable

supplement for petroleum-based products. Currently, the lignocellulosic biofuel industry

relies on a conventional system where feedstock is harvested, baled, stored locally,

and then delivered in a low-density format to the biorefinery. However, the conventional

supply chain system causes operational disruptions at the biorefinery mainly due to

seasonal availability, handling problems, and quality variability in biomass feedstock.

Operational disruptions decrease facility uptime, production efficiencies, and increase

maintenance costs. For a low-value high-volume product where margins are very tight,

system disruptions are especially problematic. In this work we evaluate an advanced

system strategy in which a network of biomass processing centers (depots) are utilized

for storing and preprocessing biomass into stable, dense, and uniform material to reduce

feedstock supply disruptions, and facility downtime in order to boost economic returns to

the bioenergy industry. A database centric discrete event supply chain simulation model

was developed, and the impact of operational disruptions on supply chain cost, inventory

and production levels, farm metrics and facility metrics were evaluated. Three scenarios

were evaluated for a 7-year time-period: (1) bale-delivery scenario with biorefinery uptime

varying from 20 to 85%; (2) pellet-delivery scenario with depot uptime varying from 20

to 85% and biorefinery uptime at 85%; and (3) pellet-delivery scenario with depot and

biorefinery uptime at 85%. In scenarios 1 and 2, tonnage discarded at the field edge could

be reduced by increasing uptime at facility, contracting fewer farms at the beginning and

subsequently increasing contracts as facility uptime increases, or determining alternative

corn stover markets. Harvest cost was the biggest contributor to the average delivered

costs and inventory levels were dependent on facility uptimes. We found a cascading

effect of failure propagating through the system from depot to biorefinery. Therefore,

mitigating risk at a facility level is not enough and conducting a system-level reliability

simulation incorporating failure dependencies among subsystems is critical.
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INTRODUCTION

Lignocellulosic biomass (wood, grasses, or non-edible parts
of plants) has been considered as a promising feedstock for
production of biofuels. The main driving force behind push
toward using lignocellulosic biofuels are (1) energy security by
reducing dependence on foreign oil, (2) boost rural and national
economy through technology deployment and generating
employment opportunities, (3) protecting environment by
reducing greenhouse gas emissions (Valdivia et al., 2016; Satlewal
et al., 2018). While currently the lignocellulosic biofuel industry
relies on a conventional bale-delivery system (Figure 1A) in
which feedstock is harvested, baled, stored locally, and then
delivered in a low-density format to the biorefinery (Lamers
et al., 2015b), the conventional bale-delivery supply system
is accompanied by operational disruptions at the biorefinery.
The disruptions are mainly due to difficulties encountered with
the handling of bales and quality variability (ash, composition,
and moisture) in the biomass feedstock (U.S.Department of
Energy, 2016). Operational disruptions include decreased facility
uptime, production efficiencies, and increased maintenance
costs. System disruptions are especially problematic in a
bioenergy industry based on a low-value, high-volume product
where margins are very tight. In addition, biomass supply
uncertainty in the conventional bale-delivery system limits large-
scale implementation of biorefinery facilities.

An advanced pellet-delivery system (Figure 1B) is one
alternative strategy proposed for dealing with decreasing
feedstock quantity and quality uncertainty. The advanced pellet-
delivery system consists of a network of distributed biomass
processing centers called depots. In these depots, biomass is
densified from large bales into stable, dense, and uniform
material. The depot creates consistent physical and chemical
characteristics commodities that meet biorefinery conversion
specifications and improve the handling, transport, and storage
of biomass material (Hess et al., 2009; Lamers et al., 2015b). This
system offers advantages by addressing biorefinery operational
and supply risks and providing a reliable biomass supply chain
design. While the pre-processing depots are costly, their benefits
have been found to outweigh costs (Jacobson et al., 2014).
Existing studies, however, have not considered the impact of
adding a depot on the entire biomass supply system. In a
way, the operational disruptions caused by inconsistent biomass
supply and quality at the biorefinery have now moved to the
depot. It is not necessarily true that achieving reliability by
assuming that failures are independent of the entire system
can be accomplished by providing a uniform format product
to the biorefinery from the depot. Our hypotheses for this
study is that decoupling processing of hard-to-handle bales
from the biorefinery to the depot reduces costs and improves
performance by minimizing operational disruptions at the
biorefinery.

There have been several studies on modeling Biomass Supply
Chain (BSC) compiled in review papers (Sharma et al., 2013;
Zandi Atashbar et al., 2017). Initially, BSC models were designed
under deterministic settings, but when the dynamic nature of
BSC along with its complexity and uncertainty was recognized,

researchers incorporated risks in models to improve system
resilience and reliability (Bai et al., 2015; Liu et al., 2017).
The majority of studies have been based on mathematical
programming and heuristics (Atashbar et al., 2016) and some
studies involved simulation (Hansen et al., 2015; Wang et al.,
2018) modeling. Compared to analytical modeling, simulation is
a powerful approach to studying complex and dynamic systems
and holds great potential for modeling dynamic BSC with
parametric, internal, and external uncertainties. A simulation
model can also capture temporal variations in failure or repair
rates relatively easily (Wan et al., 2014). In this study we
developed a revised version of Integrated Biomass Supply
Analysis and Logistics (IBSAL) simulation model (Sokhansanj
et al., 2006). The current version (IBSAL02.0) is database-centric
with additional capabilities to simulate multi-biomass, -form,
-product, -facility, and -year biomass supply chain.

A few studies have evaluated the impact of storage (Liu
et al., 2017), biorefinery characteristics (Bai et al., 2015), and
intermodal facilities disruptions (Marufuzzaman et al., 2014)
due to flooding, hurricane, and drought, on costs and BSC
network design. In the majority of static planning models, the
failure probabilities were considered unchanged over time (Liu
et al., 2017). To the best of our knowledge, existing approaches
focus only on failures at a facility, however, impact of failure
at a facility on all the entities in the supply chain is not
evaluated and could significantly impact overall reliability of
a system. Hansen et al. (2015) quantified feedstock supply
risk by considering uncertainty in yield, dry matter loss, and
ash for conventional bale-delivery and advanced pellet-delivery
systems. An advanced pellet-delivery system was found to
significantly reduce biomass supply risk by diversifying the
supply portfolio and protecting the system against catastrophic
supply disruptions, such as drought, flood, and pests. However,
this study did not evaluate impact on costs and system
performance due to facility disruptions in conventional bale
and advanced pellet-delivery systems. Therefore, our research
question is to determine how costs and operational management
decisions for an advanced pellet-delivery system compare with
those of a conventional bale-delivery system under facility
disruptions. Unlike the descriptions in the above-mentioned
articles, we developed a multi-form (bale, pellets) and multi-
year database centric simulation model to evaluate the impact
of operational disruptions on costs, inventory and production
levels, and facility metrics while failure probability at facilities
varies across a span of years.

METHODOLOGY

Figure 2 shows the methodology used in this study to quantify
the impact of operational disruptions at facilities for conventional
bale and advanced pellet-delivery systems. Since agricultural
residues, particularly corn stover, is the feedstock of choice for
near-term ethanol production (Jessen, 2015), a case study for
an Iowa biorefinery using corn stover as feedstock is developed.
The following three sub-sections: Inputs, Simulation Model-
IBSAL 2.0, and Scenarios, along with a case study, describe
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FIGURE 1 | (A) Conventional bale-delivery system (B) Advanced pellet-delivery system.

FIGURE 2 | Schematic of the methodology used to quantify the impact of operational disruptions on costs, biomass flow, resource utilization, inventory and facility

metrics for the conventional bale-delivery and advanced pellet-delivery system scenarios.

the methodology used to investigate the impact of operational
disruptions.

Inputs
Spatial Analysis
To incorporate the impact of spatial variation on biomass
supply systemmanagement decision-making, spatial analysis was
conducted using Python and Esri, ArcMap 10.3 (Esri, 2017)
software to gather information on farm and facility locations,
available corn-stover tonnage, biomass allocation, and distances
between sites. Corn-specific land cover and corn yields were
determined using the Cropland Data Layer (CDL) (USDA
National Agricultural Statistics Service, 2016) and Iowa Soil

Properties and Interpretations Database (ISPAID) (Miller et al.,
2010) as described by (Brandes et al., 2016). The harvest index
(pounds of corn grain divided by total pounds of above-ground
biomass, such as corn stover plus grain Pennington, 2013)
was assumed to be 0.5, reflecting a corn-stover yield equal to
corn grain yield in tons per acre (Lorenz et al., 2010). Multi-
criteria suitability analysis was conducted to determine suitable
biorefinery sites (Sharma et al., 2017). Potential depot/storage
locations were restricted to points on a 5-mile grid to provide
enough options for optimal depot location estimation for this
analysis. Suitability analysis could be conducted to determine
ideal depots sites. The ArcGIS location-allocation maximized
capacitated coverage problem type was formulated using a
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US census road network (United States Census Bureau, 2016)
dataset and facility locations to determine site facilities and
allocate corn stover supply to the facilities in the most
efficient manner. Location-allocation is a two-fold problem that
simultaneously locates facilities and allocates farms to them. The
maximize capacitated coverage problem type (Esri, 2016) chooses
biorefinery, depot, and storage sites, such that all, or the greatest
amount of corn stover supply, is utilized without exceeding the
capacity of any facility. The outputs of spatial analysis were farm,
biorefinery, depot, and storage locations, available corn stover
tons, allocations of corn stover supply to facilities, and distances
between facilities and farms.

Facility and Logistical Parameters
As described in Figure 2, facility and logistical parameters
include facility capacity, breakdown/repair times, processing
costs, crew composition, size, harvest/transport costs, storage
dry-matter loss, work hours, and harvest window. These input
parameters are specific to the case study under consideration and
are described in detail in section Scenarios.

Simulation Model-IBSAL 2.0
The Integrated Biomass Supply Analysis and Logistics (IBSAL)
Model-2.0 is an updated version of the IBSAL simulation model
(Sokhansanj et al., 2006; Ebadian et al., 2011) (Figure 3). This
version of model is built around the ExtendSim database.
The ExtendSim’s integrated model database tends to promote
better model design, increase model organization, and streamline

modeling processes. In addition, database-centric simulation
models require less time to build, modify, maintain, validate and
verify and aremore reliable, scalable, and flexible (Diamond et al.,
2010).

IBSAL 2.0 is a dynamic discrete event simulation model
capable of making operational decisions for both the
conventional bale-delivery and the advanced pellet-delivery
biomass supply chain configurations. The model is multi-
biomass, multi-product, multi-form, multi-facility, and
multi-year supply chain simulation model (Figure 3). The
model manages the biomass system from harvesting all the way
through supply to the biorefinery reactor throat. In addition to
biomass harvesting, handling, inventory, and fleet management,
the model can test the reliability of the system by considering
biomass quality (moisture and ash), biomass degradation (dry
matter loss and discarded/expired biomass), and facility failures
across a multi-year system.

Biomass loss in the model is done thorough both dry matter
loss and discarded biomass. Biomass must be harvested and
transported to the field side within a pre-defined harvest window.
The biomass not harvested and transported to the field side
within this window will be discarded or used for alternative
markets. Biomass must also be transported from the field side
to the intermediate storage depot within a second pre-defined
window while the biomass not transported within this window
will be discarded.While in the field, at the field side, or in storage,
dry matter loss occurs periodically based on the dry matter loss
schedule defined in the model database.

FIGURE 3 | Schematic of IBSAL 2.0 model logic and front-end interface developed using ExtendSim software.
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Four primary tasks are defined in the model. The four tasks
include: harvesting the biomass, transporting the biomass to
the field side, transporting from the field side to the depot,
and transporting from the depot to the refinery. Each task is
completed by a specific crew type. Each crew type has a unique
capacity, performance, and cost parameters depending on the
equipment they are assigned. There are multiple crews of each
crew type. Each crew has been assigned to a specific depot
(harvesting, in-field transportation, and transportation to depot)
or biorefinery (transportation to refinery) to minimize traveling
between tasks. For example, we would not want a crew who
has just finished a farm for depot 1 to travel across the system
basically long distance to work on a farm for depot 2.

The modeling style used for IBSAL 2.0 is flipped from a
traditional modeling style. The entities moving through the
model are resources, not products as in a traditional model.
Product characteristics and variations throughout supply chain
are tracked in the log table. This flipped modeling approach
uses database transactions to manage inventory throughout the
system. The model database in this environment is more than
simply a container for input and output data. Themodel database
is truly integrated with the model. This modeling style tends
to be faster and provides more control when dealing with large
amount of product being processed by specialized resources.
The entities in this model include crews, depot processing
lines, and the biorefinery processing lines. These entities flow
through 4 primary constructs in the model. The crew entities
flow through the farm construct and the transport construct,
depending on the type of crew. The depot processing lines flow
through the depot construct. The biorefinery processing lines
flow through the biorefinery construct. This focus on populations
of entities each transitioning between states to accomplish
tasks essentially implements an agent-based approach within a
traditional discrete-event modeling tool and has many of the
properties of an agent-based model. For instance, after a crew
finishes a task, the crew must decide on their next task based on
the status of the world. The results emerge from these multiple
loosely linked decisions.

Scenarios
Table 1 presents the three scenarios analyzed in this study.
These scenarios were developed to illustrate effects of operational
disruptions (i.e., equipment failures) at the depot and biorefinery
on the performance and behavior of the biomass supply
chain system. The current state of the US biofuel industry
located in highly productive Midwest corn regions relies on a
conventional bale-delivery represented by scenario-1 (Cafferty
et al., 2014; Lamers et al., 2015a,b) (Table 1). The second and
third scenarios represent use of advanced pellet-delivery systems,
with scenario 3 representing mature and resilient lignocellulosic
biofuel production system that operates in steady state (Table 1).
The uptime/throughput at the facility was assumed to increase
from 20 to 85% (Foody, 2014). Due to feedstock flowability and
variability challenges the uptime at biorefinery has been low
(U.S.Department of Energy, 2016). These challenges need to be
addressed to achieve an overall equipment effectiveness score
of 85%, considered as world class for manufacturing industries

TABLE 1 | Scenarios analyzed to evaluate the impact of operational disruptions.

System

entities

Year Scenario-1 Scenario-2 Scenario-3

Bale-

delivery

system

Pellet-delivery

system: Gradual

increase in uptime

Pellet-delivery

system: steady

state

Uptime (%) Uptime (%) Uptime (%)

Depot 1 NA 20 85

2 37 85

3 54 85

4 70 85

5 85 85

6 85 85

7 85 85

Biorefinery 1 20 85 85

2 37 85 85

3 54 85 85

4 70 85 85

5 85 85 85

6 85 85 85

7 85 85 85

(Muchiri and Pintelon, 2008). The system was evaluated over
7 years, including 5 years to reach 85% uptime at the facility
(Foody, 2014) and 2 years at steady-state.

Case Study
To test the model, a case study was developed for a biorefinery in
Iowa (Figure 4), the leading producer of corn stover in the US.
The biorefinery site was selected by conducting a multi-criteria
suitability analysis (Sharma et al., 2017). For commercial scale
biorefineries of size 20–30 million gallons per year, the biomass
demand is reported between 285,000 and 375,000 bone-dry tons
per year (Berven, 2009; Rosen, 2012). Therefore, the biorefinery
yearly corn stover demand was assumed to be 335,000 bone-dry
tons with a collection radius of 35 miles (Ward, 2015). The stover
yield was estimated using the methodology described in section
Spatial Analysis. The moisture content in stover and stover losses
throughout the system were assumed to be 20% (Darr and Shah,
2012) and 10% (Shah and Darr, 2016), respectively. Farms with
a harvestable yield greater than 1.2 tons/acre were selected for
analysis (Wirt) (Figure 4 and Table 2). The harvest window and
work hours at the farms were assumed to be 32 days per year and
9 h per day, respectively (Lorenz et al., 2010; Darr and Webster,
2014; Shah and Darr, 2016).

To achieve consistency for comparison among scenarios
(section Scenarios), the bale storage site and depot site locations
were assumed in this analysis to be same. The location-allocation
model was used to determine two optimal storage/depot sites
and farms allocated to these sites (Figures 5A,B and Table 2).
Distances from each farm to the depot, farm to the biorefinery,
farm to storage, and between farms were also estimated
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FIGURE 4 | Biorefinery location, farm locations and supply area for the case

study.

and used as input to the model. All costs (Table 3) were
estimated using the methodology described by Turhollow et al.
(2009). Additionally, personal communication with A. Khanchi
(personal communication, 2018) was used to estimate costs of
processing and storage of pellets. The depot processing capacity
was assumed to be 30 tons/h and the processing cost was
estimated as $21.42/ton. The biorefinery processing capacity was
assumed to be 60 tons/h and the cost of drying and grinding
biomass at a biorefinery was estimated as $6.24/ton. Operating
days per year and work hours per year at depot and biorefinery
were assumed to be 351 days per year and 24 h per day,
respectively. Storage costs for bale storage and pellet storage were
estimated as $7.36 and $9.22/ton, respectively.

Four types of crews were considered in the model: (a)
baling, (b) in-field transportation, (c) road transportation to the
depot, and (d) road transportation to the biorefinery. Equipment
considered included a large rectangular baler (3 × 4 × 8
feet), an in-field transporter (12 bales per load) (Stinger Inc.,
2018), and a flat-bed trailer (36 bales per load) (McGill and
Darr, 2014). Fixed and variable costs and effective field capacity
and machine capacity were estimated using the methodology
described by (Turhollow et al., 2009). Large square baler field
speed, and efficiency were assumed to be 80% and 5 miles

TABLE 2 | Summary of parameters for farms, storage, depot and biorefinery used

as input for the simulations model.

Farm parameters

Number of farms 636

Harvested area (acre) 383,332

Average size of farm (acre) 603

Total harvestable corn stover (tons) 459,999

Bale storage parameters

Number of bale storage sites (scenario-1)/depots (scenario-2 and 3) 2

Size of bale storage (tons) 190,000

Farms supplying storage-1 223

Farms supplying storage-2 294

Farms supplying biomass to biorefinery 119

Depot and biorefinery parameters

Processing capacity of depot (tons/h) 30

Processing capacity of biorefinery (tons/h) 60

Number of farms supplying depot-1 283

Number of farms supplying depot-2 353

Distance parameters

Average distance between the farms and depots (mile) 20

Average distance between the depots and biorefinery (mile) 24

Average distance between the farms and storage (mile) 19

TABLE 3 | Fixed and variable costs of equipment considered in this analysis.

Operation Baler In-field

transporter

Flat-bed

trailer and

truck

Equipment Large square

baler + Tractor

Stinger stacker Trailer + truck

List price ($) 377,814 225,000 252,120

Fixed cost ($/yr) 13,637 7,797 10,675

Variable cost ($/h) 189 129 159

Effective Field capacity (acres/h) 4.51

Machine capacity (tons/h) 5.32 60.00 24.30

per hour, respectively (ASAE, 2003). The inflation-adjusted list
prices for large square baler, stinger stacker, and flat-bed trailer-
truck was 377,814, 225,000, and 252,120$, respectively (Edwards,
2014; Stinger Inc., 2018). The crew composition (number of
equipment) for this analysis was 10, 1, and 6 for baling, in-field
transportation and road transportation, respectively. The crew
composition (number of equipment) was determined using trial
and error to ensure that all farms were harvested within the
harvest window.

RESULTS

Farm Tons Harvested, Discarded, and
Transported
Figure 6 shows farm metrics for total corn stover tonnage
harvested, transported, discarded, and lost as dry matter. The
model was set up to reflect all the contracted farms (40% within
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FIGURE 5 | Location-allocation model (A) Farms associated with supplying corn stover to storage sites and biorefinery; (B) Farms associated with supplying corn

stover to depots.

a 35-mile buffer radius, Berven, 2009) were harvested each year
(460,000 tons). In year one of the bale-delivery (biorefinery
uptime: 20–85%) scenario, all harvested tonnage was transported
because there was no storage at the beginning of the simulation
run. In the second year, since storage tonnage was at its maximum
capacity and uptime at the biorefinery was low (37%), only
50% of the harvested tonnage was transported (Figure 6). The
tonnage transported from the farms increased as production
at the biorefinery increased. The number of tons discarded at
the field edge was high (50%) in the second year because of
low throughput at the biorefinery and a short storage window
(3 months) at the field edge. The model does not account
for cost of discarding corn stover at the field edge before the
beginning of next corn planting season. In this analysis we

assume that corn stover is discarded however in reality it could
be available for alternative markets such as animal feeding and
bedding. This tonnage discarded at the field edge decreased as
biorefinery uptime increased and storage space became available.
A similar trend was observed in the pellet-delivery scenario-2
(depot uptime: 20–85%, biorefinery uptime: 85%). Dry matter
loss was low because corn stover was stored at the field edge for a
maximum of 3months (Figure 6). For scenario-3 (pellet-delivery
(depot uptime: 85%, biorefinery uptime: 85%), an average of
6,479 tons of stover discarded (Figure 6) could be attributed to
less available bale storage area at the depot, resulting in more
bales stored at the field edge and not transported to the depot
before the start of the next corn planting season. Three ways
to reduce tonnage discarded at the field edge are the following:
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FIGURE 6 | Farm metrics for the bale-delivery (Biorefinery uptime: 20–85%), pellet-delivery (Depot uptime: 20–85%, Biorefinery uptime: 85%) and pellet-delivery

(Depot uptime: 85%, Biorefinery uptime: 85%) scenarios.

(A) the processing facility should have higher uptime; (B) fewer
farms should be contracted at the beginning, and the number
subsequently increased as uptime increases; (C) determining
alternative corn stover market.

Inventory
Inventory management is crucial to provide a buffer against
biomass supply fluctuations, but it also adds infrastructure and
maintenance costs. Since inventory is a biorefinery’s largest
asset to protect against supply fluctuations, a key decision for
a biorefinery is how much inventory to keep on hand. It is
recommended that biomass supply inventories should be at 110–
130% of the biorefinery nameplate capacity to ensure a year-
round feedstock supply and to buffer against biomass supply
risks (Darr and Shah, 2012; Darr et al., 2014). For bale-delivery
(biorefinery uptime: 20–85%) scenario-1, the storage site capacity
was 115% of biorefinery demand, which takes into account dry
matter losses in the system. The bale inventories at the storage
sites and the biorefinery on-site storage site were 435,000 and
25,000 tons, respectively. At the biorefinery maximum 2 weeks
of corn stover storage was considered in the model (Wirt). No
yield variation over the years was assumed in the model hence

additional biomass storage to buffer against supply uncertainties
was not required. In pellet-delivery scenario-2 (depot uptime:
20–85%, biorefinery uptime: 85%) and pellet-delivery scenario-
3 (depot uptime: 85%, biorefinery uptime: 85%), the bale storage
site capacity was 67% of the biorefinery demand, determined by
running simulations to ensure that the biorefinery would not be
starved in scenario-3. This is in agreement with the finding that
establishment of a pellet-delivery system reduces storage cost and
storage size (Lamers et al., 2015b).

The storage sites were empty at the beginning of the first
year in each scenario run, and corn stover inventory built up
during the 32-day harvest window, then decreased depending
on facility uptime (depot and biorefinery) (Figure 7). In the first
year of bale-delivery (biorefinery uptime: 20–85%) scenario-1,
the maximum bale (tonnage) inventory grew to about 85% of the
biorefinery demand, while during the non-harvest time-period,
the biorefinery removed corn stover from the inventory, reducing
storage tonnage to 64% of biorefinery demand. In the second year
of harvest, the inventory began building up during the harvest
season and reached its maximum capacity of 435,000 tons. It then
stays at that level for about 90 days due to low uptime at the
biorefinery which utilizes 25,000 tons of corn stover from onsite
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storage. As biorefinery uptime increases, the minimum inventory
level decreases and the inventory remains at the maximum level
for a shorter period (Figure 7). A similar inventory trend was
observed for pellet-delivery (depot uptime: 20–85%, biorefinery
uptime: 85%) scenario-2 and pellet-delivery (depot uptime: 85%,
biorefinery uptime: 85%) scenario-3 (Figure 7). In the pellet-
delivery scenario, as the system stabilizes (85% uptime at the
depot and biorefinery) a safety stock of 50,000 tons (∼1-month
biorefinery demand) was maintained to mitigate risk of depot
supply disruptions. The maximum tonnages of pellets stored
in pellet-delivery scenario-2 and pellet-delivery scenario-3 were
2,304 and 2,382 tons, respectively. These values were low because
the consumption rate at the biorefinery matched the rate of
production at the depot. We demonstrated storage behavior
across multiple years with varying uptime at the biorefinery, and
in the future we will investigate the role of storage in mitigating
supply under risk related to feedstock supply uncertainty.

Figure 8 shows the total number of truckloads delivered both
to the biorefinery and to intermediate storage or depot sites.
Each truckload can transport 21 or 44 tons, respectively, of bales
or pellets, and a significant transportation effort is required to
move the large square bales from the farm boundaries to the
intermediate storage/depot locations and then move bales/pellets
from the intermediate (storage/depot sites) to the biorefinery.
The average maximum number of semi-loads of baled corn
stover transported from the farms to the intermediate sites
(storage/depot sites) was 20,000. A similar estimate was reported
by McGill and Darr (2014) for a biorefinery with a biomass
demand of 400,000 dry tons. The average maximum number of

semi-loads of bales and pellets transported from bale storage to
biorefinery, and from depot to biorefinery, were 17,673 and 9,596,
respectively. The relative intensity of truck traffic decreases in the
pellet-delivery scenarios because of more efficient transport of
high-density pellets. As biorefinery uptime increases, the number
of semi-loads transported from intermediate sites (storage/depot)
to the biorefinery also increases (Figure 8).

In this study, we assumed two storage sites in the bale-delivery
scenario and these same storage sites were taken as depot sites in
the pellet-delivery scenario to enable direct comparison between
the scenarios and determination of the impact of operational
disruptions. This assumption resulted in large bale storage sites
being included in the model, although storage of large volume
biomass increases fire risk, infrastructural requirements, and
seasonal road traffic (Sahoo and Mani, 2017). In the future, we
will examine the impact in meeting biorefinery cost, quantity,
and quality specifications of the number of storage sites, their
location, size, layout, and safety stock. We will also consider local
fire code and safety regulations.

Number and Type of Crew Required
The number of crew required in each scenario is based on corn
stover demand at the biorefinery, capacity of crew type, length
of harvest season, length of time bales stored at field edge, daily
working hours, distance between farms, and time required to
move crews between the farms (Ebadian et al., 2017; Wang et al.,
2017). It was assumed that bales could be stored at field edge for
about 3 months until the beginning of preparation for the next
corn planting season.

FIGURE 7 | Corn stover bale storage (tonnage) for the bale-delivery (Biorefinery uptime: 20–85%), pellet-delivery (Depot uptime: 20–85%, Biorefinery uptime: 85%)

and pellet-delivery (Depot uptime: 85%, Biorefinery uptime: 85%) scenarios.

Frontiers in Energy Research | www.frontiersin.org 9 September 2018 | Volume 6 | Article 100

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Sharma et al. Simulating Biomass Supply Chain Disruptions

FIGURE 8 | Total corn stover trucks delivered to intermediate sites (storage/depot) and biorefinery for the bale-delivery (Biorefinery uptime: 20–85%), pellet-delivery

(Depot uptime: 20–85%, Biorefinery uptime: 85%) and pellet-delivery (Depot uptime: 85%, Biorefinery uptime: 85%) scenarios.

The number of baling, in-field transportation, and road
transportation crews required for the bale-delivery (biorefinery
uptime: 20–85%) scenario as estimated by the model were 430,
34, and 32, respectively. Similarly, baling, in-field transportation,
and road transportation crews for pellet-delivery (depot uptime:
20–85%, biorefinery uptime: 85%) scenario-2 and pellet-delivery
(depot uptime: 85%, biorefinery uptime: 85%) scenario-3 were
440, 30, and 24, respectively. In Iowa, the harvest window is very
short, varying between 27 and 32 days (Darr and Webster, 2014;
Shah and Darr, 2016), impacting the fleet size and associated
costs. The crew compositions were determined using a trial-
and-error approach to ensure that all contracted farms would
be harvested within the harvest window. The fleet sizes varied
among the scenarios according to their designs (storage sites vs.
depots). It was assumed that the biorefinery owns the equipment
fleet, but existing equipment owned by farmers or custom harvest
groups could also be used for fleet operations. The large number
of baling crews (430–440) was mainly attributed to low baler
productivity and the narrow harvest window (32 days).

In bale-delivery (biorefinery uptime: 20–85%) scenario-
1, 460,000 tons of corn stover harvested in the first year
were transported to the bale storage sites by the bale road
transportation crew (Figure 9). Since the simulation began with
an empty system, in the first year all harvested corn stover was
transported to storage, while in the second year, all contracted
acres were harvested, but biorefinery uptime was low, resulting
in underutilization of the road transportation crew. The crew
utilization did increase as biorefinery uptime increased. In
pellet-delivery (depot uptime: 20–85%, biorefinery uptime: 85%)

scenario-2, 286,977, and 156,433 tons, respectively, of corn stover
were transported in the first and second years. The relatively
low transportation tonnage was due to smaller bale storage size
in the pellet-delivery scenario. As biorefinery uptime increases,
road transportation crew utilization increases. In bale-delivery
scenario-1, comparing the available 3,285 h per year (365 days
per year, 9 days per hour) with actual task hours, the harvest
and in-field transportation crew utilization levels were only 7.6
and 6.9%. Similarly, farm-to-storage and storage-to-biorefinery
average crew utilization levels were 14.9 and 43.3%, respectively.
Since we assumed that the biorefinery owns the equipment, low
equipment utilization would represent an economic burden on
the biorefinery and increase the per-unit biofuel cost. Achieving
an optimal combination of custom harvest groups, farmer-owned
equipment, and biorefinery-owned equipment could serve as a
cost-cutting strategy for the biorefinery.

Facility Metrics
To understand the impact of operational disruptions on the
biomass supply system, we present facility metrics (processed,
starved, failed, warm-up and scheduled downtime) at the depot
and biorefinery for three scenarios in Figure 10. In year one
of the bale-delivery (biorefinery uptime: 20–85%) scenario-1,
the uptime at biorefinery was only 20%; therefore, downtime
was high and the amount processed at the biorefinery was low.
The biorefinery failures were assumed to decrease over time. As
the biofuel industry matures, improved equipment for feedstock
handling and consistent quality attributes could resolve the
failure issues. As uptime at biorefinery increased, the failed time
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FIGURE 9 | Corn stover tonnage handled by crew type for the bale-delivery (Biorefinery uptime: 20–85%), pellet-delivery (Depot uptime: 20–85%, Biorefinery uptime:

85%) and pellet-delivery (Depot uptime: 85%, Biorefinery uptime: 85%).

FIGURE 10 | Facility metrics for the bale-delivery (Biorefinery uptime: 20–85%), pellet-delivery (Depot uptime: 20–85%, Biorefinery uptime: 85%) and pellet-delivery

(Depot uptime: 85%, Biorefinery uptime: 85%).
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decreased, thus tonnage processed at the biorefinery increased
(Figure 10). There was no starved time at the biorefinery as
adequate corn stover was available for processing. Biomass supply
uncertainty due to extreme weather events, yield and quality
variability, and supplier reliability were not considered in this
analysis.

Downtime at facility not only causes loss of production, it
also impacts product quality, loss of customers, and increased
costs. Downtime at a biorefinery is mainly due to biomass
handling problems (flowability) and inconsistent biomass quality
attributes (ash, moisture). Preprocessing of biomass at depots
to produce uniform format feedstock “commodities” is strategy
proposed to improve uptime at the biorefinery (Lamers et al.,
2015b). Dedicated pre-processing depots do not eliminate the
problem but add an entity (depots) in the supply chain to
resolve the issue. In pellet-delivery scenarios, intermediate pre-
processing depots were added to the supply chain. Reducing
downtime and increasing uptime improved the efficiency of
system (Figure 10). In pellet-delivery (depot uptime: 20–85%,
biorefinery uptime: 85%) scenario-2, we observed a cascading
effect of failures across facilities (depot to biorefinery). Even
though the biorefinery uptime was 85% with depots in the system
to address handling and quality issues, depots started with higher
failure rates, thus starving the biorefinery. This indicates that
having a depot is only justified if they consistently have higher
uptimes and the cost of having a depot outweighs overall supply
benefits. Resolving biomass handling and quality challenges
could eliminate the need of having depots. In pellet-delivery

scenario-3 (depot uptime: 85%, biorefinery uptime: 85%), the
uptime at the depot and biorefinery were same, thus we observed
stable system and consistency among processed tonnage at both
facilities.

We recommend performing a system-level reliability analysis
incorporating failure dependencies among subsystems. Biomass
quality and handling are key issues for operational disruptions
at biorefinery. Quality issues could be addressed at farm level.
For example, farmers adapt harvesting processes that minimize
ash and moisture levels in corn stover. In addition, farmers
should be fully aware and educated about quality metrics,
including ash and moisture, required by the biorefinery. They
should realize if quality metrics are not met there could be
price penalties or rejected loads. Feedstock handling is other
major issue limiting processing capacity at the biorefinery. A
comprehensive understanding and quantification of biomass
physical properties to enable design of equipment and handling
systems at the biorefinery is a potential solution to feedstock
flowability challenges. In addition, detailed cost-benefit analysis
for depots should be conducted.

Costs
Figure 11 shows average delivered cost based on tonnage
processed at the biorefinery for three scenarios. The delivered
cost, for the bale-delivery (biorefinery uptime: 20–85%) scenario,
averaged to $380/ton in the first year. As biorefinery tonnage
processing increased, the delivered costs decreased. In the years
five through seven when biorefinery uptime was assumed to

FIGURE 11 | Average delivered cost per ton corn stover processed ($/ton) for the bale-delivery (Biorefinery uptime: 20–85%), pellet-delivery (Depot uptime: 20–85%,

Biorefinery uptime: 85%) and pellet-delivery (Depot uptime: 85%, Biorefinery uptime: 85%).
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be 85%, the average delivered cost was $99/ton. Harvest cost
was the biggest contributor to the average delivered costs. In
the model, it was assumed that all the contracted farms are
harvested every year and the equipment fleet is owned by the
biorefinery. Large number of balers were required to complete
the harvesting operation within 32 days due to low machine
capacity of balers. This mainly contributed to harvest being the
largest cost contributor. In the pellet-delivery (depot uptime:
20-85%, biorefinery uptime: 85%) scenario-2, the delivered cost
followed the same trend, decreasing over time with increasing
production at the biorefinery. In the years five through seven
when uptime at depot and biorefinery was assumed to be 85%,
depot cost contributed 26% to the total delivered cost. The
storage cost decreased as less tonnage was stored. In the pellet-
delivery scenario-3 (depot uptime: 85%, biorefinery uptime:
85%), the average delivered cost was found to be $116/ton.
The delivered cost for the pellet-delivery scenario was about
$16/ton greater than the bale-delivery scenario with uptime at
facilities (biorefinery/depot) being 85%. This analysis considers
the production costs and does not account for depot and
biorefinery capital costs. Pre-processing depots may be necessary
to achieve quality, quantity, and reliability required for the
growth of a US bioeconomy. However, detailed analysis should be
conducted to evaluate if overall supply benefits of preprocessing
depots outweighs costs.

CONCLUSIONS AND IMPLICATIONS

We have presented a simulation-driven study for analyzing
the operational reliability of the biomass-to-biorefinery supply
chain. Our approach considers the end-to-end biomass
supply chain system as a series of connected components. It
estimates independent failure modes for each facility (depot
and biorefinery) and tracks how these failures then propagate
throughout the entire system. As a case study, we evaluated
our simulation framework for a biorefinery with corn stover
demand of 335,000 dry tons and facility (depot/biorefinery)
failure data varying each year. This allows us to investigate
and gain insights on the impact of operational disruptions on
costs, facility metrics, and inventory. Our main contribution
is the development and implementation of a database centric
discrete event model that simulates multi-biomass, multi-
form, multi-product, and multi-year biomass supply chains
for operational level decision making. We found cascading
effects of failures propagating through the system from depot to
biorefinery. Operational disruptions caused by biomass quality
and handling issues needs to be addressed. If pre-processing

depots are required to achieve quality, quantity, and reliability,
detailed analysis should be conducted to evaluate how overall
supply benefits outweigh costs. Harvest cost was found to be
the biggest contributor to the delivered costs. Achieving an
optimal combination of custom harvest groups, farmer-owned
equipment, and biorefinery-owned equipment could serve as a
cost-cutting strategy for the biorefinery.
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