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Transient thermal-hydraulic analysis of (very) high temperature gas-cooled reactors

gas turbine systems (HTRGTSs) needs system transient analysis codes. However,

compared with the mature system transient thermal-hydraulic codes of pressurized

water reactors (PWRs), the system analysis codes of HTRGTSs have not been so

fully developed. In this paper, a new hybrid semi-implicit (HSI) method is proposed

based on the semi-implicit method and nearly-implicit method. In the HIS method, a

new calculation strategy is devised: the convective term is treated explicitly to solve

pressure and velocity, while density and temperature are solved in an implicit manner

to get a convergent, stable, and accurate solution in multiple transient scenarios. The

HSI method was further validated via the shock-tube benchmark problem and verified

via FLUENT simulations. In FLUENT simulations, outlet pressure transient, inlet mass

flow transient and inlet temperature transient were studied. It was found that the HSI

method is capable of capturing both the fast and slow compressible flow transients

with good convergence and stability. Furthermore, an adaptive time step scheme is

proposed for faster calculations, considering the maximum relative density difference

and Courant–Friedrichs–Lewy condition.

Keywords: hybrid semi-implicit method, system thermal-hydraulic analysis, one-dimensional compressible

transient solver, high temperature reactor gas turbine system, one-dimensional

INTRODUCTION

High temperature gas-cooled reactors gas turbine system (HTRGTS) is inherently safe and highly
efficient with a reactor outlet temperature of 700∼1,000◦C. HTRGTS uses a Brayton cycle, which
includes a reactor, one or two compressors, turbine, recuperator, precooler, and intercooler. The
working medium is usually helium in the HTRGTS because of its chemical inertia. The helium in
the Brayton cycle is compressed to very high pressure (e.g., 7 MPa) in compressors and furtherly
heated through the reactor, and then expands to very low pressure (e.g., 2.7MPa) to generate kinetic
energy in the turbine.
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There is a very big pressure difference in different parts of
HTRGTS during normal operation, ranging from 2.7 MPa to
7.0 MPa, and moreover the pressure changes quickly during
accidents. Since helium is compressible, a compressible transient
system analysis code is very important and necessary to the
accident analysis of HTRGTS, and it has been studied since
1970s. However, because the HTRGTS is not so widely and
commercially used as the pressurized water reactors (PWRs),
transient system analysis codes for HTRGTS are not so well
developed as those of PWRs. Different from PWRs, HTRGTS
uses helium as its working fluid, whose density strongly couples
with pressure and temperature. Consequently, compressibility
should be considered in the transient calculations of HTRGTS
for more accurate solutions, especially when significant changes
of pressure and temperature are involved.

To date, the developed system analysis codes related
to HTRGTS include GTSim for MGR-GT and GTMHR-
300 program in Japan, FLOWNEX for PBMR program in
South Africa, and PLAYGAS and CATHARE2 in Europe. In
GTSim(Yan, 1990), a one-dimensional compressible flow model
was used to simulate the transient conditions. The numerical
method used in GTSim is a non-iterative method that provides
the strong coupling between energy and continuity equations,
and the strong coupling between energy and momentum
equations. However, in this method the coupling between
continuity and momentum equations is not very strong. As
a result, this method is not very good in solving pressure
transients, where continuity and momentum equations are
strongly coupled.

FLOWNEX (Greyvenstein, 2002; Rousseau et al., 2006; van
Ravenswaay et al., 2006) uses an implicit pressure correction
method, which is very similar to the- SIMPLE method (Patankar,
1980; Tao, 2001). This method strongly couples the continuity
and momentum equations, but it does not couple the energy
equation. The energy equation is solved independently after
continuity and momentum equations are solved. Besides, as
a system solver for one dimensional transient compressible
flow, this method has two weaknesses: (1) it is an iterative
method that may require many iteration steps for each time
step, especially in solving the transient compressible flow, such
as pressure transients; and (2) it requires the setting of a pressure
relaxation factor, which is an empirical figure depending on
transient conditions and user experiences, and thus greatly affects
computational time. These two weaknesses limit its use in the
system analysis codes of HTRGTS.

The CATHARE series codes (Widlund et al., 2005; Saez et al.,
2006; Bentivoglio et al., 2008) use a fully-implicit time integration
scheme for zero-dimensional and one-dimensional modules.
This method represents a relatively larger computational effort,

Nomenclature: ρ, u, T, P: density, velocity, temperature and pressure, respectively;

1τ , 1x: time step and space step, respectively; cv: specific heat capacity of helium

under constant volume; fw: frictional factor; cm: averaged factor when 3D flow is

integrated and averaged to 1D flow; De, Ac: hydraulic diameter and cross Sec. area

of the pipe; E, c, d, r, l,A, B,C,D, ap, aw, ae: coefficients used to simplify calculation;

Superscript ”∼”: intermediate time variable; Superscript “.”: the donored value at

cell face; Superscript “n ”: value of last time step; Superscript “n+1 ”: value of this

time step; subscripts K, L, M: cell center i-1/2, i+1/2 and i+3/2, respectively.

whichmight be compensated by the increased numerical stability
and the possibility to choose greater time steps for slow and
long transients (Bestion, 2008). However, in solving the transient
compressible flow where there is a very strong coupling of
pressure, temperature, and density, the fully implicit integration
scheme requires too many iteration steps for a converged
solution, especially in fast pressure transients.

Therefore, it is meaningful to devise a non-iterative method
that requires less computational time in solving fast pressure
transients, and allows greater time step in solving slow
temperature transients. There is a potential of using the methods
in other fully developed codes of PWRs, such as the non-iterative
semi-implicit and nearly-implicit methods (Division, 2001), for
the transient solvers of HTRGTS.

The structure of this paper is as follows. Section Analysis
of Semi-Implicit and Nearly-Implicit Methods in Compressible
Flow analyzes the performances of the semi-implicit and nearly-
implicit methods in solving compressible flow transients. Section
A New Hybrid Semi-Implicit Method Proposes an Improved
Non-Iterative Semi-Implicit Method, that is, Hybrid Semi-
Implicit (HSI) method, based on the discussion of the semi-
implicit and nearly-implicit methods. Section Verification of
Hybrid Semi-Implicit presents the verification of the HSI method
via shock tube benchmark problem and the comparisons of
the HSI method with FLUENT simulations, in which an outlet
pressure transient, an inlet mass flow transient and an inlet
temperature transient are studied. Section Adaptive Time Step
proposes an adaptive time step scheme for the HIS method for
faster calculation speed. Section Conclusions presents the final
conclusions.

ANALYSIS OF SEMI-IMPLICIT AND
NEARLY-IMPLICIT METHODS IN
COMPRESSIBLE FLOW

Solution Strategies of Semi-implicit and
Nearly-Implicit Methods
One Dimensional Conservative Equations
In a pipe with a constant cross section area, the one-dimensional
continuity, momentum and energy equations are, respectively,

∂ρ

∂τ
+

∂ρu

∂x
= 0 (1)

ρ
∂u

∂τ
+

1

2
ρcm

∂u2

∂x
= −

∂p

∂x
− fwρu (2)

cv
∂ρT

∂τ
+ cv

∂ρuT

∂x
= −p

∂u

∂x
+

hDe

Ac
(Tw − T) (3)

In the discritization process of the semi-implicit and nearly-
implicit methods, the control volume is shown in Figure 1,
in which [xi, xi+1] is control volume of density, pressure and
temperature, and [xK , xL] is control volume of velocity. A
first order upwind scheme is adopted for cell face density and
temperature, and a central difference scheme is used for cell
center velocity.
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FIGURE 1 | Discritized nodes.

Semi-implicit Method
Discretize continuity and energy Equations (1) and (3),
respectively, yields
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According to Taylor expansion, we get the expression of density
ρn+1 in term of Pn+1and Tn+1:

ρ̃n+1
L = ρn

L +

(

∂ρ

∂P

)n

L

(
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(
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)

(6)

Substitute Equation (6) into energy Equation (5) and eliminate
the density term ρn+1 yields expression of the next-time step
temperature Tn+1 in term of Pn+1 and un+1:

T̃n+1
L = Tn
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) 1τ
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(7)

Combining Equations (5)∼(7) to eliminate the terms of ρn+1 and
Tn+1 yields expression of the next time step pressure Pn+1 in term
of un+1:

Pn+1
L = PnL + lnLu

n+1
i − rnLu

n+1
i+1 − EnL1τ ·

(

∂ρ
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/
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(8)

Then, discretize the momentum equation in Equation (2)

ρn
i
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The expression of the next-time step velocity un+1 in term of
Pn+1can be derived:

un+1
i = cni

(

Pn+1
K − Pn+1

L

)

+ dni (10)

It should be noted that the convection term in the momentum
equation is treated explicitly in the semi-implicit method. The
calculation strategy of the semi-implicit method is as follows:

Substitute Equation (10) into (8) to eliminate un+1 yields the
expression of Pn+1:

−cni l
n
LP
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K + (1+ cni l

n
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n
L)P
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L − cni+1r

n
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LRE
n
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Then substitute Pn+1into Equation (10) yields un+1.
Then substitute Pn+1and un+1 into Equation (7) yields Tn+1.
Then substitute Pn+1and Tn+1 into Equation (6) yields

density ρ1.
Finally, substitute Pn+1and Tn+1 into state equation yields

another density ρ2, if the difference between ρ1 and ρ2 is small
enough, then a converged solution is obtained.

Nearly-Implicit Method
In the nearly-implicit method, the continuity and energy
equations are treated and the relationship between pressure and
velocity is deduced. The convective term in the momentum
equation is treated implicitly, as shown in Equation (12):
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The relationship between velocity un+1and pressure Pn+1 can be
deduced from Equation (12):

Aiu
n+1
i−1 + Biu

n+1
i + Ciu

n+1
i+1 + Di = Pn+1

K − Pn+1
L (13)

Density and temperature in the nearly-implicit method are solved
implicitly in continuity Equation (14) and energy Equation (15),
respectively.
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The calculation strategy of nearly-implicit method is in the
following steps:

1) Substitute the expression of Pn+1 in Equation (8) into
Equation (13), un+1 can be solved first;

2) Then substitute un+1 into Equation (8), Pn+1 can be solved;
3) Then substitute un+1 into continuity Equation (14) and

update the velocity term, density ρ1 can be solved implicitly;
4) Then substitute un+1 Pn+1 and ρ1 into energy equation

(15) and update the velocity, pressure and density terms,
temperature can be solved implicitly;
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TABLE 1 | Parameter settings.

Common setting

L/m D/m 1t/s Material Fluent model Fluent number of cells HSI method model

1.0 0.01 10−5 Helium (ideal gas) 2D laminar 57 971 1D

Boundary conditions and space step

Transient condition

Parameters
Gin/kg/(m

2·s) Pout/MPa Tin/
◦C 1x/m

Outlet pressure transienta 37.9 2.7 → 2.6 300 0.01

Outlet pressure transientb 0.14 2.7 → 2.6 300 0.01

Inlet mass flow transientb 10 → 20 2.7 300 0.01

Inlet temperature transientb 10 2.7 300 → 350 0.005

(a)Outlet pressure transient parameter settings for semi-implicit and nearly-implicit methods; (b)Outlet pressure transient parameter settings for HSI method and FLUENT simulation.

5) Finally, substitute Pn+1 and Tn+1 into state equation, another
density ρ2 can be solved. If the difference between ρ1 and ρ2

is small enough, a convergent solution is obtained.

In step (3) and step (4), density and temperature are solved in
the following form:

ap,iφ
n+1
L = aw,iφ

n+1
K + ae,iφ

n+1
M + bi (16)

φn+1 mean density ρn+1 in continuity equation and temperature
Tn+1 in energy equation.

Performances of the Semi-implicit and
Nearly-Implicit Methods
Two FORTRAN codes were developed based on the semi-
implicit and nearly-implicit methods in order to analyze
their performances in solving transient compressible flow.
Pressure transient involves the strong coupling of pressure,
density, velocity, and temperature, and it is used to testify the
performances of the two methods. The transient condition is a
step decrease of outlet pressure of a pipe from 2.7 MPa to 2.6
MPa. Other parameters, such as boundary conditions, time step,
and space step, are shown in Table 1. The calculated pressure
and temperature responses by the two methods are shown in
Figures 2, 3, respectively.

It can be seen from Figure 2A that the semi-implicit method
is capable of capturing the fast pressure responses with little
numerical diffusion. However, it has poor stability in capturing
the slow temperature responses, as seen in Figure 2B that
temperature diverged at 0.02 ∼ 0.04 s. It can be seen from
Figure 3B that the nearly-implicit method has good stability in
capturing the slow temperature responses. However, it cannot
capture the fast pressure responses very accurately, as seen
in Figure 3A that the pressure oscillations are suppressed and
vanish very quickly.

One possible reason for the great numerical diffusion of the
nearly-implicit method is that the time step 1τ = 10−5 s is
too large to capture the fast pressure responses accurately. The
variation of time step from 10−6 s to 10−8 s was studied, and

FIGURE 2 | Responses of the semi-implicit method under outlet pressure

transient. (A) Pressure responses. (B) Temperature responses.
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FIGURE 3 | Responses of the nearly-implicit method under outlet pressure

transient. (A) Pressure responses. (B) Temperature responses.

some of the results are shown in Figure 4. It was found that if
time step 1τ≤10−7 s, the numerical diffusion of pressure can
be very small. However, there are two weaknesses: (1) spurious
oscillations exist at the pressure step change points; and (2) the
time step is too small, which means a great computational effort.

As shown in Figures 2∼4, neither the semi-implicit method
nor nearly-implicit method provides a stable and accurate
solution in solving transient compressible flow.

A NEW HYBRID SEMI-IMPLICIT METHOD

Further Discussion of the Semi-implicit
and Nearly-Implicit Methods
For the semi-implicit method, velocity is implicit while density is
explicit in continuity equation. In energy equation, only velocity
is implicit, the other parameters, such as density, pressure,
and temperature, are all explicit. In momentum equation, the
pressure and frictional terms are implicit, while the convective

FIGURE 4 | Pressure responses of the nearly-implicit method under different

time steps. (A) 1t = 10−6s. (B) 1t = 10−7s.

term is explicit. So the expressions of density, temperature,
velocity, and pressure can be derived directly. In calculation,
firstly, pressure, density and temperature are solved explicitly
from the derived expressions, and then velocity is solved based
on the solved pressure.

In the nearly-implicit method, the expression of pressure
is derived from continuity and energy equations in the same
way as in the semi-implicit method. Different from the semi-
implicit method, the convective term in the momentum equation
is treated implicitly. In calculation, velocity is solved first, then
pressure is solved subsequently based on the solved velocity, and
then density and temperature are solved implicitly by updating
the solved pressure, velocity and density in continuity and energy
equations.
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There are mainly two differences between the semi-implicit
and nearly-implicit methods: (1) the explicit or implicit
treatment of the convective term in the momentum equation,
which determines the different expressions of velocity, and (2)
the explicit or implicit calculation of density and temperature.
According to the two differences and the results in Figures 2–4,
it is assumed that (1) in order to capture a detailed fast pressure
transient response, the convective term in momentum equation
should be treated explicitly, and (2) in order to get a stable
solution for the slow temperature transients, coefficients in the
continuity, and energy equations should be updated immediately
using the previously solved parameters, such as pressure, velocity
and density.

To testify this hypothesis, the convective term in momentum
equation is treated implicitly as in the nearly-implicit method,
and density and temperature are solved explicitly as in the semi-
implicit method. If this hypothesis was correct, it is predicted that
neither an accurate pressure response nor a stable temperature
solution could be obtained. The results are shown in Figure 5,
in which the time step is 1τ = 10−5 s. It can be seen that
for the fast pressure response, the artificial diffusion is too big,
while for the slow temperature response, the solution diverged.
The results are the same as predicted, so the hypothesis is
reasonable.

Proposal of a New Hybrid Semi-implicit
Method
According to the hypothesis discussed above, a new HSI
method is proposed. In the HSI method, the convective term
in momentum equation is treated explicitly, and density and
temperature are solved implicitly by updating coefficients in
the continuity and energy equations using the previously solved
parameters. The calculation strategy of the HSI method is in the
following steps:

1) First, Pn+1 is solved in Equation (11);
2) Then substitute Pn+1 into the momentum Equation (10) and

solve un+1;
3) Then substitute un+1 into the continuity Equation (14) to

update velocity term and solve density ρ1 implicitly;
4) Then substitute ρ1, u

n+1 and Pn+1 into the energy Equation
(15) to update density, velocity and pressure terms and solve
Tn+1 implicitly.

5) Finally, substitute Pn+1 and Tn+1 into state equation, another
density ρ2 can be calculated, if the difference between ρ1 and
ρ2 is small enough, a convergent solution is obtained.

Under the same outlet pressure transient in section Analysis
of Semi-Implicit and Nearly-Implicit Methods in Compressible
Flow, and using parameter settings in Table 1, the pressure
and temperature responses of the HSI method are shown in
Figure 6. It can be seen from Figures 6A,B that the fast transient
responses caused by pressure oscillations are captured and the
slow temperature responses are stable and converged. As a result,
the newly proposed HSI method has the advantages of both
the semi-implicit and nearly-implicit methods but none of their
weaknesses.

FIGURE 5 | Responses of the hypothesized opposite treatments under outlet

pressure transient. (A) Pressure responses. (B) Temperature responses.

VERIFICATION OF HYBRID SEMI-IMPLICIT

The newly proposed HSI method has shown good performance
in solving transient compressible flow. However, the accuracy
of the results needs to be further verified. The HSI method was
furtherly verified via the shock tube benchmark problem, and
compared with FLUENT simulations.

Shock Tube Benchmark Problem
The shock tube problem is a typical Riemann problem, and has an
exact solution (Toro, 2009). In the shock tube problem, a closed
tube with a length of 100m was separated into two equal parts
by a membrane film, as shown in Figure 7. The left part of the
tube is helium with a pressure of 2.0 MPa and a temperature of
400K, and the right part of the tube is helium with a pressure of
1.0 MPa and a temperature of 400K. If the film suddenly breaks
in the center, the helium in two parts mixes together, and shock
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FIGURE 6 | Responses of the hybrid semi-implicit under outlet pressure

transient. (A) Pressure responses. (B) Temperature responses.

FIGURE 7 | The shock tube problem model.

wave, rarefaction wave, and discontinuity wave are produced in
this process.

There is no exact closed-form solution to the Riemann
problem for the Euler equations of shock-tube problem.
However, it is possible to devise iterative schemes whereby the
solution can be computed numerically to high accuracy. The
space step is set as 0.05m in both the iterative scheme and theHSI
method. Comparison of the exact solution with that of the HSI
method is shown in Figure 8. Three time steps of 10−4 s, 10−5

s, and 10−6 s are calculated using the HSI method. It was found
that when1τ = 10−4 s the solution is divergent, and when1τ =

10−5 s and1τ = 10−6 s, the results of the HSI method are almost

FIGURE 8 | Comparisons between the HSI method and the exact solution.

FIGURE 9 | Pressure comparisons of the HSI method and FLUENT at x =

0.2m under outlet pressure transient using laminar flow model.

identical, as seen in Figure 8. So the time step is set as 10−5 s in
this case to get a convergent solution with shorter computational
time in the following discussion.

It can be seen from Figure 8 that the HSI method can capture
the pressure transient with good accuracy. The slope of each wave
nearly equals to the exact solution and there are no spurious
oscillations at pressure step change points.

Comparisons With Fluent Simulations
In this section, the HSI method was compared with FLUENT
simulations in which a two-dimensional laminar flow model was
adopted. In the FLUENT simulations, constant outlet pressure,
inlet mass flow, and inlet temperature were adopted for the
boundary conditions of compressible flow. In order to test
the performances of the HSI method under different transient
scenarios, three typical transient conditions are studied and
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FIGURE 10 | Pressure comparisons of the HSI method and FLUENT under

outlet pressure transient using inviscid flow model.

FIGURE 11 | Comparisons of the HSI method and FLUENT under inlet mass

flow transient.

compared with FLUENT simulations, namely an outlet pressure
transient, inlet mass flow transient, and inlet temperature
transient. Among the three transients, the pressure transient is a
fast transient with a very short characteristic time that involves
significant changes of pressure, velocity, and temperature. The
mass flow transient is also a fast transient but does not involve
significant changes of pressure or temperature. The temperature
transient is a slow transient with a long characteristic time, and
causes mild changes of pressure, velocity, and temperature.

Outlet Pressure Transient
The transient condition for outlet pressure transient is a step
decrease of outlet pressure from 2.7 MPa to 2.6 MPa. The settings
of other parameters are shown in Table 1, and the pressure
responses at axial position x = 0.2m are shown in Figure 9. It

FIGURE 12 | Comparisons of the HSI method and FLUENT under inlet

temperature transient. (A) Pressure responses. (B) Mass velocity responses.

(C) Temperature responses.

can be seen that the frequencies of pressure response in both
FLUENT and the HSI method are the same, while the amplitude
in FLUENT decreases faster than that of the HSI method. The
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difference in amplitudes is caused by the entrance effect. In the
HSI method, a simplified one-dimensional model was employed
and the frictional loss caused by viscosity is simplified as a
frictional coefficient f = 64/Re. However, in FLUENT a two-
dimensional laminar flow model was employed and thus there
is a greater velocity gradient at the entrance, which leads to a
greater energy loss than the fully developed position. Therefore,
the pressure amplitudes of FLUENT simulations decrease faster
than that of the HSI method at the entrance. If not considering
viscosity and uses an inviscid flow model in both FLUENT and
the HSI method, the pressure responses of the two methods at
x = 0.6m under the same outlet pressure transient is shown in
Figure 10. It can be seen that the amplitudes of the two methods
are almost the same.

Inlet Mass Flow Transient
The transient condition for inlet mass flow transient is a step
increase in inlet mass velocity from 10 kg/(m2·s) to 20 kg/(m2·s),
and the input parameters are shown in Table 1. For pressure, and
temperature responses at x = 0.4m, the comparisons between
FLUENT and the HSI method are shown in Figure 11. It can be
seen that the two methods have the same response frequency,
while the amplitudes of the HSI method are slightly greater
than that of FLUENT. Compared with the pressure transient in
Figure 10, the response frequencies of the two transients are the
same. There are ∼6.5 cycles within 0.02 s for both the pressure
transient and mass flow transient. So the mass flow transient is
propagated in the same mechanism as the pressure transient at
the speed of sound.

Inlet Temperature Transient
The transient condition for inlet temperature transient is a step
increase in inlet temperature from 300 to 350◦C, and the input
parameter settings are shown in Table 1. For the responses
of pressure, the mass velocity, and temperature at x = 0.2m,
the results of FLUENT and the HSI method are shown in
Figure 12. It can be seen from Figures 12A that a step increase
of inlet temperature results in a mild pressure oscillation, whose
amplitude is very small (around 1 kPa). The frequency of the
pressure oscillation is the same for both FLUENT and the HSI
method, while the amplitude of the HSI method is slightly
larger than that of FLUENT. Moreover, because pressure and
velocity are strongly coupled, the pressure oscillation also leads
to the mass velocity oscillation, which has the same frequency as
pressure, as seen in Figures 12B. These are fast transients.

It can also be seen from Figure 12B that there is a sudden
decrease of mass velocity at around τ = 0.04 s, this is a slow
transient caused by temperature distribution. At around τ =

0.04 s, the temperature difference signal was transferred to the
position x= 0.2m, as seen in Figure 12C. This causes an increase
in local temperature and a decrease in local density. According
to continuity Equation (1), the decrease in local density leads
to a decrease in the local derivative ∂ρ/∂t, which in turn leads
to an increase in local space derivative ∂(ρu)/∂x. For the local
control volume, this means that the mass flows out of the volume
is greater than that flows into it. As a result, the total local mass
flow decreases.

Another phenomenon can be seen from Figure 12B is that the
mass velocity of FLUENT first drops to an intermediate value
(around 10.3 kg/(m2·s)) at a steeper rate than that of the HSI
method, and then gradually stabilizes at around 10 kg/(m2·s) with
a diminishing oscillation. The mass velocity of the HSI method
drops directly to the stable value [10 kg/(m2·s)] at a slower rate,
and then gradually stabilizes with a diminishing oscillation.

There are two reasons for this phenomenon. First, FLUENT
uses a second upwind scheme while the HSI method used a first
upwind scheme, so the solution of FLUENT ismore accurate than
the HSI method, and the temperature distribution is steeper, as
seen in Figure 12C. This in turn contributes to a steeper decrease
of mass velocity in FLUENT. Second, because FLUENT used a
two-dimensional laminar flow model, the velocity is zero at the
wall and maximum at radial center. This velocity profile leads to
the temperature distribution in Figure 13, which illustrates the
average axial temperature distribution of FLUENT and the HSI
method at τ = 0.1 s.

As a result, local temperature changes very quickly in
the beginning and then gradually slows down, as shown in
Figure 12C. This results in the intermediate value of mass
velocity in FLUENT simulation, and its gradual stabilization
to the stable value. In the HSI method, an averaged one-
dimensional model was employed and the radial temperature
profile is uniform. Therefore, themass velocity of theHSImethod
directly drops to its stable value when temperature difference
signal arrives.

ADAPTIVE TIME STEP

In order to save computational time, two conditions are
considered for adaptive time step in the HSI method to speed
up calculations, namely the maximum relative density difference
between the two densities (one by continuity equation and

FIGURE 13 | Average axial temperature distribution of the HSI method and

FLUENT at time = 0.1 s under inlet temperature transient.
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the other by state equation), and the Courant–Friedrichs–Lewy
(CFL) condition.

Maximum Relative Density Difference
The maximum relative density difference is

1ρmax =
N

max
i=1

(∣

∣ρn+1
i,1 − ρn+1

i,2

∣

∣

ρn+1
i,2

)

(17)

In which ρ1 is solved implicitly using the continuity equation and
ρ2 is solved by state equation. 1ρmax is the maximum relative
density difference between ρ1 and ρ2. If1ρmax ≤1ρL (the lower
limit of 1ρmax), then the errors under this time step are small
enough to allow greater time step for faster calculation while still
retaining high accuracy. On the other hand, if 1ρmax > 1ρH

FIGURE 14 | Relationship between temperature and time without considering

CFL condition.

FIGURE 15 | Relationship between cmax and node number under different

pipe length.

(1ρH is the upper limit of 1ρmax), then the relative density
error may be too large to converge, and the time step should
decrease to ensure convergence. Based on the a lot of testing,
the recommended values of 1ρL and 1ρH here are set as 1ρL=

10−8 and 1ρH= 10−3 for the HIS method for the transients of
the HTRGTS.

CFL Condition
As mentioned in section Maximum Relative Density Difference,
a suitable value of 1ρL saves computational time, and that of
1ρH ensures convergence. However, the temperature response
at x = 0.75m, as shown in Figure 14, indicates that the solution
is unstable under the outlet pressure transient condition.

To ensure stability, the CFL condition must be considered to
control the time step below a certain value, so that the Courant
number is lower than its maximum value (cmax). Under a fixed
mass velocity of 38.90 kg/(m2 · s), the relationship between
cmax and the number of nodes under different pipe lengths are
shown in Figure 15. It can be seen that (1) the value of cmax

FIGURE 16 | Relationship between time step (A), temperature (B), and time

considering CFL condition. (A) Time step. (B) Temperature.
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decreases with the increase of node number, and (2) cmax was
not influenced by pipe length. If the node number is >300, the
value of cmax ranges between 1.2 and 1.3. To ensure stability,
the value of cmax is set as 1.1 for different node numbers. After
the CFL condition was considered, the relationship between time
step and time is shown in Figure 16A, and the temperature
response at x=0.75m is shown in Figure 16B. It can be seen from
Figure 16A that time step first increased to a certain value and
then stabilizes, and a stable solution of temperature is obtained,
as seen in Figure 16B.

CONCLUSIONS

To devise a non-iterative transient solver for one-dimensional
compressible flow for high temperature gas cooled reactors
gas turbine systems (HTRGTSs), the performance of the semi-
implicit and nearly-implicit methods in typical compressible
flow transients were studied. The results show that the semi-
implicit method can capture the fast pressure responses with
little numerical diffusion, but it has poor stability in capturing
the slow temperature responses. The nearly-implicit method has
good stability in capturing temperature responses, but it has too
great numerical diffusion in capturing pressure responses.

Based on the discussion of the two methods, a new HSI
method that combines the advantages of both the semi-implicit
and nearly implicit methods was proposed. In the HSI method,
a new calculation strategy is devised: the convective term in
momentum equation is treated explicitly to solve pressure and
velocity; density and temperature are solved implicitly using
continuity and energy equations.

The HSI method was verified via the shock tube benchmark
problem, and furtherly compared with FLUENT simulations.
In verification with the shock tube benchmark problem, it
was found that the HSI method can capture pressure transient
accurately, and there are no spurious oscillations at the
pressure step change points. In comparisons with FLUENT
simulations, the outlet pressure transient, inlet mass flow
transient, and inlet temperature transient were studied. The
results show that the response frequencies of the HSI method
are the same as those of the FLUENT simulations, while
the amplitudes of the HSI method are slightly larger than
those of FLUENT simulations. The HSI method is capable of
capturing both the fast transients (such as pressure transient),
and the slow transients (such as temperature transient) with good
accuracy.

An adaptive time step scheme was furtherly proposed for
faster calculations of the HIS method while still retaining a
good convergence, stability, and accuracy. Two conditions are
considered in this scheme, namely the maximum relative density
difference, whose upper limit is set as 10−3 and lower limit 10−9,
and the CFL condition, in which the maximum Courant number
is set as 1.1.
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