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Integrating intermittent renewable energy sources has renders the power network oper-
ator task of balancing electricity generation and consumption increasingly challenging.
Aside from heavily investing in additional storage capacities, an interesting solution might
be the use predictive control methods to shift controllable loads toward production
periods. Therefore, this article introduces a systematic approach to provide a preliminary
evaluation of the thermoeconomic impact of model predictive control (MPC) when being
applied to modern and complex building energy systems (BES). The proposed method
applies an ϵ-constraint multi-objective optimization to generate a large panel of different
BES configurations and their respective operating strategies. The problem formulation
relies on a holistic BES framework to satisfy the different building service requirements
using a mixed-integer linear programming technique. To illustrate the contribution of
MPC, different applications on the single- and multi-dwelling level are presented and
analyzed. The results suggest that MPC can facilitate the integration of renewable energy
sources within the built environment by adjusting the heating and cooling demand to
the fluctuating renewable generation, increasing the share of self-consumption by up to
27% while decreasing the operating expenses by up to 3% on the single-building level.
Finally, a preliminary assessment of the national-wide potential is performed by means of
an extended implementation on the Swiss building stock.

Keywords: renewable energy, MILP, multi-objective optimisation, distributed energy systems, model predictive
control, self-consumption

1. INTRODUCTION

The building infrastructure represents the largest energy consumption sector in Switzerland; its
share of the inland final energy consumption (FEC) amounts to nearly 43% while 86% of this
consumption is solely dedicated toward space heating and domestic hot water preparation (Prognos
et al., 2016). Similar values can be observed in the European Union region where built environment

Abbreviations: AHP, air-source heat pump; BAT, battery; BES, building energy system; BOI, natural gas boiler; CDD, cooling
degree days; CHP, combined heat and power; DRY, design reference year; DWT, domestic hot water tank; ELH, electrical
heater; ESE, electrical storage equivalence; GHI, global horizontal irradiance; GM, grid multiple; HDD, heating degree days;
HWT, hot water tank; LPEM, low temperature proton exchangemembrane fuel cell; MILP, mixed-integer linear programming;
MINLP, mixed-integer non-linear programming; MPC, model predictive control; PVA, photovoltaic array; RBC, rule-based
control; SC, self-consumption; SOFC, solid oxide fuel cell; SS, self-sufficiency; STC, solar thermal collector; VAC, ventilation
and air conditioning.
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is responsible for over 40% of the member states FEC (Statistical
Office of the European Communities, 2015) and thus represents
a crucial factor within the context of sustainable development.
In the view of achieving their long-term energy strategy targets
such as curbing greenhouse gas emissions, improving the security
of supply, and decreasing energy utilization, governments are
increasingly imposing more strict performance requirements on
novel and refurbished dwellings.

In the light of such legislation, modern building energy sys-
tems (BES) are facing a progressive growth in complexity, thus
rendering their proper design and strategic operation increasingly
compelling. While past energy systems commonly comprise a
single, simple conversion unit to satisfy all thermal demands,
novel configurations should include multiple conventional and
renewable-based utilities to meet the strict performance criteria.
However, the commonly applied two-point regulation and design
methods are struggling to cope with the resulting size in deci-
sion variables. The introduction of mathematical programming
techniques in BES provides an interesting approach to face the
former issues; by applying model predictive control (MPC) to a
holistic energy system framework, optimal solutions can indeed
be generated given a specific objective and system constraints.
Among the latter, the strong interaction between the BES and
the local distribution power network is of major importance in
regard to the flexibility the BES might be able to offer to the
grid management system. Indeed, compared with non-predictive
control methods, MPC is able to anticipate future generation and
consumption profiles and shift controllable loads accordingly to
increase self-consumption or decrease the building impact on the
grid (Ashouri et al., 2015).

1.1. State-of-the-Art
Considering the growing interests in curbing the environmental
impacts related to the provision of domestic service requirements,
the problem of optimal sizing and operation of BES has been
widely addressed in the literature. Over a decade ago, Weber
et al. (2006) proposed an integrated framework to design and
schedule urban energy systems at the district scale. The authors’
method relied on a bi-level optimization strategy, decompos-
ing the problem formulation into two distinct levels; an upper
realizing the system design and a lower performing the utility
scheduling. This approach has been successfully applied at the
building level byCollazos et al. (2009) to properly size an advanced
thermal energy system for a single-family house. In their work, the
authors subsequently developed an MPC controller integrating a
micro-cogeneration engine, showing the benefit of deploying the
controllerwhen subjected to variable electricity tariffs for different
problem formulations.

In more recent studies, Ashouri et al. (2013) proposed a
holistic approach to simultaneously solve the optimal design
and scheduling of BES for large, commercial dwellings. Their
investigations showed the ability of the defined MILP prob-
lem formulation to cope with multiple system constraints while
remaining tractable. Fux et al. (2013) applied a bi-level optimiza-
tion framework, to assess optimal trade-off BES configurations
for stand-alone dwellings. After defining the different designs, the

authors compared their system performances when being oper-
ating using MPC and rule-based control (RBC). In the context of
MILP formulations, Schütz et al. (2017) presented a BES optimiza-
tion framework for residential dwellings including the discrete
decision variables related to the envelope refurbishment while
Wakui and Yokoyama (2015) defined a decomposition method
comprising advanced, control-oriented unit models. To cope with
the computational complexity of their problems, both studies
solely considered several, empirically defined, typical operating
periods.

From a purely control point of view, several researchers such
as Oldewurtel et al. (2011) studied the effect of dynamic tariffs in
reducing peak power demands for residential and office buildings
though the means of MPC. The authors evaluated the potential
for different scenarios, using a priori defined electrical storage
sizes and envelope capacities before applying their method to the
city of Zurich. De Coninck and Helsen (2016) developed and
subsequently applied a non-linear MPC formulation to a heat
pump powered commercial building in Brussels. Their results
demonstrated the predictive regulator ability in decreasing daily
energy costs while improving occupants’ comfort when compared
with a standard RBC scheme. Finally, Zhao et al. (2015) presented
the performance achieved using an integrated, non-linear MPC
algorithm based on First Law models. By comparing various grid
interaction scenarios, the authors show that substantial economic
benefit can be achieved while decreasing the environmental BES
impact.

Although the previous studies have successfully targeted the
issue of optimal BES sizing and control, a formal definition of the
potential impact of MPC within the context of building energy
systems is still lacking, including answers to questions such as
“to which extent does MPC improve the integration of renewable
energy systems in buildings?” as well as “how can the energy
system design be adapted to further increase the former share?”
Indeed, the use ofMPC transforms the BES into a virtual electrical
storage unit with respect to standard operation techniques by
shifting controllable loads to reduce the operational costs. In
view of the different system boundary conditions, MPC might
considerably increase the self-consumption of on-site generated
power, such as from photovoltaic panels or combined heat and
power units, while respecting the different service requirements,
grid interactions, and utility integration constraints. Hence, this
study attempts to contribute to the state-of-the-art by proposing a
systematicmethod to provide a first answer to the aforementioned
questions. The following study is an extension of the authors’ pre-
vious work presented in Stadler et al. (2017b); while the systematic
approach and geographical clustering have been introduced in the
former paper, the novel further comprises an advanced formula-
tion of the considered performance indicators, additional devices
in the modeling framework as well as a multi-objective national
assessment of optimal BES designs.

The structure of this article is the following: Section 2 describes
the developed method, and Section 3 defines the case study con-
sidered. Section 4 exposes the resulting advantages of applying
predictive control in buildings, while Section 5 finally provides
concluding comments about the proposed approach and relevant
findings of this study.
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2. MATERIALS AND METHODS

This study proposes a systematic approach to evaluate both the
local and national contribution ofmodel predictive control (MPC)
techniques in integrating modern complex energy systems in the
Swiss building stock. As illustrated in Figure 1, the developed
method comprises three major steps which are detailed in the
following section:

1. The data reduction step (section 2.1) in which the problem
size is drastically decreased to improve both the problem
tractability and solvability.

2. The optimization step (section 2.2) inwhich the optimal sizing
and/or control problem is systematically solved for different
operational constraints and boundary conditions.

3. The post-processing step (section 2.3) in which the solutions
of previous step are analyzed to provide optimal trade-off
solutions to stakeholders.

2.1. Data Reduction
The initial input data consist of the national building register
(RegBL; Section Bâtiments et logements, 2015), which comprises
generic information on around 1.6mio dwellings such as their
category, age, and size. In view of the latter number, an indi-
vidual assessment at this scale is completely intractable while
requiring a tremendous computational effort. Thus, a first data

FIGURE 1 | Illustration of the developed methods.

reduction step is performed. Indeed, given the available data1

and the classification results presented in Girardin et al. (2010),
three specific building types have been defined and analyzed
throughout the following study; a single-family house, an apart-
ment block, and amixed use building (Stadler et al., 2017b), each of
them comprising nine subcategories regarding their construction
period. In regard to the approach of Girardin et al. (2010), space
heating demands are characterized on the basis of the heating
curve definition while purely affectation-specific requirements
(e.g., power and domestic hot water needs) are evaluated using
standards of the Swiss society of engineers and architects (SIA
2024, 2015). Since these different building types are obviously sub-
ject to different climatic conditions throughout the year depend-
ing on their location on the national territory, an additional data
reduction step is required to group similar demand regions: spatial
clustering.

2.1.1. Spatial Clustering
Spatial data reduction aims at identifying typical geographical
regions with identical climatic conditions (i.e., space heating
demands). The applied approach relies on a modified procedure
initially proposed by Fazlollahi et al. (2014) and uses a specific
implementation of the k-medoids technique: mixed-integer linear
programming (MILP). This clustering method defines the cluster
centers from the initial data set based on the smallest sum of
squared distances within each cluster. At the clustering level,
the k-medoid appears to provide more robust results than the
commonly applied k-means technique as discussed by Kaufman
and Rousseeuw (2009) and recently noticed in the comparative
study of Schütze et al. (2016). In this study, the considered input
data can be described as follows:

• The initial observations i consist of the 2,441 different com-
munes territories of Switzerland. Indeed, buildings located
within a same commune have been considered exposed to
identical climatic conditions and hence, clustered a priori
within those territories. The national building stock can thus
be directly clustered at the commune scale.

• The commune attributes a include the number of heating
(HDD) and cooling (CDD) degree days as well as the annual
global horizontal irradiance (GHI) related to the ith hourly
of the design reference year (DRY) profile. Indeed, in urban
energy system planning, building performances are commonly
assessed by means of normalized DRY (SIA 2028, 2008). These
hourly profiles are constructed from historical meteorologi-
cal measurements and incorporate typical climatic conditions
arising at the location of interest. The annual cyclicity of the
former climatic states supports the assumption of considering
the weather data as constant over the entire equipment lifetime,
hence decreasing the temporal simulation scope from about
20years×8760hours to 1years×8760hours time steps. The definitions
of these parameters are hence expressed in equations (1)–(3)
where the index d represents a day and T̄amb the mean daily
ambient temperature (European Environment Agency, 2012)

1Currently, several important building parameters (e.g., footprint area or floor
number) are not required to be provided by law and thus are solely partly available
in function of the good will of communes (smallest political entity in Switzerland).
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HDDi =
365∑
d=1

(
18 − T̄amb

i,d

)
∀T̄amb

i,d ≤ 15 (1)

CDDi =
365∑
d=1

(
T̄amb
i,d − 18

)
∀T̄amb

i,d ≥ 18.3 (2)

GHIi =
365∑
d=1

GHIi,d (3)

To assess the different attributes a of each observation i, the
available data of 40 national weather stations have been extended
by using the inverse distance squared interpolation method intro-
duced by Shepard (1968) and further extended by Lefèvre et al.
(2002). However, to properly assess the annual load profiles of
the different cluster centers a posteriori, the medoids locations
are constraint in the MILP problem formulation to the latter
weather stations. Following the computation, the optimal cluster
size has finally been selected with respect to a single-performance
indicator:

• The silhouette index (S) measures the cluster cohesions in
comparison with their separations. The index ranges from −1
to 1, large values representing a good cluster structure while
low and negative values reflect a weak configuration.Hence, the
indicator should be maximized during the selection process.

To guarantee a reliable representation of the original data by the
reduced data space, a minimum acceptable number of clusters are
defined on the basis of two quality indicators:

• The error in load duration curve (ELDC) of attribute a
(Domínguez-Muñoz et al., 2011) indicates the global (national)
SD of the original and clustered load curves.

• The mean profile deviation (σcdc) of attribute a (Fazlollahi
et al., 2014) evaluates the difference between the observations
(commune) and their representative cluster medoid.

Figure 2 presents the evolution of the different indicators with
respect to the cluster number nk. The highest values of the average
silhouette index are observed for nk = 2, nk = 3, and nk = 4 zones
while both the errors in load duration curves as well as the mean
profile deviations continuously decrease with the rise in nk. The
minimum acceptable number nmin

k of cluster is assessed through
an improvement threshold ϵ in quality indicators resulting from
increasing the cluster size from k to k+ 1; hence, considering a
value of ϵ= 0.20 (Fazlollahi et al., 2014), the resulting nmin

k = 5.
In view of this lower bound, the next local performance indica-
tor maximum is nk = 7, and thus the following climatic region
number has been selected.

The spatial cluster layout resulting from the aforementioned
algorithm is illustrated in Figure 3. As expected, the different
geographical topologies of the communes are well reflected within
the assessed partition: (i) theAlps (south and east), (ii) the Plateau
(west and the north-east), and (iii) the Jura (north-west). Conse-
quently, in addition to the previously discussed statistical quality
indicators, the figure provides a good graphical validation of the
selected cluster size. Finally,Table 1 provides aggregated overview
of the average attributes and annual service requirements of each
climatic zones.

FIGURE 2 | Spatial data reduction quality indicators for heating degree days
(diamond), global horizontal irradiance (star), cooling degree days (circle), and
performance indicator.

2.1.2. Temporal Clustering
Although the preceding steps drastically decreased the problem
size from around 1.6mio to 3types × 9age × 7zones dwellings, a last
data reduction operation is finally performed prior solving the
optimization problem to further decrease the remaining compu-
tational complexity: temporal clustering. Thereafter, the approach
introduced in the previous section (section 2.1.1) is anew applied
to identify a set of typical days for each spatial cluster. Indeed,
similar to the equipment lifetime, a DRY might be represented
by a series of daily climatic patterns with certain probability of
occurrence. The considered input data of the temporal clustering
problem can be described as follows:

• The initial observations i are the 365 days of the DRY.
• The attributes a consist of 24 measurements (hours) of the

ambient temperature and the global horizontal irradiance.
Additional temporal data such as electricity and hot water
demand profiles have been assessed from the standard values
of Swiss Society of Engineers and Architects (SIA 2024, 2015)
and thus have not been considered in the following process step.

Since in the temporal data reduction step the observation i
comprises multiple measurements, an additional quality indicator
is implemented:

• The profile deviation (σprofile) of attribute a (Fazlollahi et al.,
2014) evaluates the SDs between the original and typical pro-
files with respect to their averages.

In the case of the Geneva-Cointrin climatic zone, the highest
values of the average silhouette index are observed for nk = 2,
nk = 4, and nk = 3 periods while the quality indicators tend to
decrease with the increase in nk (Figure 4). Considering a thresh-
old value ϵ= 0.12, theminimum acceptable cluster size is nmin

k = 7
and consequently, nk = 8 has finally been chosen as the best trade-
off solution. The temporal scope of the optimization problem
is thus reduced from 1years × 8760hours to 8days × 24hours time
steps.
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FIGURE 3 | Identified climatic zones in Switzerland.

TABLE 1 | Annual demand and climatic conditions.

Climatic zone T̄amb [°C] GHI [kWh/m2] SREa [miom2] Eb [TWh] Qdhw
c [TWh] Qsh

c [TWh]

Bern-Liebefeld 9.48 136.25 139.06 4.68 2.17 18.89
Davos 4.38 163.16 41.78 1.10 0.66 8.37
Disentis 7.04 153.01 31.55 0.96 0.49 5.15
Geneve-Cointrin 11.03 142.05 58.50 1.96 0.92 6.89
Lugano 12.76 144.03 9.62 0.24 0.15 1.00
Piotta 8.11 139.37 46.85 1.65 0.72 7.02
Zuerich-SMA 9.87 127.85 332.06 10.65 5.18 43.04

National 659.42 21.23 10.30 90.35

aEnergetic reference area.
bAnnual electrical energy requirements.
cAnnual thermal energy requirements (space heating sh or domestic hot water dhw).

Figure 5 represents the original DRY profiles of both attributes
in addition of the load duration curves of both the original data
and the respective typical days. As observed, the latter graph
provides a good visual validation of the selected clusters (Rager,
2015). Additional information on the remaining (6) typical cli-
matic regions are provided in Stadler et al. (2017a).

2.2. System Optimization
This section presents the different optimization problem for-
mulations applied in the proposed method. In the follow-
ing definitions, parameters are represented by standard roman
text letters, variables by italic text letters and sets by bold
text letters. The sets implemented throughout this section are
defined as follows; the set U includes all utility technolo-
gies considered in the pseudo-superstructure (Figure 6) while
the set P comprises the different typical operating periods
defined in Section 2.1.2. The set T refers to the hourly discrete
time steps of each period; T ∈ [1, 24]. Finally, regarding the

convention proposed by Borel and Favrat (2010), the index
+ denotes an incoming flow while − indicates an outgoing
flow.

2.2.1. Design and Scheduling Under MPC
This study applies an ϵ-constraint multi-objective optimization
approach (Mavrotas, 2009) to simultaneously evaluate the optimal
design and schedule of building energy systems. The problem is
implemented using a mixed-integer linear programming (MILP)
technique to solve the set of static and first-order linear differ-
ential equations of the building and different utility models. The
latter formulation has indeed been identified as a proper choice
to describe both the logical and continuous behavior inherent
to energy systems (Bemporad and Morari, 1999). The use of
mixed-integer non-linear programming (MINLP) remains a non-
trivial task as discussed by Grossmann (2012); indeed, while
improving the model precision, the latter formulation reflects a
poor robustness due to the initial point issue when solving each
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FIGURE 4 | Temporal data reduction quality indicators for global horizontal
irradiance (diamond), ambient temperature (star), and performance indicator
of Geneva-Cointrin.

FIGURE 5 | The ambient temperature and solar irradiation DRY load duration
curves (black, front) and profiles (gray, background) of Geneva-Cointrin
represented by 8 typical periods (colored).

relaxed sub-problem. Therefore, practitioners tend to reformulate
the problem as an MILP by discretizing non-linear behaviors as
implemented in the following study (e.g., heat cascade). Finally, in
regard to the aforementioned temporal decomposition, the opti-
mal device scheduling can be considered as a building controller
applying MPC with a daily time horizon and perfect load and
input predictions.

2.2.1.1. Objective Functions
The main problem objective is the minimization of the annual
building operating expenses, which comprise both the natural gas
and power grid exchanges. The former are defined in equation
(4) where op refers to the grid energy tariffs, Ė to the electrical

power flows, Ḣ to the chemical–natural gas–power flows, d to the
indexed time step duration, and Σ the set of decision variables
reported in Stadler et al. (2017a)

min
Σ

P∑
p=1

T∑
t=1

(
opel,+p,t · Ė+

grid,p,t − opel,−p,t · Ė−
grid,p,t

+ opng,+p,t · Ḣ+
grid,p,t

)
· dp · dt

Σ = {Q̇build,p,t,k, yu,p,t, Q̇u,p,t,k, Ėu,p,t, yu, Fu}u∈U,p∈P,t∈T,k∈K
(4)

The second objective, formulated as an ϵ-constraint in the
optimization problem, is the capital expenses as expressed in
equation (5)where inv1,u and inv2,u denote the linear cost function
parameters, τ the investment annualization factor, yu the unit
existence while Fu is the device sizing variable

1
τ

U∑
u=1

inv1,u · yu + inv2,u · Fu ≤ ϵinv (5)

Finally, a third objective function—implemented as an ϵ-
constraint—is used to represent the power network interests: the
grid multiple (GM). As detailed in equation (6), this parameter
limits the building power profile peaks Ėgrid with respect to the
daily average demand and thus decreases the consequent stress
on the distribution network from strong demand/supply surges.
For the sake of readability, the total period duration is denoted by
nt = |T|

(Ė+
grid,p,t − Ė−

grid,p,t)

1
nt

T∑
t=1

(Ė+
grid,p,t − Ė−

grid,p,t)
≤ ϵgm (6)

2.2.1.2. Heat Cascade
The heat cascade balances the system heat loads while satisfy
the second law of thermodynamics. Equation (7) thus defines
the thermal energy balance of each temperature interval k where
Q̇−

k represents the released heat of utility uh, Q̇+
k represents

the heat demand of utility uc, and Ṙk the residual heat cas-
caded to next interval k+ 1. In addition, no heat is cascaded
at the first and last intervals to ensure a closed thermal energy
balance

Ṙk,p,t − Ṙk+1,p,t =
U∑

uh=1
Q̇−

uh,k,p,t

−
U∑

uc=1
Q̇+

uc,k,p,t ∀p ∈ P, t ∈ T, k ∈ K

Ṙ1,p,t = Ṙnk+1,p,t = 0 ∀p ∈ P, t ∈ T
(7)

2.2.1.3. Energy Balances
The electrical and natural gas energy balances are defined in
equation (8) where Ė−

build refers to the building uncontrollable
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FIGURE 6 | Energy system pseudo-superstructure (Stadler et al., 2017b).

load profile

Ė+
grid,p,t +

U∑
u=1

Ė+
u,p,t =

U∑
u=1

Ė−
u,p,t

+ Ė−
grid,p,t + Ė−

build,p,t ∀p ∈ P, t ∈ T

Ḣ+
grid,p,t =

U∑
u=1

Ḣ−
u,p,t ∀p ∈ P, t ∈ T

(8)

2.2.1.4. Cyclic Conditions
To prevent any energy accumulation between the different inde-
pendent operating periods p, cyclic constraints (equation (9))
enforce all system states to return to their initial value at the end
of each control horizon nt = |T|. The latter constraints target the
dwelling temperature Tb as well as the thermal Q and electrical
energy E stored in the respective storage units. Indeed, as pre-
sented in Section 2.1.2, the typical days p represent different oper-
ating conditions with a given probability of occurrence during the
system lifetime. Therefore, equation (9) is included in the problem
formulation to avoid any energy bias

Tbuild,p,1 = Tbuild,p,nt ∀p ∈ P

Qu,p,1 = Qu,p,nt ∀p ∈ P, u ∈ U

Eu,p,1 = Eu,p,nt ∀p ∈ P, u ∈ U

(9)

2.2.1.5. Unit Sizes
The unit existence yu and logical state (on/off) yu ,p ,t are expressed
in equation (10) where fmin

u and fmin
u describe the device minimal

and maximal sizing values, respectively

yu · fmin
u ≤ Fu ≤ yu · fmax

u ∀u ∈ U

yu,p,t ≤ yu ∀u ∈ U
(10)

The different energy system units included in the presented
framework are depicted in Figure 6. Although the figure solely
illustrates an air–water heat pump as primary thermal conversion
unit, a CHP device or a combination of multiple technologies

might also be selected by the solver. To propose future, efficient
energy systems to the different stakeholders, solely solid oxide
(SOFC), and low temperature proton exchange membrane fuel
cells (LPEM) are considered as CHP units in the following struc-
ture. In addition, it is worth noting that the final hydraulic lay-
out (including, e.g., pumps, by-passes, three-way valves) of the
designed BES may be implemented differently, according to the
selected solution. Further details on the optimization problem
formulation and input data are reported in Stadler et al. (2017a).

2.2.2. Scheduling Under RBC
To highlight the benefit resulting from the use of a predictive
regulation (MPC) compared with a non-predictive, standard rule-
based control (RBC) method, a second MILP problem formula-
tion is proposed. The considered RBC algorithm includes stan-
dardized control methods applied in buildings such as (1) the
heating curve signature approach for space heating and (2) a two-
point temperature control approach for the domestic hot water
tank management. The related model is based on the definition
described in section 2.2.1 and hence, the following subsection
solely presents the modifications from the original reference for-
mulation.

2.2.2.1. Objectives
Similar to the previous model, the problem objective function is
the minimization of operating expenses. Nevertheless, to avoid
generating any arbitrage conditions (e.g., in the case of using a
CHP), the feed-in tariff op− is set equal to the purchasing cost
op+. The annual energy bill is thus corrected a posteriori to be
comparable to the MPC results

min
Σ

P∑
p=1

T∑
t=1

(
opel,+p,t · Ė′+

grid,p,t − opel,+p,t · Ė′−
grid,p,t

+ opng,+p,t · Ḣ′+
grid,p,t

)
· dp · dt

(11)

2.2.2.2. Building
In RBC, the local regulator is following the predefined minimum
comfort temperature during the heating period while during the
cooling season, the maximum comfort bound. Hence, regard-
ing the model formulation detailed in Stadler et al. (2017a),
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no additional heat can be provided or extracted in view of the
minimum energy requirements (equation (12))

Q̇′+
build,p,t,k = 0 ∀k ≥ 2, p ∈ P, t ∈ T

Q̇′−
build,p,t,k = 0 ∀k ≥ 2, p ∈ P, t ∈ T

(12)

2.2.2.3. Unit Existence
Equation (13) fixes the BES design to a previously defined optimal
solution F∗

u except for the photovoltaic array. The latter device is
indeed decoupled from the building and operated off-site to pre-
vent the solver from shifting controllable loads toward high gen-
eration periods. The electricity produced from the photovoltaic
panels is then subtracted a posteriori from the building power
demand while the operating expenses are corrected accordingly

F′
u = F∗

u ∀u ∈ U \ {PVA}

F′
PVA = 0

(13)

2.2.2.4. Hot Water Tank
Since, when operating under RBC, the main role of the buffer
tank is in providing thermal power during defrosting periods and
limiting the number of start-up cycles, the device is solely required
to follow the building return temperature, hence fixing the heat
output to null (equation (14))

Q̇′−
HWT,p,t = 0 ∀p ∈ P, t ∈ T (14)

2.2.2.5. Domestic Hot Water Tank
In RBC, the domestic hot water tank is regulated through a simple
two-point controlmethod;when reaching the lower state of charge
mmin

DWT, the device is fully charged. Equation (15) models the latter
behavior where the binary variable yDWT refers to a charging
need and the parameter M to a large value. To offload power
networks, electrically powered domestic hot water tanks are typi-
cally charged during night time and thus, at t= 1 the storage unit
is fully charged and operating according to the aforementioned
regulation scheme

m′
DWT,p,1,nk = F∗

DWT · ρ ∀p ∈ P

(1 − y′
DWT,p,t) · mmin

DWT

≤ (1 − σDHW,nk · dt) · m′
DWT,p,t,nk

− (ṁbuild,p,t) · dt ∀p ∈ P, t ∈ T

mmin
DWT + (1 − y′

DWT,p,t) · M

≥ (1 − σDHW,nk · dt) · m′
DWT,p,t,nk

− (ṁbuild,p,t) · dt ∀p ∈ P, t ∈ T,

Q̇′−
DWT,p,t,k ≤ M · y′

DWT,p,t ∀p ∈ P, t ∈ T, k ∈ K

m′
DWT,p,t+1,nk ≥ y′

DWT,p,t · F∗
DWT ∀p ∈ P, t ∈ T

(15)

2.2.2.6. Battery
Similar to the photovoltaic array, the battery is decoupled from
the BES during the optimization process (equation (16)) and

integrate a posteriori through a simple rule control; during excess
production, the battery is charged until reaching its capacity while
during demand periods, the unit is discharged

E′
BAT,p,t = 0 (16)

2.3. Performance Indicators
In the last process step, additional performance indicators are
calculated to assess the different optimization results in view of
the different stakeholders’ interests.

2.3.1. Total Annualized Expenses
The total annualized expenses (TOTEX) simply reflect the eco-
nomic benefits resulting from the smart installation and operation
of complex BES with renewable-based conversion utilities. As
stated in equation (19), the latter are computed from the primary
objective function: (i) the operating expenses and the first epsilon
constraint, (ii) the annualized capital expenses

TOTEX =
P∑

p=1

T∑
t=1

(
opel,+p,t · Ė+

grid,p,t − opel,−p,t · Ė−
grid,p,t

+ opng,+p,t · Ḣ+
grid,p,t

)
· dp · dt

+
1
τ

U∑
u=1

inv1,u · yu + inv2,u · Fu (17)

2.3.2. Self-Consumption and Self-Sufficiency
The self-consumption (SC) represents the ratio of the on-site
generated power consumption in regard to the total produced
electricity as defined in equation (20), Ėgen and Ė−

grid referring to
the hourly generated and export power flows, respectively. The
former measure, formalized by the authors of Luthander et al.
(2015), reflects the system ability in shifting controllable loads
toward high production periods and thus, in decreasing grid
export power flows

SC =

P∑
p=1

T∑
t=1

(Ėgen
p,t − Ė−

gird,p,t) · dp · dt

P∑
p=1

T∑
t=1

(Ėgen
p,t · dp · dt)

(18)

The self-sufficiency (SS) on the other hand defines the ratio
of the on-site generated power consumption in regard to the
total electricity consumption as defined in equation (19) where
Ė+

grid denotes the hourly imported power flow. Also defined by
Luthander et al. (2015), this indicator describes the degree of
penetration of distributed energy systems—including renewable-
based conversion utilities—with respect to the building electricity
use. It is worth noting that the intersection between the self-
consumption and the self-sufficiency (i.e., SC= SS) reflects the
well-known net zero energy building label

SS =

P∑
p=1

T∑
t=1

(Ėgen
p,t − Ė−

gird,p,t) · dp · dt

P∑
p=1

T∑
t=1

(Ė+
gird,p,t + Ėgen

p,t − Ė−
gird,p,t) · dp · dt

(19)
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2.3.3. Electrical Storage Equivalence
The change in consumption behavior resulting from the use of
MPC for building energy systems can be represented, in view
of the power network operator, as a virtual electrical storage
capacity when compared with a conventional control method.
The conservative definition of the electrical storage equivalence
(ESE) introduced in the author’s previous work (Stadler et al.,
2017b) has been extended to a variable, period-dependant p value.
Moreover, the novel definition integrates the dynamic behav-
ior inherent to an electrical storage unit and thus, potentially
increases the exploited capacity CESE. Equation (20) expresses the
latter indicator as follows:

CESE
p = max

t∈T
SOCt,p ∀p ∈ P (20)

where

SOCt+1,p = SOCt,p + ((Ė+
grid,p,t − Ė−

grid,p,t)

− (Ė′+
grid,p,t − Ė′−

grid,p,t)) · dt ∀t ∈ T, p ∈ P (21)

SOCnt+1,p = SOC1,p + ϵESE
p ∀p ∈ P (22)

with SOC referring to the state of charge of the ESE. In addi-
tion, the round-trip efficiency ϵESE associated with the use of the
latter capacity can be determined for each period p as shown in
equation (23)

ϵESE
p =

T∑
t=1

(Ėgrid,p,t − Ė′
grid,p,t) · dt (23)

Figure 7 illustrates the introduced concept for two typical
spring days; during day time, the penetration of renewable energy
sources engenders a negative power balance while during night

FIGURE 7 | Building net power profiles and state of charge of the virtual
battery (ESE) during typical spring days. The colored areas represent charging
(green) and discharging (red) periods, respectively.

time the latter is positive. Nevertheless, when operating the build-
ing energy systems with MPC, the local controllers seek to shift
controllable loads from low toward high generation periods to
benefit from the on-site produced electricity which explains the
difference in power profiles. The former change in consumption
behavior might be represented as a grid operated storage system
charged during positive profile difference periods (green areas)
and discharged during negative ones (red area). The resulting ESE
state of charge is represented by the blue curve, which nearly
returns to its initial state at the end of the operating period p in
view of the cyclic conditions imposed in equation (9). Indeed,
the difference between SOC1,p and SOCnt+1,p (equation (22))
results from the change in daily electricity consumption and can
be interpreted as the ESE round-trip efficiency ϵESE. It is worth
noting that the latter value might be positive or negative since the
use of MPC may improve the overall system efficiency.

3. RESULTS AND DISCUSSION

The following section presents the results generated by apply-
ing the proposed method to the national building stock. Prior
implementing the iterative ϵ-constraint optimization approach,
two base case scenarios Si are defined as follows:

• S0 solely includes a natural gas boiler as primary conversion
unit in addition to the minimum allowable domestic hot water
tank, thus representing the current fossil-fuel based BES.

• S1 consists of an air–water heat pump as primary conversion
unit, the minimum required buffer and domestic hot water
tanks in addition to electrical auxiliary heaters if necessary,
hence representing the minimum investment needed for a
modern BES.

Starting from S1, the ϵ-constraint problem formulation is then
applied by progressively increasing the upper bound on the capital
expenses, expressed as a percentage of the latter initial solution.
Indeed, at each iteration, the ϵinv value is raised by 10% of the
S1 investment costs solution until reaching 100%, i.e., twice of
the former amount. All computations are performed with the
commercial solver CPLEX 12.7 on a single machine including
a double core 2.4GHz CPU and 8 GB RAM. The maximum
tolerated relative optimality gap (MIP gap) is set to 0.5%.

3.1. Single-Building Level
Prior analyzing the impact of smart design and control techniques
on the large scale, this subsection presents anddiscusses the results
for different building types. Figure 8 thus depicts the Pareto
fronts obtained from the ϵ-constraint multi-objective optimiza-
tion formulations applied to a single-family house located in the
Geneva-Cointrin climate region when applying MPC (i), RBC
(ii), and MPC with an ϵgm bound (iii). Starting from solution
S1, the operating expenses are rapidly decreasing with the incre-
mental increase in capital expenses for all scenarios (zones I and
II); nevertheless, in the case of (i), the latter benefit levels off
around 1,650 CHF/100 ·m2 (zone III). The comparison between
the fronts (i) and (ii) shows a slight economic benefit resulting
from the implementation of MPC over RBC, values rising from
nearly 0% for S0 to 5% at the end of (zone II) before dropping again
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FIGURE 8 | Pareto fronts for a single-family home when applying MPC (circles), RBC (diamonds), and MPC with a tight GM constraint (squares).

FIGURE 9 | Multi-objective optimization results for a single-family house (Geneva, 1970–1980). Differences in operating costs between both control methods are
represented by the dark gray stacked boxes. The self-consumption and self-sufficiency are represented through dotted and solid lines, respectively (MPC circles and
RBC diamonds). (A) No ϵgm (i)–(ii). (B) ϵgm = 1.5 (iii).

for large investment thresholds (zone III). A similar behavior
is observed in the case of the self-consumption, differences are
growing from 0% in (zone I) to nearly 27% at the end of (zone
II) before falling to 19% in (zone III). Finally, the implementation
of an ϵgm (iii) engenders a strong increase in operating (or capital
regarding comparison basis considered) expenses.

To understand the former behaviors, Figure 9 illustrates the
evolution of both different cost contributions and the perfor-
mance indicators with respect to the relaxation of ϵ-constraint of
the respective fronts (i)–(iii):

• In the case of (i)–(ii), as presented in Figure 9A, a small solar
thermal collector array is added to the initial system S1 for the

first solutions, thus leading to the slight decrease in operating
costs (zone I). With the further increase in capital expenses, the
unit is rapidly replaced by a photovoltaic array until reaching
the maximal hosting capacity of the roof (zone II). Finally,
in zone III, additional thermal and subsequently, electrical
storage sizes are implemented to further improve the integra-
tion of the renewable energy system as expressed by both the
rising self-sufficiency and self-consumption, however, solely
merely enhancing the related economic benefit. Considering
the applied costing parameters, the purely fossil fuel-based
solution S0 is the most economic configuration.

• In the case of (iii), as illustrated in Figure 9B, a consider-
able battery stack is installed a priori to the development of a
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photovoltaic array. The large difference in operating (or capital
regarding comparison basis considered) expenses between the
Pareto fronts (i and iii) can indeed be related to a non-efficient
utilization of the different conversion devices and a stronger
need of electrical storage capacity to decrease the building net
power profile variance.

To evaluate the influence of the dwelling size and affectation
on the BES, Figure 10 presents the multi-objective optimization
results performed for a large apartment block located in the
Geneva-Cointrin climate region:

• In the case of (i)–(ii), Figure 10A depicts first a similar solution
pattern as for the single-family house scenario, both in view of
the BES design and the performance indicators. Nevertheless,
a technology shift rapidly arises at a capital expenses value
ϵinv = 0.4 and a combination of a solid oxide fuel cell (SOFC)
CHP with an auxiliary natural gas boiler is implemented. This
change triggers a strong increase in self-sufficiency in addi-
tion of a decrease in self-consumption; the latter behavior is
related to the heat driven utilization of the CHP unit and the
lack of electrical storage devices. Finally, for higher investment

thresholds ϵinv = 0.8, a small air-source heat pump is installed
to profit from the on-site generated power and thus engenders
a rise in the self-consumption again.

• In the case of (iii), the main technology shifts already occur at
lower capital expense thresholds as illustrated in Figure 10B.
Indeed, for ϵinv = 0.2, an SOFC-CHP with an auxiliary natural
gas boilers selected while the air-source heat pump is added
at ϵinv = 0.5. Finally, starting from ϵinv = 0.9, a photovoltaic
array is implemented, further increasing the system complexity.
Similar to the single-family house scenario, a battery is required
throughout the entire solution set to satisfy the ϵgm constraint;
however, with the rise in BES complexity, the need for large
electrical storage device strongly decreases.

3.1.1. Grid Impact
As presented in the section 2.3.3, an electrical storage equiv-
alence (ESE) is applied to assess the load shifting potential of
MPC when compared with RBC. Hence, Table 2 presents both
the ESE exploited capacity CESE and round-trip efficiency ϵESE

in addition to the peak demand reduction ∆Ėmax for two dif-
ferent BES configurations (Figure 9). To compare the solutions

FIGURE 10 | Multi-objective optimization results for an apartment block (Geneva, 1970–1980). Differences in operating costs between both control methods are
represented by the dark gray stacked boxes. The self-consumption and self-sufficiency are represented through dotted and solid lines, respectively (MPC circles and
RBC diamonds). (A) No ϵgm (i)–(ii). (B) ϵgm = 1.5 (iii).

TABLE 2 | Comparison of building energy systems (BES) solutions with and without GM constraint for a single-family house (Geneva, 1970–1980).

Typical days
Parameters GM ∆inv

a

1 2 3 4 5 6 7 8

ϵ
in
v
=

0.
3

CESE [kWh/100m2] × – 1.6 0.04 0.54 1.88 0.57 1.2 1.24 0.83
ϵESE [kWh/100m2] × – −1.6 −0.01 −0.54 −0.12 −0.57 −0.61 −0.07 −0.83

∆Ėmax [kW/100m2] × – −0.21 0 −0.16 0.23 −0.06 0.5 −0.04 −0.17

CESE [kWh/100m2] X 396 2.74 0.63 2.68 2.1 2 0.91 1.89 2.1
ϵESE [kWh/100m2] X 396 −1.3 0.09 0.58 0.13 0.8 −0.54 0.41 −0.31

∆Ėmax [kW/100m2] X 396 −0.98 −0.39 −1.11 −0.28 −0.99 0.06 −0.81 −1.11

ϵ
in
v
=

0.
8

CESE [kWh/100m2] × – 2.71 0.47 1.51 2.17 2.02 1.06 3.72 0.99
ϵESE [kWh/100m2] × – −0.38 −0.1 0.83 −0.17 1.36 −0.88 0.81 0.41

∆Ėmax [kW/100m2] × – −0.64 −0.46 −0.28 −0.21 −0.27 −0.06 −0.61 −0.02

CESE [kWh/100m2] X 377 2.8 0.95 6.75 2.1 8.88 0.93 4.85 5
ϵESE [kWh/100m2] X 377 −0.2 −0.09 5.38 −0.14 7.43 −0.92 0.74 3.67

∆Ėmax [kW/100m2] X 377 −1.27 −0.94 −1.38 −0.83 −1.35 −0.04 −1.4 −1.3

aDifference in investment cost [CHF/100m2 ].
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FIGURE 11 | Pareto fronts for a sub-urban commune in Western Switzerland
when applying MPC (circles) and RBC (diamonds).

generated with and without any ϵgm, a common operating costs
basis is considered; both systems should reflect similar operating
costs when operated without any ϵgm constraints. The resulting
economic difference solely relies in the capital expenses and thus,
translates as an additional investment from the building to achieve
a grid-aware operation. Following observations can be stated from
the presented results:

• (ϵinv = 0.3 and no ϵgm) The MPC is able to shift controllable
loads during each typical day, the maximum exploited ESE
capacity reaching 1.9 kWh/100 ·m2; these changes in consump-
tion are mainly related to an increase in the system efficiency
(ϵESE ≤ 0) since most of the on-site generated power is directly
self-consumed. However, the optimal control approach has no
influence on the peak demand, difference being positive or
negative regarding the day considered.

• (ϵinv = 0.3 and ϵgm = 1.5) The used ESE capacity rises with the
implementation of a strict ϵgm, the maximum values reaching
2.7 kWh/100m2. Nevertheless, the smoothing of the power
profile engenders a higher electricity consumption for several
days; indeed, the ϵgm has pushed the controller in decreasing the
thermal conversion system efficiency by increasing the share
of heat provided by electrical heaters over the heat pump. In
regard to the definition in equation (6), the latter surge in
power demand is required to satisfy the GM constraint without
installing further storage equipment. Although the daily peak
demands are drastically reduced for several days, it is important
to note that the GM performance indicator does not guarantee
the latter behavior (e.g., day 6).

FIGURE 12 | Pareto fronts for Switzerland when applying MPC (circles) and
RBC (diamonds). The marker size reflects the renovation share of the current
built environment.

TABLE 3 | National impact of MPC.

Solutions
Indicators

5 20 30 50

Egen [TWh] – 0.00 0.02 5.69 8.93

SS [–] MPC 0.00 0.00 0.08 0.15
RBC 0.00 0.00 0.07 0.13
∆ [–] 0.00 0.03 0.21 0.15

SC [–] MPC – 1.00 0.72 0.70
RBC – 1.00 0.61 0.61
∆ [–] – 0.00 0.18 0.14

Cop
a [BCHF/year] MPC 13.65 13.77 11.35 8.10

RBC 13.86 14.20 11.74 8.22
∆ [–] −0.02 −0.03 −0.03 −0.02

Cinv
b [BCHF] – 33.4 62.2 112.6 194.2

aOperating expenses (further information on cost data are reported in Stadler et al.
(2017a)).
b Investment expenses (further information on cost data are reported in Stadler et al.
(2017a)).

• (ϵinv = 0.8 and no ϵgm) Given the higher on-site power gen-
eration from the large photovoltaic array, a consequent ESE
capacity is noticed in this case, the maximum value being
7.0 kWh/100m2. However, the latter changes induce a higher
consumption for several days since the produced electricity
exceeds the current needs and thus, require use of storage.

Frontiers in Energy Research | www.frontiersin.org May 2018 | Volume 6 | Article 2212

https://www.frontiersin.org/Energy_Research
https://www.frontiersin.org
https://www.frontiersin.org/Energy_Research/archive


Stadler et al. Model Predictive Control within the Built Environment

• (ϵinv = 0.8 and ϵgm = 1.5) Similar to the previous investigation
(ϵinv = 0.3), the exploited ESE capacity drastically rises while
the related system efficiency drops with a tight ϵgm. Again, the
operation with an ϵgm constraint does not ensure the decrease
in peak demand.

3.2. Multi-Building Level
Following the single-dwelling case studies, this subsection evalu-
ates the benefit ofMPC on themulti-building scale. By combining
the building-specific optimization results in regard to the different
topology parameters, a large solution space can be generated;

the Pareto front is defined by selecting the solutions located on
the space boundary of interest. A sub-urban commune located
in Western Switzerland, comprising 629 registered buildings and
around 6,800 inhabitants is first analyzed.

Hence, Figure 11 depicts two fronts couples regarding the con-
sidered electricity mix: 0.113 [kgCO2-eq./kWhe] (bottom) and
0.376 [kgCO2-eq./kWhe] (top). The first value reflects the actual
situation,whichmainly relies onhydro andnuclear energy sources
(Prognos et al., 2016). However, since the hydro availability is
rather low during strong demand periods (winter) while the
national government is targeting a nuclear phase-out by 2050, a

FIGURE 13 | Continued
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FIGURE 13 | Increase in self-sufficiency in each commune with the rise in capital expenses. (A) Solution 20. (B) Solution 30. (C) Solution 50.

comparative mix value is applied additionally, assuming a homo-
geneous conversion from natural gas fired combined cycle plants.
As observed, the original scenarios S0 lies, as expected, on the left
extreme of the aggregated Pareto fronts, thus representing the cost
effective solution. With the increase in total comfort costs (i.e.,
total expenses), the environmental impact of the BES is strongly
reduced (zone a) until reaching around 1,100 CHF/hab years
after which, the slope significantly decreases (zones b and c).
Interestingly, in the case of the carbon intensive electricity mix,
an opposite evolution is observed; the slope increases beyond the
latter cost threshold.

To explain the latter behaviors, the lower graph in Figure 11
illustrates the evolutions of selected conversion units. Indeed, in
the first phase (zone a), the purely fossil-based solutions (S0)
are gradually replaced by air-source heat pump based BES until
completely removing all natural gas-powered boilers. This shift
of energy carrier obviously engenders a strong impact on the
power network which has to cope the related increase in both in
peak demand (+208%) and energy consumption (+135%). In a
second phase (zone b), photovoltaic arrays are rapidly installed to
reduce electricity imports and thus the greenhouse gas emissions
associated with the electricity mix. Finally, in the last phase (zone
c), the building stock is gradually renovated, hence decreasing the
required heat pump capacity as well as the peak power demand
related to it (−35%). In addition, the photovoltaic array size
is further increased until reaching the upper investment bound
ϵinv = 1.

3.3. National Scope
Although being less useful to distribution network operators, an
assessment on the national level provides interesting insights on

the integration of renewable and distributed energy resources
with respect to given system parameters. Indeed, the large-scale
impact characterization represents an important tool for sup-
porting public decision-makers within the context of strategic
energy planning (Codina Gironès et al., 2015). Hence, similar to
the single-commune case, Figure 12 illustrates the Pareto fronts
for Switzerland, comprising 1.6 million registered buildings and
around 8.1 million inhabitants. As observed, starting from the
initial solution S0, the CO2 equivalent emissions rapidly decrease
until reaching an inflection point at around 2,500 CHF/hab years.
Similarly, an opposite behavior is observed in the case of carbon
intensive electricity mix.

From the lower graph of Figure 12, three transition steps
are identified; similar to the previous multi-building investiga-
tion, in the first phase (zone a), the purely natural gas based
solutions (S0) are gradually replaced by air-source heat pump
based BES. However, briefly after, a slight part of the national
building stock is renovated, the latter share remaining rela-
tively small until the complete phase-out of S0 type configu-
rations (zone b). After this point, both the share of renew-
able energy sources penetration and renovation are increasingly
expanded until reaching the upper investment boundary ϵinv = 1
(zone c).

Finally, to assess the impact of MPC on the national scale,
Table 3 presents performance indicators for three specific system
solutions while Figure 13 displays the associated spatial integra-
tion of renewable energy sources (i.e., self-sufficiency). Similar
to the single-building case studies, the use of MPC over RBC
highly increases the share of self-consumption as well as self-
sufficiency, values ranging from 0 to 19% and from 0 to 22%,
respectively. From the economic perspective, the decrease in
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operating expenses varies between 1% for low investment solu-
tions and 3% for more complex systems. It is worth noting that
since the distributed power generation (Egen) is solely performed
using photovoltaic arrays, the latter remains identical for both
control approaches.

4. CONCLUSION

The presented work proposed a systematic method to simultane-
ously design and control optimal building energy systems with
respect to the user interests. The former comprises a multidimen-
sional data reduction process, the integration of a holistic tech-
nology structure and an ϵ-constraintmulti-objective optimization
approach to generated attractive solutions. In addition, through
several modifications of the original problem formulation, the
approach could be applied to assess the benefit of predictive con-
trol (MPC) in comparison with standard rule base control (RBC)
techniques. The developed method has been demonstrated on the
basis of several case studies, ranging from the single dwelling to
the national scope using additional aggregation schemes.

Thus, the generated results suggested that the use of MPC
for modern and complex BES represents a significant element
in increasing the penetration of efficient and renewable-based
energy systems within the built environment. Most notable obser-
vations can be summarized as follows:

• In regard to the considered boundary conditions, econom-
ically optimal BES designs are not including any renew-
able energy sources. However, the systematic generation of
different complexer configurations nevertheless highlighted
both the economic and environmental benefits engendered
by the implementation of MPC. Results showed that the for-
mer strongly depend on the installed energy system, self-
consumption differences varying between 0 and 27%.

• The design of gird-aware solutions through the implementation
of an additional indicator, the grid multiple (GM), engenders a
significant increase in investment costs while limiting the pen-
etration of renewable resources at low investment thresholds.
Nevertheless, the future integration of e-mobilitymight provide
an interesting alternative to additional flexibility investments
from the building side.

• In view of the assumptions on the boundary conditions, the
preliminary assessment of the national potential of MPC sug-
gests similar relative results as on the building level. While
decreasing the operational energy bill, the use of predictive
control strongly increases the share of self-consumption and
self-sufficiency, differences ranging from 0 to 19% and from 0
to 22%, respectively.

In future, studies should investigate the impact of a multi-
dwellings approach during the optimization process, hence assess-
ing the potential of smart grids. The latter problem formulation
enables the integration of grid-oriented operating constraints such
as the maximal power flow values at the sub-station level which
could not been implemented within the presented single-building
method. In addition, a formal metric definition of flexibility
should be investigated to properly assess the grid awareness of
each system design.

NOMENCLATURE

Subscripts
p Period
t Time
u Units
build Building
grid Grid
Superscripts
+/− Incoming/outgoing flow
′ Rule-based control index
dhw Domestic hot water
max/min Maximum/minimum
ng/el Natural gas/electricity
sh Space heating
Parameters
σ Self-discharge rate [–]
d Step duration [h] or [days]
Ė Uncontrollable electricity demand [kW]
f Unit size bounds [kW] or [m2] or [m3]
inv Investment cost function parameters [CHF] or [CHF/kW] or

[CHF/kWh] or [CHF/m2] or [CHF/m3]
ṁ Uncontrollable domestic hot water demand [kg/s]
op Energy cost parameters [CHF/kWh]
Variables
Ḣ Chemical power flow [kW]
Ṙ Cascaded heat [kW]
E/Ė Electrical energy [kW]/power flow [kWh]
F Unit size [kW] or [kWh] or [m2] or [m3]
m/ṁ Water mass [kg]/mass flow [kg/s]
Q/Q̇ Thermal energy [kW]/power flow [kWh]
T Temperature [K]
y Unit activation (binary) [–]

AUTHOR CONTRIBUTIONS

PS designed and implemented the methodology and model,
acquired numerical data, produced the results, and wrote the
article. LG contributed to the design of the model and method-
ology and acquired numerical data. He further revised the article
and gave valuable hints for improvement of the content. AA
reviewed the article and gave valuable hints for improvement of
the structure and the content. FM contributed to the design of the
methodology and gave valuable hints for the produced results.

FUNDING

This work has received support from the Swiss National Sci-
ence Foundation under the NRP 70 Energy Turnaround Project
(Integration of Intermittent Widespread Energy Sources in
Distribution Networks: Storage and Demand Response, grant
number 407040 15040/1) and the Swiss Centre for Competence
in Energy Research on the Future Swiss Electrical Infrastruc-
ture (SCCER-FURIES) with the financial support of the Swiss
Innovation Agency (Innosuisse–SCCER program).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at
https://www.frontiersin.org/articles/10.3389/fenrg.2018.00022/
full#supplementary-material.

Frontiers in Energy Research | www.frontiersin.org May 2018 | Volume 6 | Article 2215

https://www.frontiersin.org/articles/10.3389/fenrg.2018.00022/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2018.00022/full#supplementary-material
https://www.frontiersin.org/Energy_Research
https://www.frontiersin.org
https://www.frontiersin.org/Energy_Research/archive


Stadler et al. Model Predictive Control within the Built Environment

REFERENCES
Ashouri, A., Fux, S. S., Benz, M. J., and Guzzella, L. (2013). Optimal design

and operation of building services using mixed-integer linear programming
techniques. Energy 59, 365–376. doi:10.1016/j.energy.2013.06.053

Ashouri, A., Stadler, P., and Maréchal, F. (2015). “Day-ahead promised load as
alternative to real-time pricing,” in IEEE International Conference on Smart Grid
Communications (SmartGridComm) (Miami, FL: IEEE), 551–556.

Bemporad, A., and Morari, M. (1999). Control of systems integrating logic, dynam-
ics, and constraints. Automatica 35, 407–427. doi:10.1016/S0005-1098(98)
00178-2

Borel, L., and Favrat, D. (2010).Thermodynamics and Energy Systems Analysis: From
Energy to Exergy. Lausanne: EPFL Press.

Codina Gironès, V., Moret, S., Maréchal, F., and Favrat, D. (2015). Strategic energy
planning for large-scale energy systems: a modelling framework to aid decision-
making. Energy 90(Part 1), 173–186. doi:10.1016/j.energy.2015.06.008

Collazos, A., Maréchal, F., and Gähler, C. (2009). Predictive optimal management
method for the control of polygeneration systems. Comput. Chem. Eng. 33,
1584–1592. doi:10.1016/j.compchemeng.2009.05.009

De Coninck, R., and Helsen, L. (2016). Practical implementation and evaluation of
model predictive control for an office building in Brussels. Energy Build. 111,
290–298. doi:10.1016/j.enbuild.2015.11.014

Domínguez-Muñoz, F., Cejudo-López, J. M., Carrillo-Andrés, A., and Gallardo-
Salazar, M. (2011). Selection of typical demand days for CHP optimization.
Energy Build. 43, 3036–3043. doi:10.1016/j.enbuild.2011.07.024

European Environment Agency. (2012). Heating Degree Days – Trend in Heating
Degree Days in the EU-27. Technical Report. Denmark: European Environment
Agency. Available at: https://www.eea.europa.eu/data-and-maps/indicators/
heating-degree-days-1 (Accessed: December 01, 2016).

Fazlollahi, S., Bungener, S. L., Mandel, P., Becker, G., andMaréchal, F. (2014). Multi-
objectives, multi-period optimization of district energy systems: I. Selection
of typical operating periods. Comput. Chem. Eng. 65, 54–66. doi:10.1016/j.
compchemeng.2014.03.005

Fux, S. F., Benz, M. J., and Guzzella, L. (2013). Economic and environmental aspects
of the component sizing for a stand-alone building energy system: a case study.
Renew. Energy 55, 438–447. doi:10.1016/j.renene.2012.12.034

Girardin, L., Marechal, F., Dubuis, M., Calame-Darbellay, N., and Favrat, D.
(2010). EnerGis: a geographical information based system for the evaluation
of integrated energy conversion systems in urban areas. Energy 35, 830–840.
doi:10.1016/j.energy.2009.08.018

Grossmann, I. E. (2012). Advances in mathematical programming models for
enterprise-wide optimization. Comput. Chem. Eng. 47, 2–18. doi:10.1016/j.
compchemeng.2012.06.038

Kaufman, L., and Rousseeuw, P. J. (2009). Finding Groups in Data: An Introduction
to Cluster Analysis. Hoboken, NJ: John Wiley & Sons.

Lefèvre, M., Remund, J., Albuisson, M., and Wald, L. (2002). “Study of effective
distances for interpolation schemes in meteorology,” in European Geophysical
Society, 27th General Assembly (Nice, France: European Geophysical Society).

Luthander, R., Widén, J., Nilsson, D., and Palm, J. (2015). Photovoltaic self-
consumption in buildings: a review. Appl. Energy 142, 80–94. doi:10.1016/j.
apenergy.2014.12.028

Mavrotas, G. (2009). Effective implementation of the epsilon-constraint method
in Multi-Objective Mathematical Programming problems. Appl. Math. Comput.
213, 455–465. doi:10.1016/j.amc.2009.03.037

Oldewurtel, F., Ulbig, A., Morari, M., and Andersson, G. (2011). “Building control
and storage management with dynamic tariffs for shaping demand response,” in
2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid
Technologies (Manchester, UK: IEEE), 1–8.

Prognos, A. G., Infras, A. G., and TEP Energy GmbH. (2016). Analyse des
schweizerischen Energieverbrauchs 2000 – 2015 nach Verwendungszwecken.
Technical Report. Bundesamt für Energie BFE. Available at: http://www.bfe.
admin.ch/themen/00526/00541/00542/02167/index.html?lang=dedossier_id=
02169 (Accessed: December 1, 2016).

Rager, J. M. F. (2015). Urban Energy System Design from the Heat Perspective
Using Mathematical Programming Including Thermal Storage. Ph.D. thesis, STI,
Lausanne.

Schütz, T., Schiffer, L., Harb, H., Fuchs, M., and Müller, D. (2017). Optimal design
of energy conversion units and envelopes for residential building retrofits using
a comprehensive MILP model. Appl. Energy 185(Part 1), 1–15. doi:10.1016/j.
apenergy.2016.10.049

Schütze, T., Schraven, M. H., Fuchs, M., and Müller, D. (2016). “Clustering algo-
rithms for the selection of typical demand days for the optimal design of building
energy systems,” in Proceedings of ECOS 2016 – 29th International Conference on
Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy
Systems (Solvenia).

Section Bâtiments et logements. (2015). Registre fédéral des bâtiments et des loge-
ments – Catalogue des caractères Version 3.7. Technical Report. Neuchâtel: Office
fédéral de la statistique (OFS). Available at: https://www.bfs.admin.ch/bfs/
fr/home/registres/registre-batiments-logements.html (Accessed: December 1,
2016).

Shepard, D. (1968). “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 23rd ACM National Conference, ACM
’68 (New York, NY: ACM), 517–524. Available at: http://doi.acm.org/10.1145/
800186.810616

SIA 2024. (2015). Données d’utilisation des locaux pour l’énergie et les installa-
tions du bâtiment. Technical Report. Zürich: Société suisse des ingénieurs
et des architectes (SIA). Available at: http://www.webnorm.ch/collection%
20des%20normes/architecte/sia%202024/f/2015/F/Product (Accessed: Septem-
ber 1, 2016).

SIA 2028. (2008). Données climatiques pour la physique du bâtiment, l’énergie et les
installations du bâtiment. Technical Report. Zürich: Société suisse des ingénieurs
et des architectes (SIA). Available at: http://www.webnorm.ch/collection%
20des%20normes/architecte/sia%202028/f/2010/F/Product (Accessed: Septem-
ber 1, 2016).

Stadler, P., Girardin, L., Ashouri, A., and Marechal, F. (2017a). MILP Optimization
of Building Energy Systems: Supplementary Information. Technical Report. Lau-
sanne, Switzerland: EPFL.

Stadler, P., Girardin, L., andMaréchal, F. (2017b). “The Swiss potential ofmodel pre-
dictive control for building energy systems,” in 7th IEEE PES International Con-
ference and Exhibition on Innovative Smart Grid Technologies, Europe (Turino,
Italy).

Statistical Office of the EuropeanCommunities. (2015). Energy Balance Sheets: 2013
Data. Technical Report. Luxembourg: Eurostat. Available at: http://ec.europa.
eu/eurostat/web/energy/data/energy-balances (Accessed: September 1, 2016).

Wakui, T., and Yokoyama, R. (2015). Optimal structural design of residential
cogeneration systems with battery based on improved solution method for
mixed-integer linear programming. Energy 84(Suppl. C), 106–120. doi:10.1016/
j.energy.2015.02.056

Weber, C., Maréchal, F., Favrat, D., and Kraines, S. (2006). Optimization of an
SOFC-based decentralized polygeneration system for providing energy services
in an office-building in Tokyo. Appl. Therm. Eng. 26, 1409–1419. doi:10.1016/j.
applthermaleng.2005.05.031

Zhao, Y., Lu, Y., Yan, C., and Wang, S. (2015). MPC-based optimal scheduling of
grid-connected low energy buildingswith thermal energy storages.Energy Build.
86, 415–426. doi:10.1016/j.enbuild.2014.10.019

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2018 Stadler, Girardin, Ashouri and Maréchal. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Energy Research | www.frontiersin.org May 2018 | Volume 6 | Article 2216

https://doi.org/10.1016/j.energy.2013.06.053
https://doi.org/10.1016/S0005-1098(98)00178-2
https://doi.org/10.1016/S0005-1098(98)00178-2
https://doi.org/10.1016/j.energy.2015.06.008
https://doi.org/10.1016/j.compchemeng.2009.05.009
https://doi.org/10.1016/j.enbuild.2015.11.014
https://doi.org/10.1016/j.enbuild.2011.07.024
https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-1
https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-1
https://doi.org/10.1016/j.compchemeng.2014.03.005
https://doi.org/10.1016/j.compchemeng.2014.03.005
https://doi.org/10.1016/j.renene.2012.12.034
https://doi.org/10.1016/j.energy.2009.08.018
https://doi.org/10.1016/j.compchemeng.2012.06.038
https://doi.org/10.1016/j.compchemeng.2012.06.038
https://doi.org/10.1016/j.apenergy.2014.12.028
https://doi.org/10.1016/j.apenergy.2014.12.028
https://doi.org/10.1016/j.amc.2009.03.037
http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?lang=dedossier_id=02169
http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?lang=dedossier_id=02169
http://www.bfe.admin.ch/themen/00526/00541/00542/02167/index.html?lang=dedossier_id=02169
https://doi.org/10.1016/j.apenergy.2016.10.049
https://doi.org/10.1016/j.apenergy.2016.10.049
https://www.bfs.admin.ch/bfs/fr/home/registres/registre-batiments-logements.html
https://www.bfs.admin.ch/bfs/fr/home/registres/registre-batiments-logements.html
http://doi.acm.org/10.1145/800186.810616
http://doi.acm.org/10.1145/800186.810616
http://www.webnorm.ch/collection%20des%20normes/architecte/sia%202024/f/2015/F/Product
http://www.webnorm.ch/collection%20des%20normes/architecte/sia%202024/f/2015/F/Product
http://www.webnorm.ch/collection%20des%20normes/architecte/sia%202028/f/2010/F/Product
http://www.webnorm.ch/collection%20des%20normes/architecte/sia%202028/f/2010/F/Product
http://ec.europa.eu/eurostat/web/energy/data/energy-balances
http://ec.europa.eu/eurostat/web/energy/data/energy-balances
https://doi.org/10.1016/j.energy.2015.02.056
https://doi.org/10.1016/j.energy.2015.02.056
https://doi.org/10.1016/j.applthermaleng.2005.05.031
https://doi.org/10.1016/j.applthermaleng.2005.05.031
https://doi.org/10.1016/j.enbuild.2014.10.019
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/Energy_Research
https://www.frontiersin.org
https://www.frontiersin.org/Energy_Research/archive

	Contribution of Model Predictive Control in the Integration of Renewable Energy Sources within the Built Environment
	1. Introduction
	1.1. State-of-the-Art

	2. Materials and Methods
	2.1. Data Reduction
	2.1.1. Spatial Clustering
	2.1.2. Temporal Clustering

	2.2. System Optimization
	2.2.1. Design and Scheduling Under MPC
	2.2.1.1. Objective Functions
	2.2.1.2. Heat Cascade
	2.2.1.3. Energy Balances
	2.2.1.4. Cyclic Conditions
	2.2.1.5. Unit Sizes

	2.2.2. Scheduling Under RBC
	2.2.2.1. Objectives
	2.2.2.2. Building
	2.2.2.3. Unit Existence
	2.2.2.4. Hot Water Tank
	2.2.2.5. Domestic Hot Water Tank
	2.2.2.6. Battery


	2.3. Performance Indicators
	2.3.1. Total Annualized Expenses
	2.3.2. Self-Consumption and Self-Sufficiency
	2.3.3. Electrical Storage Equivalence


	3. Results and Discussion
	3.1. Single-Building Level
	3.1.1. Grid Impact

	3.2. Multi-Building Level
	3.3. National Scope

	4. Conclusion
	Nomenclature
	Author Contributions
	Funding
	Supplementary Material
	References


