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This paper focuses on predicting the total transportation and energy costs (TTEC)
for single-family households. A system boundary consisting of grid-powered
electricity (GE) and solar-powered electricity (SE) as energy inputs and
transportation vehicles that include Gasoline Vehicles (GV) and Electric
Vehicles (EV) as transportation methods for energy outputs is studied. A novel
three-stage evaluation framework is proposed to predict the TTEC under varying
single-family household parameters. In the first stage, an energy balance
simulation model is proposed to estimate the TTEC for an individual
household. In the second stage, the simulation model is run several times
under varying parameters to develop synthetic data that is used as input for
the third stage supervised machine learning (SML) models. In the third stage,
numerous SML models are trained and tested to determine the best SML model
that enables us to predict the TTEC with high accuracy. This best SML model can
be used as a substitute for simulation model, thereby reducing the computation
burden of running the simulation model for each new single-family household. A
case study of single-family households in Central Texas in the US is used as an
application of the framework. The results indicate that regression SMLmodels are
best in predicting the total costs with an adjusted R-squared of 99.13% and
98.88% on training and testing datasets, respectively. In addition, the parameter
analysis of regression SML models suggests that the house size, number of GVs,
number of EVs, EV and GV ownership costs, and solar implementation at
households are the most important parameters to predict TTEC for single-
family households. Counterintuitively, number of residents, GV and EV
mileage, solar system size, battery capacity and peak solar hours are not
significant parameters that contribute to TTEC prediction.
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1 Introduction

Over the past few decades, gasoline vehicles (GVs) have
dominated transportation for single-family households. While
GVs are cost-effective, they emit significant greenhouse (GHG)
gas emissions. In addition, increasing transportation needs of
public, limitations in fuel prices, fluctuations in transportation
fuel prices along with increasing public calls for sustainability
initiatives have driven governments across the world to seek
alternatives for GVs (Falahi et al., 2013; Jones et al., 2023; IEA,
2024). Consequently, electric vehicles (EVs) have emerged as an
environmentally friendly option, with many governments offering
tax incentives or subsidies to promote their adoption andmake them
more economically competitive with GVs. As EV technology
advances and costs decrease, households are gradually integrating
EVs into their transportation choices (Ajanovic, 2015). However,
due to charging time challenges, EVs are often used for short-
distance travel, leading to a mix of transportation methods at the
household level, including all GV, a combination of GV and EV, or
all EV, depending on preferences.

These varying transportation combinations also result in
different energy requirements. For example, households with only
GVs need both electricity for residential use and gasoline for
transportation, while those with only EVs require electricity for
both purposes. Therefore, selecting the optimal transportation mix
is important for meeting energy needs efficiently.

Historically, single-family households have relied on grid-
powered electricity (GE), which is typically generated from non-
renewable sources, contributing to environmental harm. With the
rise in EV usage, electricity demands have surged, increasing GHG
emissions and straining the grid, sometimes causing blackouts
during peak times. In response, governments worldwide have
promoted solar-powered electricity (SE) as a renewable, eco-
friendly supplement to GE, reducing pressure on the grid. Tax
incentives and subsidies are now available for households that adopt
solar energy. Thus, it is crucial for households to find the right
balance between grid and solar power to meet their electricity
demands effectively.

Given the wide variety of options available for single-family
households for fulfilling their transportation and electricity needs,
single-family households typically make their transportation and
electricity requirement decisions based on total transportation and
energy costs (TTEC). The TTEC for a typical single-family
household depends on several parameters that include, but not
limited to number of residents, house size, number of GVs,
number of EVs, GV and EV ownership costs, solar system
implemented at a household or not, and solar system size.
Consequently, it is important to understand which are important
factors that contribute to the estimation of the TTEC. A
comprehensive review of literature raises three important
research questions as there is still ambiguity in estimation of
TTEC for different combinations for single-family households.
These research questions include:

1. Is there really any significant difference in TTEC costs when
different combinations of electricity inputs and transportation
methods as energy outputs are considered for a single-
family household?

2. Is there a methodology that can help to predict TTEC for
single-family households with a variety of parameters?

3. What are the important factors that contribute to the
prediction or estimation of the total costs for single-family
households?

To address these research questions, in this study, we examine a
holistic system that considers GE and SE systems as electricity inputs
and EVs and GVs as transportation methods for energy outputs.
Our study aims to predict the TTEC for any given single-family
household with a specific set of input parameters. We propose a
novel three-stage prediction framework in which we first develop an
energy balance simulation model to estimate TTEC for individual
single-family households. Then, in the second stage, we run the
model several times with varying parameters and develop synthetic
data to train supervised machine learning (SML) models. In the final
stage, different SML are trained and tested to determine the best
SML model that can be implemented in real-world for TTEC
prediction. It is important to highlight that once the best SML is
determined, running of simulation model can be eliminated as the
SML model will serve as a substitute for simulation model that will
automatically predict the TTEC with high degree of accuracy as that
of simulation model, thereby reducing computational effort and
complexity.

2 Literature review

Over the past decade, several studies have been conducted to
compare the total cost of ownership for EVs and GVs. Wu et al.
(2015) create a probabilistic simulation model to evaluate and
contrast electric vehicles (EVs) with fuel-powered vehicles. They
find that, while EVs are approaching conventional vehicles in terms
of total cost of ownership, their performance superiority depends on
a variety of favorable factors. Mitropoulos et al. (2017) conduct a life
cycle cost analysis to compare ownership costs across conventional,
hybrid, and electric vehicles. Their findings show that hybrid
vehicles outperform both conventional and electric vehicles over
a wide range of life cycle distances. However, a trade-off exists: for
shorter life cycle distances, EVs are more advantageous, while
conventional vehicles perform better over longer distances.
Similar to Wu et al. (2015), Danielis et al. (2018) designs a
probabilistic simulation model to compare the total cost of
ownership between electric vehicles (EVs) and gasoline vehicles
(GVs) considering both stochastic and non-stochastic factors.
Unlike Wu et al. (2015), who expressed uncertainty about cost-
competitiveness, Danielis et al. (2018) suggest that EVs could
become cost-competitive with GVs if fuel prices continue to rise,
and EV retail prices continue to decrease. Weldon et al. (2018)
conducts an economic analysis of fuel vehicles and EVs using a
decade of data, finding that EVs are already cost-competitive with
fuel vehicles. However, this study notes that this competitiveness
depends on multiple factors and recommends continuing
government incentives to support EV adoption until the
technology fully matures. Hassan et al. (2024) perform an
economic analysis to calculate the cost of ownership per
kilometer, finding that EVs have a lower per kilometer ownership
cost compared to gasoline-powered cars, despite their higher
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upfront price and battery replacement costs. The per kilometer cost
for EVs decreases further when electricity rates are favorable and
clean car discounts are offered. Liu et al. (2021) compare ownership
costs between electric and fuel vehicles using an economic model,
finding that EVs tend to be more expensive than fuel vehicles.
However, their study notes that EV ownership costs become
comparable to those of fuel vehicles when EVs are driven shorter
distances. While there are numerous studies comparing the total
cost of ownership of GV and EV, their cost competitiveness is still
ambiguous and questionable.

In recent years, the total cost of EV ownership compared to GVs
has been assessed by using solar-generated electricity as the main
source of energy for EV charging. Accordingly, several researchers
have examined EVs and solar power as integrated systems. Coffman
et al. (2017) perform a life cycle assessment for a single-family
household, considering both grid and solar power alongside fuel and
electric vehicles. The study reveals that EVs typically have higher
ownership costs than GVs. However, with subsidies for EVs and
incentives for photovoltaic (PV) systems, EV ownership can become
more cost-effective than GVs. Fachrizal and Munkhammar (2020)
developed a quadratic programming approach for communities in
high-latitude regions, where photovoltaic power production is lower
and EV travel distances are greater. Their findings suggest that EV
smart charging schemes can help reduce the PV load in these high
latitude areas. Cieslik et al. (2021) conducted an energy balance
analysis to evaluate a single-family household system integrating
solar power generation with an EV. Through various scenarios, the
study found that using photovoltaic (PV) systems or solar energy
can be economically viable for household power needs, including EV
charging, in certain scenarios compared to others. Göhler et al.
(2021) assessed a multifamily household powered by both grid and
solar energy, using EVs for transportation. They developed a
simulation model, and the findings show that the energy self-
sufficiency of a multifamily building powered by photovoltaic
(PV) systems drops from 100% to 91% when EV charging is
factored in. Boström et al. (2021) created a simulation model to
analyze the synergy between solar energy and EVs as supply-
demand dynamics for the entire nation of Spain. This conceptual
study investigates a scenario in which all vehicles are electric, and
energy is exclusively generated from photovoltaic systems, resulting
in a completely self-sufficient energy system. After conducting a
series of simulations, the study concluded that solar energy could
theoretically meet all the energy requirements for both EVs and
residential needs in Spain, provided that EVs are also utilized as
energy storage units. Liang et al. (2022) employed a difference-in-
differences (DID) model at the community level, focusing on a
system powered by both grid and solar energy for EV charging.
Their research concludes that the combined adoption of
photovoltaic systems and EVs reduces system loads more
effectively than the adoption of EVs alone. Furthermore,
photovoltaic solar systems provide considerable economic
advantages to consumers who use EVs. Salles-Mardones et al.
(2022) performed an economic assessment on single family
households in Viña del Mar, Chile by considering both grid- and
solar-based electricity supply for EV charging. Numerous scenarios
for solar-based electricity generation based on with and without
battery storage are studied. The study concludes that smaller
photovoltaic systems with battery storage capacities can cost-

effectively meet the electricity demands of EVs due to lower
capital expenditure of implementing solar power. Martin et al.
(2022) examined single-family households that utilized solar
power for electricity and employed EVs for transportation. The
study used empirical analysis, focusing on performance metrics
related to EV charging demand met by photovoltaic (PV)
systems and CO2 emissions. The results showed that
photovoltaic systems could fulfill between 15% and 90% of the
energy requirements for EVs, depending on household charging
behaviors and the availability of battery storage. Kassem et al. (2023)
conducted energy and economic assessments for single-family
households in Northern Cyprus, focusing on solar energy to
meet both residential and electric vehicle charging requirements.
The findings suggest that, due to the ample solar radiation in
Northern Cyprus, solar energy is both technically viable and
economically feasible for fulfilling these needs. Furthermore, the
study indicates that using EVs in conjunction with solar energy
offers greater economic advantages compared to fuel-
powered vehicles.

Even though several studies have been conducted, two
important insights have been provided in literature:

1. When EVs and GVs total cost of ownership are compared, GV
seems to be better than EV even though EV in recent years has
been closing the cost-competitiveness with GV.

2. Solar-powered EV is better than GV, given the fact that
numerous subsidies are available to both solar power
installation and EV purchases.

However, these two notions are supported by literature with a
caveat that several parameters or factors should fall in favor of EV
for EV to outperform GV. The study of our literature raises three
important research questions that need further investigation:

1. Is there really any significant difference in TTEC costs when
different combinations of electricity inputs and transportation
methods as energy outputs are considered for a single-
family household?

2. Is there a methodology that can help to predict TTEC for
single-family households with a variety of parameters?

3. What are the important factors that contribute to the
prediction or estimation of the total costs for single-family
households?

To address these research questions, in this study, we examine a
holistic system that considers GE and SE systems as electricity inputs
and EVs and GVs as transportation methods for energy outputs.
Our study aims to predict the TTEC for any given single-family
household with a specific set of input parameters. We propose a
novel three-stage prediction framework in which we first develop an
energy balance simulation model to estimate TTEC for individual
single-family households. Then, in the second stage, we run the
model several times with varying parameters and develop synthetic
data to train supervised machine learning (SML) models. In the final
stage, different SML are trained and tested to determine the best
SML model that can be implemented in real-world for TTEC
prediction. It is important to highlight that once the best SML is
determined, running of simulation model can be eliminated as the
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SML model will serve as a substitute for simulation model that will
automatically predict the TTEC with high degree of accuracy as that
of simulation model, thereby reducing computational effort and
complexity.

3 Materials and methods

This section presents the materials and methods used in the
proposed study. We first define the scope of the system boundary
used in this study and then present a novel three-stage prediction
framework required to predict the TTEC for single-family
households and determine important parameters that contribute
significantly towards predicting TTEC. The three-stage prediction
model consists of supervised machine learning (SML) models that
are trained and tested by using the TTEC predictions of energy
balance simulation model. While the energy balance simulation
model is same as studies performed byWu et al. (2015) and Danielis
et al. (2018), the training and testing the SML models is the unique
contribution of this paper to literature. The benefit of training and
testing SML model is that it supplements the use of simulation
model, thereby reducing the computation burden and allows the
best SML model automatically predict TTEC with high degree
of accuracy.

3.1 Scope of the system boundary

This research focuses on predicting TTEC for any given single-
family households with any specific set of input parameters. Figure 1
presents a generic system boundary considered in this study. It
consists of a single-family household that uses grid-powered
electricity (GE) and Solar-powered electricity (SE) as energy
inputs and gasoline vehicles (GVs) and electric vehicles (EVs) as
transportation methods for energy output. The parameters
considered in the study are limited to Central Texas region in US.

In Central Texas, the typical number of residents ranges between one
to six for single-family households. Therefore, the number of residents
for different single-family households are modelled as uniform
distribution between one to six residents. The house size in Central
Texas typically ranges between 1,000 and 3,500 square feet. Therefore,
house sizes for different houses are modelled as uniform distribution
ranging between 1,000 and 3,500 square feet. The vehicles considered at
each single-family household can be of any number between one to four

which is typical of Central Texas region. In addition, the vehicles can be
of any combination of GVs and/or EVs. For a typical household, several
correlations exist between different parameters. The correlation between
two different parameters is established by using Equations 1, 2 (Gonela
et al., 2020). In Equations 1, 2, r represents the desired correlation
coefficient between two parameters, RandP1 and RandP2 represent the
random variables for parameter 1 and parameter 2. In addition,
a1, a2, b1, b2 represent the minimum and maximum values for
parameters 1 and 2.

Correlated parameter2 � a2 + b2 − a2( )
×

r × RandP1 + RandP2 ×
�����
1 − r1

√( )
r + �����

1 − r2
√[ ]

(1)
a1 + b1 − a1( ) × RandP1 (2)

For each household, a correlation between number of residents
and house size as well as correlation between number of residents
and number of cars is established by considering r � 0.8. Once the
number of cars is determined, we assume that the chance of cars
being a GV and/or EV is 0.50. The correlation cost of ownership
costs for EV and GV vehicles with mileage and resident size are also
established using Equations 1, 2. It is to be noted that GVs with
higher mileage are typically hybrid vehicles, which are also
accommodated in the study.

On the energy supply side, the electricity needs of each
household can be fulfilled by using a combination of GE and SE.
For each household, the probability of having a SE is assumed to be
0.40. A photovoltaic solar system with battery storage is considered
in this study. Given such a structure, a novel three stage prediction
framework is proposed that aims to predict the TTEC for any single-
family households with specific parameters and determine
important parameters that contribute towards predicting TTEC.
Supplementary Appendix A1, A2 provides the input parameters
used in the proposed three stage prediction framework (Aggarwal
and Walker, 2024; Allen and Tynan, 2024; Betterton et al., 2024;
Fields et al., 2024; Fitzpatrick and Jordan, 2024; Petroleum and
Other Liquids, 2024; Raman et al., 2024; Residential Average
Monthly kWh and Bills, 2024; Residential Clean Energy Credit,
2024; Roof pitch angle and slope factor chart, 2024; Solar Panel Cost,
2024; United States Environmental Protection Agency, 2022; US
Monthly Total Vehicle Miles Traveled, 2024; Walker and McDevitt,
2024; Zargary, 2023; Petroleum and Other Products, 2024).

3.2 A novel three stage
prediction framework

This paper focuses on predicting the TTEC for a single-family
household with specific parameters by considering a system boundary
that consists of GE and SE as energy inputs and GV and EV as
transportation methods for energy output. A three-stage prediction
framework is proposed that aims to determine TTEC for any given
households as well as determine the important parameters that
significantly contribute towards predicting TTEC. Figure 2 shows
the three stages of the prediction framework. In the first stage, an
energy balance simulation model is developed by considering various
system related parameters such as number of residents, house size,

FIGURE 1
System boundary for a single-family household.
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number of vehicles, solar system implemented or not andmanymore to
estimate TTEC for individual households. In the second stage, the
energy balance simulation model developed in the first stage is run
multiple times with varying parameters to estimate the TTEC for
different households. These simulation runs help to develop
synthetic data for third stage SML models. In the third stage,
numerous SML models are trained by using synthetic data and the
performance of different SML models on the testing dataset is analyzed
to determine the best SML model that can help automate the TTEC
prediction process. The best SML model also helps to determine the
important parameters that contribute significantly towards predicting
TTEC. Once the best SMLmodel is determined, this best model can be
used for predicting TTEC instead of simulationmodel, thereby avoiding
the computational burden of running simulationmodel for each single-
family household.

3.2.1 First stage: Energy balance simulation model
The first stage of the three-stage prediction framework involves

developing an energy balance simulation model. This section presents
themathematical formulation of the proposed energy balance simulation
model to assess TTEC for individual single-family household by
considering numerous system boundary related constraints. Table 1
presents the notations of the simulations. Equations 3–13 presents the
mathematical formulations of the simulation model.

3.2.1.1 Total cost
Equation 3 represents the total annualized TTEC of a single-family

household. It consists of the following costs: (1) the ownership cost of all
GVs, (2) the cost of gasoline for GVs, (3) the ownership cost for EVs,
(4); the cost of obtaining grid-powered electricity, and (5) the cost of
generating solar-powered electricity. It is to be noted that the solar-

powered electricity consists of solar system cost, battery cost, and the tax
credit obtained from government. Since the total cost is annualized, the
net cost of the solar system is spread over its estimated lifespan.

TTEC � ∑T
t�1
GVCMC × NGV × DSI × dtgvt +∑T

t�1
GasC × GCt

+∑T
t�1
EVCMC × NEV × DSI × dtevt +∑T

t�1
GPEC × EUGPt

+∑T
t�1

SPIC × SPSS + BUC × BC − PTC × PIC × SPSS + BUC × BC[ ]
SL × EPSPt

( )
(3)

3.2.1.2 Residential electricity demand
Equation 4 represents the amount of residential electricity

consumed by single-family households which depends on the energy
usage per resident, the number of residents, and the seasonality factor.

RECt � ESFt × ECt × NR ∀t (4)

3.2.1.3 EV electricity demand
Equation 5 suggests that the amount of electricity consumed by

EVs in a single-family household depends on the number of EVs, EV
electricity usage, and distance travelled by EV.

EVECt � NEV × EVEC × DSI × dtevt ∀t (5)

3.2.1.4 Gasoline demand
Equation 6 indicates that the amount of gasoline consumed by

GVs at a single-family household depends on the number of GVs,
GV mileage, and distance travelled by GV.

FIGURE 2
Novel three-stage evaluation framework.
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GCt � NGV ×
DSI × dtgvt

GVM
∀t (6)

3.2.1.5 Solar-powered electricity
Equation 7 allows to determine the rooftop area for a single-

family household. The rooftop area depends on the household
depends on the household base area and the roof pitch.

RTA � HBA

cos tan−1 RP × 100%( ) (7)

Equation 8 indicates that the number of solar panels that can be
put on the rooftop depends on the rooftop area and proportion of
rooftop area that can be used for solar panel installation.

NSPI × SPA≤PRTU × RTA (8)

Equation 9 suggests that the amount of solar power-based
electricity produced depends on the number of peak solar hours,
number of solar panels installed, power output of each solar panel,
and loss in electricity due to environmental factors.

EPSPt � 1 − ϑ( ) × POSP × NSPI × NSHt ∀t (9)

Equation 10 is an electricity balance equation that states the
total solar power-generated electricity in the current period,
combined with the electricity stored in the battery from the
previous period, must equal the sum of the solar power-based
electricity consumed in the current period and the electricity
stored in the battery.

EPSPt + ESSPt−1 � EUSPt + ESSPt ∀t (10)
Equation 11 constrains the amount of solar power-based

electricity stored in the battery is less than battery capacity.

ESSPt ≤BC (11)

Equation 12 is a measure that estimates the solar system size in
watts. The solar system size depends on the power output of each
solar panel and the number of solar panels installed on the rooftop.

TABLE 1 Notations of the excel-based simulation model.

Notations Description

Sets

T Time horizon, indexed by t � 1, 2, 3 . . . .T

Parameters

BUC The cost of battery per unit (kwh) of storage capacity

BC The capacity of the battery for storing solar power-based
electricity

DSI The seasonality index of distance travelled by a vehicle

dtevt The distance travelled by each EV in time period t

dtgvt The distance travelled by each GV in time period t

ECt The amount of electricity consumed per resident in time period t

ESI The seasonality index for residential electricity consumption

EVCMC The ownership cost per mile travelled by EV.

EVEC The amount of electricity consumed by each EV per mile

GasC The gasoline cost per unit

GPEC The unit cost of electricity obtained from the grid

GVCMC The ownership cost per mile travelled by GV.

GVM The mileage of each GV.

HBA The single-family household base area in square feet.

NEV The number of EVs at a single-family household

NGV The number of GVs at a single-family household

NR The number of residents in a single-family household

POSP The power output of each solar panel in watts

PRTU The proportion of rooftop area that can used for installing solar
power

PTC The percentage of tax credit obtained on total solar cost

RECRt The residential electricity consumed per resident in time period t

RP The roof pitch of a household expressed in slope

SL The estimated life of the solar system

SPA The area of a single solar panel

SPIC The cost of installing solar panel per watt

ϑ The loss in solar power-based electricity due to environmental
factors

Unrestricted Variables

TTEC The total energy and transportation cost of an individual single-
family household

Positive Variables

EPSPt The amount of solar power-based electricity produced in time
period t

ESSPt The amount of solar power-based electricity stored in battery in
time period t

(Continued in next column)

TABLE 1 (Continued) Notations of the excel-based simulation model.

Notations Description

EUGPt The amount of grid power-based electricity obtained in time
period t

EUSPt The amount of solar power-based electricity used in time
period t

EVECt The electricity consumed by each EV in time period t

GCt The amount of gasoline consumed in time period t

NSHt The peak number of solar hours in time period t

NSPI The number of solar panels that can be installed on the rooftop
of a single-family households

RECt The amount of residential electricity consumed in time period t

RTA The rooftop area of a single-family household

SPSS The system size of the solar power
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SPSS � POSP × NSPI (12)

3.2.1.6 Adding grid power-based electricity to solar-
powered electricity

Equation 13 ensures that the amount of solar power and grid
power electricity supplied is equal to the residential and EV
electricity demand.

EUSPt + EUGPt � RECt + EVECt ∀t (13)

3.2.2 Second stage: Simulation runs and synthetic
data development

The second stage of the three-stage evaluation framework involves
developing synthetic data that can be used by the supervised machine
learning models. To develop synthetic data, the energy balance
simulation model (Equations 3–13) is run N times, with each run
indexed as n � 1, 2, ..N with varying parameters to estimate the TTEC
for several single-family households. The parameters that were varied
include: (1) number of residents, (2) house size, (3) number of EVs, (4)
EV ownership cost, (5) EV efficiency, (6) Number of GVs, (7) GV
ownership cost, (8) GV efficiency, (9) Solar implemented or not, (10)
solar system size, (11) battery storage capacity, and (12) peak solar
hours. Consequently, for a SML model, the TTEC parameter of the
synthetic data becomes the dependent or response variable and the
twelve parameters that are varied becomes the independent or predictor
variables. Once synthetic data is generated, data cleaning and initial
exploratory data analysis (EDA) is performed to understand the
distribution of each parameter.

3.2.3 Supervised machine learning (SML) models
Once the synthetic data is cleaned and initial EDA is performed,

numerous SMLmodels are trained by splitting the data into training
and testing data. The SML models that are trained and tested in this
study are: (1) Linear Regression, (2) Ridge Regression, (3) Lasso
Regression, (4) Decision Tree, (5) Bagging, (6) Random Forest, (7)
Adaptive Boosting, and (8) Gradient Boosting. To select the best
SML model, the performance metrics that are considered are: (1)
Root Mean Square Error (RMSE), (2) Mean Absolute Percentage
Error (MAPE), and (3) Adjusted R-squared.

4 Results

This section presents the results of the study. Section 4.1
presents the results of the first stage energy balance simulation
model including sensitivity analysis for model validation. Section 4.2
presents the initial Exploratory Data Analysis (EDA) of second stage
synthetic data, which is developed by running the energy balance
simulation model several times by varying several input parameters.
Section 4.3 presents the results of the third stage SML models.

4.1 First stage: energy balance simulation
model results

This section presents the results of the first stage energy balance
simulation model for individual households. In addition, we

perform sensitivity analysis on few important parameters to
validate the model, i.e., the model is providing insights as
intended. These insights are cross validated with the literature as
well as trials by multiple experts in this field of study. In this initial
first stage study, we begin our analysis by examining a single-family
household consisting of two residents, with a base area of
1781 square feet and two vehicles. The study focuses on
comparing the TTEC performance of a single-family household
by considering the system boundary configurations shown in
Table 2. It is to be noted that, based on the configuration under
consideration, the household utilizes a solar system size that fulfills
the entire single-family household’s electricity demand. For
example, in SE + GV, we consider a solar system size that fulfills
residential electricity requirement, whereas in SE + EV, we consider
a solar system size that fulfills both residential and EV charging
electricity needs.

4.1.1 Comparing TTEC for different system
boundary configurations

This section presents TTEC comparison for different system
boundary configurations. In this study, the energy balance
simulation model is run thirty times for each configuration to
establish a confidence level for TTEC. Figure 3 shows the
boxplots of the simulation runs which depicts the TTEC
comparison of different system boundary configurations. It
indicates that there is significant difference in TTEC for different
system boundary configurations. Consistent with the results of
Kassem et al. (2023) and Liang et al. (2022), the total cost of
ownership for EVs when used in combination with SE is best.
However, the total cost of ownership for GVs when used in
combination with SE is worst, indicating that installing solar to
meet only residential electricity needs can be an expensive value
proposition. Consistent with the results of Coffman et al. (2017), we
further observe that EVs are less expensive compared to GVs
irrespective of the electricity source used indicating that the total
cost of ownership for purely EVs are less compared to purely GVs.
This is because numerous subsidies are provided by the government
for EVs compared to GVs. In essence, different system boundary
configurations for this specific single-family household can be
ranked from least expensive to highest expensive as follows: (1)
SE + EV, (2) SE + GV + EV, (3) GE + EV, (4) GE + GV + EV, (5) GE
+ GV, and (6) SE + GV. It is to be noted that this ranking is
exclusively valid for this specific single-family household and may
vary for single-family households that have different parameters.
Figure 4 shows the cost split for each configuration, and it can be
observed that the ownership cost for vehicles significantly
contributes towards total cost compared to other costs. Here, the
ownership cost includes all the costs except gasoline cost for GVs
and electricity cost for EVs.

4.1.2 The impact of solar system size on different
configurations

In this section, we perform sensitivity analysis to validate the
simulation model by varying the solar system size. Figures 5, 6
presents the TTEC performance and solar reliability analysis when
solar system size is varied. They indicate that the TTEC for
configurations decrease and then increase as solar system size is
increased. The TTEC is least when all the electricity requirement for
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a household is met by SE. Furthermore, it is found that integrating
SE with EV outperforms all the other configurations for wide range
solar system size. However, breakeven points are observed for SE +
GV and SE + GV + EV where TTEC is less than certain
configurations when solar system sizes are lower and higher
when solar system sizes are higher. This indicates that larger
solar system sizes can increase costs when used in combination
of GV. This result is consistent with Salles-Mardones et al. (2022)
which suggests that smaller solar systems provide higher economic
benefits compared to larger solar systems.

4.1.3 The impact of GV and EVmileage on different
configurations

In this section, we further validate the energy balance simulation
model by performing sensitivity analysis on GV and EV mileages.
Figures 7, 8 present the results when GV and EVmileages are varied.
They indicate that as mileage is increased, the TTEC decreases. In
Figure 7, it can be observed that SE + GV + EV outperforms SE + EV
for higher GV mileage indicating that a single-family household
having solar system, EV and hybrid vehicles (typically, GVs with
higher mileage are hybrid) are better than solar integration with EV,
which is consistent with the results of Mitropoulos et al. (2017). In
addition, it indicates that GV mileage significantly impacts TTEC.

Figure 8 indicates that solar integration with EV has significantly
lower TTEC compared to other configurations. In addition, the
TTEC is stable for wide range of EVmileage indicating that the SE +
EV adds stable value proposition to the owner. In both the Figures,
break even points are observed where TTEC is higher at lower
mileages and lower at higher mileages for certain configurations,
which is consistent with the performed by Mitropoulos et al. (2017).

In summary, consistent with the results of the literature, we
observed that even though there is significant difference in different
system boundary configurations with solar integration with EV
being best, numerous parameters such as subsidies, solar system
size, and vehicle mileage makes the results inconclusive.
Consequently, we seek to the understand the TTEC under
varying conditions for different single-family households with
different parameters and seek to determine the important
parameters that contribute significantly to TTEC prediction.

4.2 Second stage: simulation runs and
synthetic data analysis

In this second stage, the energy balance simulation model is run
five hundred and fifty times to generate synthetic data that can be
used to train the SML models in third stage. During this second
stage, we estimate the TTEC for each run by varying the following
parameters in the energy balance simulation model: (1) number of
residents, (2) house size, (3) number of EVs, (4) EV ownership cost,
(5) EV efficiency, (6) number of GVs, (7) GV ownership cost, (8) GV

TABLE 2 System boundary configuration.

System boundary configuration Description

GE + GV The single-family household uses purely grid-powered electricity, and both the vehicles are gasoline vehicles

GE + EV The single-family household uses purely grid-powered electricity, and both the vehicles are electric vehicles

SE + GV The single-family household uses purely solar-powered electricity, and both the vehicles are gasoline vehicles

SE + EV The single-family household uses purely solar-powered electricity, and both the vehicles are electric vehicles

GE + GV + EV The single-family household uses purely grid-powered electricity and has one gasoline and one electric vehicle

SE + GV + EV The single-family household uses purely solar-powered electricity and has one gasoline and one electric vehicles

FIGURE 3
Cost comparison of different system boundary configurations.

FIGURE 4
Cost components under different system boundary
configurations.
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efficiency, (9) solar implemented or not, (10) solar system size, (11)
battery storage capacity, and (12) peak solar hours. Therefore, we
obtain synthetic data consisting of five hundred and fifty records and
thirteen parameters (TTEC is also a parameter in synthetic data).
Once synthetic data is developed, we perform initial Exploratory
Data Analysis (EDA) to understand the distribution of various
parameters. Figure 9 presents the results of the initial EDA
performed on the synthetic data. It illustrates the following:

• The number of residents ranges between one to six with a
median of three residents per household.

• Majority of households seem to have one EV.
• Majority of households have either one or two GVs.
• Majority of households do not have a solar system
implemented.

• The house size seems to be normally distributed with a range
between 1,000 and 3,500 square feet.

• GV Ownership and EV ownership cost seem to be uniformly
distributed with a median of 0.57 and 0.52 per mile
respectively.

• GV efficiency seems to be normally distributed with a mean of
40 miles per gallon. However, EV efficiency seems to be right
skewed with a median of 3.12 miles per kwh.

• Solar system size and solar battery capacity are right skewed as
majority of the households do not have solar system
implemented.

• Peak solar hours seem to be normally distributed with two
modes with peak solar hours ranging between
3.50–6.01 h per day

• The TTEC seems to be normally distributed with multiple
modes. The total cost ranges between $6,512 - $38344. The
median of TTEC of $19784 and mean of TTEC is
$21211 indicating that there is a slight right skewness in
the TTEC distribution.

4.3 Results of supervised machine learning
(SML) models

In the synthetic data, twelve parameters that include number of
residents, house size, number of EVs, EV ownership cost, EV

FIGURE 5
Cost comparison of different configurations when solar system
size is varied.

FIGURE 6
Solar system reliability under different configurations when solar
system size is varied.

FIGURE 7
The impact of GV mileage on different configurations.

FIGURE 8
The impact of EV mileage on different configurations.
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efficiency, Number of GVs, GV ownership cost, GV efficiency, solar
implemented or not, solar system capacity, battery storage capacity,
and peak solar hours become the independent variables or
predictors for SML models. Moreover, TTEC becomes the
dependent or response variable for SML models. To build SML

models, we split the synthetic dataset into training and testing
datasets. We split the data into 80–20, where 80% (440 out of
550) of the data is used for training the SML models and 20%
(110 out of 550) of the data is used for testing the SML models. As
discussed earlier in Section 3.2.3, we train eight different SML

FIGURE 9
Initial EDA results performed on the synthetic data.
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models that include: (1) Linear Regression, (2) Ridge Regression, (3)
Lasso Regression, (4) Decision Tree, (5) Bagging, (6) Random
Forest, (7) Adaptive Boosting, and (8) Gradient Boosting. In
addition, to select the best SML model, the performance metrics
that are used are: (1) Root Mean Square Error (RMSE), (2) Mean
Absolute Percentage Error (MAPE), and (3) Adjusted R-squared.
Table 3 presents the training and testing performance for different
SML models. At first glance, it can be observed that all the SML
models studied are able to predict the TTEC for single-family
households with accuracy of more than 90% on testing dataset.
This indicates that any of the SML models can be used and is good
enough for predicting TTEC. However, comparing RMSE between
training and testing datasets for different SML models indicate that
Decision Tree, Bagging, Random Forest, Adaptive Boosting, and

Gradient Boosting are overfitting models as the gap between RMSE
on training and testing datasets is significantly high. This indicates
that these SML models will predict with higher errors and lower
accuracy on new datasets. In terms of the best SML model,
regression models that include Linear Regression, Ridge
Regression, and Lasso regression seem to be the best SML
models as the difference in RMSE, MAPE, and Adjusted
R-squared values between training and testing dataset is least. In
addition, as RMSE and MAPE values are least and adjusted
R-squared is highest, the regression SML models will have lower
prediction errors and higher accuracy on new datasets. Therefore,
any of the three SML regression models can be used in the real world
to estimate the TTEC for single-family households rather than
simulation model. Therefore, the SML regression models can be

TABLE 3 Performance of different SML models.

SML model Training data results Testing data results

RMSE MAPE Adjusted R-squared (%) RMSE MAPE Adjusted R-squared (%)

Linear Regressiona 594.78 2.40 99.13 665.61 2.86 98.88

Ridge Regressiona 594.78 2.40 99.13 665.53 2.86 98.88

Lasso Regressiona 594.78 2.40 99.13 665.61 2.86 98.88

Decision Tree 0 0 100 1,341.94 3.95 95.96

Bagging 395.35 1.31 99.62 1,342.41 3.67 95.46

Random Forest 342.91 1.18 99.71 1,351.22 3.49 95.40

Adaptive Boosting 1,048.16 4.26 97.29 1719.29 5.77 93.37

Gradient Boosting 242.96 0.99 99.85 979.85 2.89 97.85

aBest SML, models.

FIGURE 10
Sequential Forward Selection for best SML regression models.
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used as substitute for simulation model. This will reduce the
computational complexity and allow the regression models to
train themselves as new household’s TTEC are estimated and
actual total costs are realized.

Since, Regression SML models are best, we perform sequential
forward selection of parameters, which is shown in Figure 10. It
indicates that out of twelve parameters considered, six parameters
are the most important parameters as there is marginal change in

R-squared adjusted as the number of parameters are added after six.
Chronologically, the parameters that are most important are: (1)
House size, (2) Number of GVs, (3) Number of EVs, (4) GV
ownership cost, (5) EV ownership cost, and (6) Solar
implemented. Figure 11 presents the EDA for important
parameters selected by SML regression models. It clearly shows
strong correlation between these parameters and TTEC. In addition,
it can be observed that as we move from most important to least

FIGURE 11
EDA for important parameters selected by best SML regression models.
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important parameter, the significance of the relationship between
the TTEC and the parameter seems to decrease. For instance, house
size significantly impacts the total price compared to having solar
implemented or not. Furthermore, a positive correlation between
TTEC and all the parameters except solar implemented is observed
indicating that as parameter value increases, TTEC also increases.
However, if solar is implemented, TTEC decreases. The results of the
study also provide counter intuitive notion, i.e., the number of
residents, GV and EV mileage, Solar system size, battery capacity
and peak solar hours are not significant parameters and marginally
contribute to the TTEC prediction.

5 Conclusion

This paper focuses on predicting the total transportation and
energy costs (TTEC) for single-family households. A system
boundary consisting of grid-powered electricity (GE) and
solar-powered electricity (SE) as energy inputs and gasoline
vehicles (GVs) and electric vehicles (EVs) as transportation
methods for energy outputs is considered. A novel three stage
prediction framework is developed that aims to predict the TTEC
for any given single-family household with specific set of
parameters and determine the important parameters that
contribute towards predicting TTEC. The first stage of the
prediction framework involves developing energy balance
simulation model for an individual household. The second
stage of the prediction framework involves running the
simulation model several times to develop synthetic data. In
the third stage, several supervised machine learning (SML)
models are trained and tested by using the synthetic data to
determine the best SML model as well as important parameters
that contribute significantly towards predicting TTEC. A case
study of single-family households in Central Texas region is used
as an application of the prediction framework. The results of the
first stage energy balance simulation model indicate that there is a
significant difference in TTEC for different system boundary
configurations for a single-family household. In fact, it is found
that SE integration with EVs is the best and SE integration with
GVs being the worst in terms of reducing costs. Currently, the
subsidies provided to both solar systems and EVs favor solar and
EV integration. However, this notion of solar and EV integration
being best is still ambiguous and questionable as other factors
impact their performance. For example, a household having both
GV and EV along with solar system seems to outperform solar
and only EV integration when the GV is hybrid given their
high mileage.

In the second stage, the simulation model is run five hundred
and fifty times, and the initial EDA indicates that the total cost
ranges between $6,537-$38344 with a mean of $21211. In third
stage, eight different SML models are trained and tested that
include: (1) Linear Regression, (2) Ridge Regression, (3) Lasso
Regression, (4) Decision Tree, (5) Bagging, (6) Random Forest,
(7) Adaptive Boosting, and (8) Gradient Boosting. The
performance metrics that are used to evaluate the SML models
are: (1) Root Mean Square Error (RMSE), (2) Mean Absolute
Percentage Error (MAPE), and (3) Adjusted R-squared. The
results of the third stage indicate that regression SML models

are best in predicting the total costs with an adjusted R-squared
of 99.13% and 98.88% on training and testing datasets,
respectively. In addition, the parameter analysis of regression
SML models suggests that the house size, number of GVs,
number of EVs, EV and GV ownership costs, and
implementation of solar at households are the most important
parameters that contribute significantly towards predicting the
TTEC of a single-family household. Counterintuitively, number
of residents, GV and EV mileage, Solar system size, battery
capacity and peak solar hours are not significant parameters
and marginally contribute to the TTEC prediction. In summary,
since the best SML regression model is trained and tested with the
energy balance simulation model synthetic data, the SML
regression model can be used as a substitute for simulation
model, thereby avoiding the computational burden of running
simulation model for each new single-family household.

Even though the SML regression models predict with high
degree of accuracy, the study has several limitations. First, the
sample size of the synthetic data can be increased. Second, the
study fails to consider variability in numerous other parameters such
as variability in prices of gasoline and electricity as well as variability
in distances travelled by households. In addition, different models
can be developed for with and with solar to study whether
parameters such as solar system size, battery capacity, roof pitch,
and peak solar hours impact the SML model performance.
Therefore, future research will include expanding the study to
fill these gaps.
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