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With the rapid development and increased demand for renewable energy
sources, standalone hybrid generation systems have become an essential
energy solution. Power optimization control is thus critical to achieving the
efficient operation and stability of this system. The distributed ADMM
(alternating direction method of multipliers)-based approach has the full
potential to deal with the power optimization problem of standalone hybrid
generation systems. This study uses an optimization algorithm with a Gaussian
penalty function, ADMM-ρ, to alternately optimize the power reference values of
wind, light, and battery-containing power generation subsystems. The local
controller regulates the output power of the converter according to this
reference value. This ensures that the wind and photovoltaic power
generation subsystem work in load-tracking or maximum power-tracking
modes so that the optimal operation of hybrid power generation meets the
balance of supply and demand while prolonging the service life of the batteries.
Simulation experiments show that the distributed ADMM algorithm can reliably
address the power optimization challenge of hybrid power generation systems.
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1 Introduction

Due to current problems of environmental pollution and energy scarcity, wind and solar
energy, rich in reserves, have attracted more attention as crucial clean energy sources to
effectively cope with the energy crisis and environmental problems (Suo et al., 2021). In
order to meet the balance between power generation and the load power of off-grid hybrid
systems, maximizing the use of clean energy resources while considering and extending
battery service life can make a whole system operate more efficiently and reduce operating
costs; the key is the optimal power distribution of each power generation unit. Therefore,
much research has studied the optimal power allocation of standalone hybrid generation
systems. Feroldi and Zumoffen (2014) optimized the control of the operating mode of each
generating unit of a standalone hybrid wind, solar, and storage power generation system to
ensure power balance between the generating units and the loads. Feroldi et al. (2015)
proposed an optimal management strategy for batteries in power generation systems that
can consider a battery’s state of charge between reasonable upper and lower limits to ensure
that it does not overshoot and over-discharge to prolong its service life and ensure its safe
operation. Zhao and Yuan (2016) proposed a fruit fly optimization algorithm based on
power optimization allocation control to achieve multi-objective optimization with the
simultaneous minimization of annual power generation costs and CO2 emissions. Wang
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et al. (2017a) used a hierarchical control structure with distributed
predictive control to achieve optimal power allocation in standalone
hybrid generation systems to reduce the time cost associated with
centralized optimal control and satisfy the system’s power balance.
Le et al. (2020) reviewed the current status and development of
research on distributed model predictive controls applied in hybrid
power system. Considering the power balance, output power of each
power generation unit, battery state of charge, and other factors in
the objective function, distributed model predictive control can
optimize the output power of the coordinated multiple power
generation units to achieve optimal functioning to maximize a
whole hybrid power generation system’s use of wind and clean
energy while prolonging battery life to further improve the operating
efficiency of the system and reduce operating costs.

For standalone hybrid generation systems that contain multiple
types of generation units, centralized model predictive control can
be used to study power optimal control problems. However, this
method involves significant computation and high communication
and time costs to find an optimal solution while exposing the
information on each generation unit. The current approach is
inadequate for protecting the privacy of a generation unit’s
information. To address this issue, ADMM utilizes its
decomposability and fast convergence to break down large-scale
and complex optimization problems into smaller sub-optimization
problems. Each sub-optimization task is processed in parallel on a
corresponding computing node, utilizing coordination and

cooperation among the sub-optimization tasks to enhance the
efficiency of the optimization computation. However, it is
important to note that ADMM may be influenced by the specific
characteristics of problems and parameter selection. To address this
limitation, this paper introduces a Gaussian penalty function that
enhances the power optimization performance of the system by
improving convergence speed.

Currently, the standard distributed optimization methods are
the gradient descent method (Bottou et al., 2018), the proximal
gradient descent method (Parikh, 2014), the coordinate descent
method (Wright, 2015), and the alternating direction method of
multipliers (ADMM). Among these, ADMM combines the
advantages of decomposability and fast convergence of the
multiplier method. In hybrid power generation systems, ADMM
can decompose the power optimization problem of each power
generation unit and, under its constraints, first solve it locally, then
update the parameters in the rest of the power generation units, and
finally make the hybrid power generation system work in the
optimal state through the above iterations; the multiplier method
in ADMM can better solve the contradiction between the good
convergence of small step lengths and the non-convergence of
considerable step lengths (Y. Wang et al., 2017b). It thus ensures
the fast convergence of a power generation system (Chang et al.,
2019). Increasing the penalty function can increase the maximum
iteration step length compared with the gradient descent method,
which can accelerate convergence speed (Chang et al., 2019).

FIGURE 1
Topology of off-grid hybrid power generation system topology.
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ADMM is thus suitable for wind–solar–storage hybrid power
generation systems, which present a power optimal control
problem containing multiple generation types; by improving the
ADMM algorithm to increase convergence speed, it can improve the
performance of power optimal control of a hybrid power generation
system (Kang et al., 2018).

We here establish mathematical models for the subsystems of
wind power generation, photovoltaic generation, and batteries.
We apply the ADMM algorithm to establish the objective
function and constraints. The convergence speed of the
ADMM algorithm is enhanced by introducing the Gaussian
penalty function ρ. The resulting ADMM-ρ algorithm is used
to determine power reference values for wind power generation,
photovoltaic power generation, and battery subsystems. The
power reference values are alternately optimized, and by
modifying the converter’s output power, the wind and PV
power generation systems operate in load tracking or
maximum power tracking mode. This results in the hybrid
power generation system’s optimal operation, ensuring the
balance between supply and demand while prolonging the
battery’s service life.

This paper is organized as follows. Section 2 offers a
mathematical model for standalone hybrid generation systems.
Section 3 discusses the ADMM power optimal control framework
for these systems, including the power optimization process,
objective function, constraints of the ADMM optimization,
and iterative design of the distributed ADMM-ρ. Section 4
presents a simulation experiment utilizing WP data from a
southern region of China, with load power serving as the
input to simulate the proposed model. The results of the
simulation experiment are then analyzed.

2Mathematical modeling of standalone
hybrid generation systems

Standalone hybrid generation systems consist of three
subsystems: wind power generation, photovoltaic power
generation, and battery (Figure 1).

The photovoltaic power generation subsystem is composed of wind
turbines, permanent magnet synchronous generators (PMSGs),
rectifiers, and DC/DC converters. Battery subsystems are the energy
storage devices of hybrid power generation systems which are
composed of batteries and DC/DC converters. The three subsystems
operate in parallel via the DC buses to supply power to the DC loads, or
through the inverter to supply power to the AC loads.

2.1 Wind electronic system model

Wind power is generated by a wind turbine that absorbs wind
energy and converts it into mechanical energy in the drive chain. A
generator then converts the mechanical energy into electrical energy to
supply the load. According to the principle of aerodynamics, the
expression of the output power of a wind turbine is expressed as follows:

Pt � 1
2
ρAv3wCp λ, β( ), (1)

where ρ is the air density, A is the sweeping area of the wind
turbine, vw is the effective wind speed, λ is the blade tip speed ratio of
the wind turbine, β is the pitch angle, and Cp(λ, β) is wind energy
utilization, the size of which are determined by λ and β together
as follows:

Cp λ, β( ) � 0.5176
116
λi

− 0.4β − 5( )e −21
λi + 0.0068λ

1
λi
� 1
λ + 0.08β

− 0.035

β3 + 1

λ � Rω0

v
� 2πRn0

v
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

where R is the paddle radius, ω0 is the angular velocity of the
wind turbine, and n0 is the rotational speed of the wind turbine. In
this study, a fixed pitch angle wind turbine is selected, so β =0.

The mathematical model of a permanent magnet synchronous
generator in the DC coordinate system is established as follows:

__iq � −Rs
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3

√
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√ uw ,

__id � −Rs

L
id − ωeiq − πvbid

3


3

√
L







i2q + i2d

√ uw,

_ωe � P
2J

Tt − 3
2
P
2
Φsiq( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

iw � πvb
2



3

√






i2d + i2q

√
uw, (4)

where iq id is the rotor-side straight-axis and cross-axis
currents, ωe is the electromagnetic rotational speed, Rs and L
are, respectively, the resistance and inductance of each phase of the
stator windings, P is the number of pole pairs of the permanent
magnet synchronous generator, J is the rotational inertia of the
rotating part, ϕs is the magnetic flux of the stator windings, Tt is the
wind turbine torque, vb is the DC bus voltage, iw is the current
injected into the DC bus, and uw is the control signal (duty cycle of
the DC/DC converter).

Eq. 3 is rewritten as follows:

_xw � f w xw( ) + gw xw( )uw, (5)

where xw � [iq id ωe]T is the state vector of the wind subsystem,
and fw � [fw1 fw2 fw3]T, gw � [gw1 gw2 gw3]T is a nonlinear
vector function.

Considering that the rectifier and DC/DC converter will have a
power loss of about 5% (Xin et al., 2019), the expression for the
power flowing from the wind power generation subsystems to the
DC bus is represented as follows:

PW � 0.95
πvb
2



3

√






i2d + i2q

√
uw . (6)

2.2 Model of the photovoltaic power
generation subsystem

The model of photovoltaic power generation subsystem is
as follows:
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_vpv � ipv
C

− is
C
upv

__is � −vb
Lc

+ vpv
Lc

upv

ipv � npIph − npIrs exp q vpv + ipvRs( )/ nsAcKT2( )( ) − 1( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where vpv and ipv are, respectively, the output voltage and
current of the array, Iph is the photogenerated current, Rsh is the
shunt resistance of the PV cells, ID is the current flowing through
the diode, Rs is the series equivalent internal resistance of the PV
cells, C and Lc are, respectively, the capacitance and inductance of
the converter, upv is the control signal (duty cycle of the DC/DC
converter), is is the current injected into the DC bus, K is the
Boltzmann constant K � 1.38 × 10−3J/K, ns and np are,
respectively, the number of series and shunt connections of the
PVmodules in the PV array, Irs is the number of series and parallel
connections of PV modules in the PV array, T2 is the reverse
saturation current, q is the Kelvin temperature, m is the unit
charge, and Ac is the P–N junction coefficient of the
semiconductor device in the PV cell.

Eq. 7 can be rewritten as follows:

_xs � f s xs( ) + gs xs( )upv ,
hs xs( ) � 0,

{ (8)

where xs � [vpv is]T is the state vector of the photovoltaic power
generation subsystems, and fs � [fs1 fs2]T, gs � [gs1 gs2]T, and
hs(xs) are nonlinear functions.

Considering that the power loss of the converter is around
5%, the equation for the power flowing from the photovoltaic
power generation subsystems to the DC bus is represented
as follows:

Ps � 0.95isvb. (9)

From (7) and (9), the power of the photovoltaic power
generation subsystems is controlled by upv.

2.3 Model of battery subsystems

Power from wind generation quickly fluctuates due to external
influences; the battery subsystems, as energy storage devices (Tan
et al., 2021), can quickly respond to the power changes of the wind
power generation subsystems and loads. The current flowing
through the battery subsystems for power generation is
represented as follows:

ib � π

2


3

√






i2d + i2q

√
uw + is − iL, (10)

where iL is the load current (A) obtained from the measurement,
the battery consists of a voltage source eb (V), series resistance Rb

(Ω), and capacitor Cb (F), and the battery terminal voltage e is
as follows:

vbt � 0.5 eb + vc +

















eb + vc( )2 + 4vbibRb

√( ), (11)

where vc is the voltage across capacitor Cb, and the magnitude of
vc is calculated as follows:

_vc � 1
Cb

π

2


3

√






i2d + i2q

√
uw + is − iL( ). (12)

Eq. 12 can be rewritten as follows:

_vc � f c xw , xs, vc( ), (13)

where fc(xw, xs, vc) is a nonlinear function.

3 ADMM power optimal control for
standalone hybrid generation systems
with wind power and storage

Under weather conditions and load variations, the subsystems of
standalone hybrid generation systems calculate the output power
reference values of the wind, light, and battery subsystems through
the ADMM alternately and iteratively and pass the output power
reference values to the local controller of these subsystems. This
adopts the sliding-mode variable-structure control to change the
duty cycle of the DC/DC converter and adjusts the output power of
the wind, light, and battery subsystems to meet the user’s load power
requirements. The local controller uses a sliding mode variable
structure control to change the duty cycle of the DC/DC
converter to adjust the output power of the wind, light, and
battery generation subsystems so that the output power of the
hybrid generation systems meets the user’s load power demand.
We thus obtain the ADMM control structure of the standalone
hybrid generation systems (Figure 2). The power reference values of
the wind, PV, and battery subsystems are used as decision quantities,
which are solved by the ADMM algorithm in distributed iterations.
The fast convergence of the algorithm is ensured by adding Gaussian
penalty variables.

3.1 ADMM control structure for standalone
hybrid generation systems

The structural block diagram of ADMM-based hybrid power
generation system control is shown in Figure 2, where the ADMM
power optimization of the wind, photovoltaic, and battery
subsystems constitutes the optimization layer, and the
optimization layer outputs the reference power to the local
controllers of these subsystems.

The objective function of the system optimization layer is first
designed. Then, the ADMMoptimization algorithm is applied to the
wind, PV, and battery power references with alternating iterations
based on historical weather prediction data (WP), including light
intensity H0 (W

m2), ambient temperature T1 (℃), wind speed
v (S/m2), battery state of charge (SOC), and load power. The
alternating iterations ensure the rapid convergence of the
optimization process.

Finally, the power reference values of the last iteration are
exchanged among wind, PV, and battery, the residuals are
calculated, and the residual convergence conditions are judged to
obtain the optimal power reference values PW,ref

* , PS,ref
* , and Pb,ref

*

of the wind, PV, and battery subsystems.
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The optimization layer sends the optimal power reference values
PW,ref
* , PS,ref

* , and Pb,ref
* to the respective subsystem controllers, and

the local controllers of the wind, photovoltaic, and battery
subsystems control the duty cycles of their respective DC/DC
converters according to PW,ref

* , PS,ref
* , and Pb,ref

* using a sliding-
mode variational structure to ensure system power balance.

3.2 ADMM distributed power
optimization process

Traditional centralized optimization accepts all state information.
It makes the optimal control decision of the system, while distributed
ADMM performs local optimization for each subsystem and achieves
global optimization through iterative optimization among subsystems.

Define PW,ref, PS,ref(k), and Pb,ref(k) as the power reference values
solved by ADMM. As shown in Figure 3, the ADMM distributed
computing framework is established: S1 represents the wind power
generation subsystems, S2 represents the photovoltaic power generation
subsystems, and S3 represents the battery subsystems. First, the ADMM
solves for the power reference values PW,ref, PS,ref(k), and Pb,ref(k) of
the wind, PV, and battery subsystems, respectively. Second, the iterative
update of the Gaussian penalty function ρ is added to ensure the
stability and speed of the algorithm optimization.

The steps for solving for ADMM-ρ are as follows:

Step 1: S1 starts solving the PW,ref of the power reference value of
the wind power generation subsystems.

Step 2: S1 passes the calculated value of PW,ref to S2 through the
contact line.

Step 3: S2 solves the power reference value of the photovoltaic
power generation subsystems PS,ref(k).

Step 4: S2 passes the value of the calculation result PS,ref(k) to
S3 through the contact line.

Step 5: S3 solves the predicted value of the power reference for the
battery subsystems Pb,ref(k).

Step 6: S3 passes the value of the calculation result Pb,ref(k) to
S1 through the contact line.

Step 7: Solves λ by taking the value ρ for PW,ref, PS,ref(k), Pb,ref(k),
and k-1 iterations.

Step 8: Update the value of ρ.

3.3 ADMM optimization objective function
and constraints

The quadratic objective function for the wind power generation
subsystems is represented as follows:

min f 1 PW ,ref( ) � 1
2
h1PW ,ref

2, (14)

FIGURE 2
Block diagram of the ADMM control structure for the off-grid hybrid power generation system.
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where h1 is a constant to where h1 is a positive constant, and its
larger values lead to faster convergence but may result in decreased
stability. The constraints of the wind power generation subsystems
are as follows:

PT k( ) + Pb,ref k( ) − PW ,ref k( ) − PS,ref k( ) � 0,
0≤PW ,ref k( ) ≤PW ,max ,
0≤ db k( ) ≤ db,max ,
ib k( )
∣∣∣∣ ∣∣∣∣≤ ib,max .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

The objective function of the photovoltaic power generation
subsystems is as follows:

min f 2 PS,ref( ) � 1
2
h2PS,ref

2, (16)

where h2 is a constant to where h2 is a positive constant, and its
larger values lead to faster convergence but may result in
decreased stability.

The constraints of the photovoltaic power generation
subsystems are as follows:

PT k( ) + Pb,ref k( ) − PW ,ref k( ) − PS,ref k( ) � 0,
0≤PS,ref k( ) ≤ P ,
0≤ db k( ) ≤ db,max ,
ib k( )
∣∣∣∣ ∣∣∣∣≤ ib,max .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

The objective function of the battery subsystems is expressed
as follows:

min f 3 Pb,ref( ) � 1
2
h3Pb,ref

2, (18)

where h3 is a constant to where h3 is a positive constant, and its
larger values lead to faster convergence but may result in
decreased stability.

The constraints for the battery subsystems are as follows:

PT k( ) + Pb,ref k( ) − PW ,ref k( ) − PS,ref k( ) � 0,
Pb,ref k( )
∣∣∣∣ ∣∣∣∣≤Pb,max ,
0≤ db k( ) ≤ db,max ,
ib k( )
∣∣∣∣ ∣∣∣∣≤ ib,max .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (19)

x indicates that the optimization objective vector is represented
as follows:

x �
x1
x2
x3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � PW ,ref

PS,ref

Pb,ref

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (20)

According to (14), (16), and (18), the whole system’s
optimization objective function is as follows:

min f x( ) � 1
2
xTHx, (21)

H �
h1 0 0
0 h2 0
0 0 h3

⎛⎜⎝ ⎞⎟⎠, (22)

where H is the coefficient matrix of the global optimization
objective function of the system, which is a semi-positive definite
symmetric matrix if the value of the diagonal element is immense.
The corresponding wind power reference value, photovoltaic power
reference value, or battery power reference value will have a more
significant impact on the objective function.

3.4 Distributed ADMM-ρ iterative design

The ADMM-ρ is used to solve the power references PW,ref,
PS,ref(k), Pb,ref(k), and λ for each subsystem. The constraints in the
standalone hybrid generation systems are rewritten in the form of
sets, and the convex sets are defined as follows:

C1 � PW ,ref k( ),PS,ref k( ),Pb,ref k( )
∣∣∣∣PT k( ) + Pb,ref k( ) − PW ,ref k( ) − PS,ref k( ) � 0{ },

(23)
C2 � PW ,ref k( ) 0≤PW,ref k( ) ≤PW,max

∣∣∣∣{ }, (24)
C3 � PS,ref k( ) 0≤PS,ref k( ) ≤PS,max

∣∣∣∣{ }, (25)
C4 � Pb,ref k( ) Pb,ref k( )

∣∣∣∣ ∣∣∣∣≤Pb,max

∣∣∣∣{ }, (26)
C5 � db k( ) 0≤ db k( )≤ db,max

∣∣∣∣{ }, (27)
C6 � ib k( ) ib k( )

∣∣∣∣ ∣∣∣∣≤ ib,max

∣∣∣∣{ }. (28)

Define the auxiliary variable z and the indicator function g(z)
such that z � x.

min f x( ) + g z( )( )
s.t. x � z
dorm f � C1 ∩ C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6,

⎧⎪⎨⎪⎩ (29)

where dorm f is the domain of definition of the function f and
g is the indicator function on C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6.

g z( ) � 0, z ∈ C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6

+∞, z ∉ C2 ∩ C3 ∩ C4 ∩ C5 ∩ C6
{ (30)

The augmented Lagrangian function for constructing each
suboptimization problem is as follows:

Lρ x, z, λ( ) � f x( ) + g z( ) + λT x − z‖ ‖22 + ρ

2
x − xref + ξ · E‖ ‖22,

(31)
where λ is the Lagrangian multiplier, ρ is the Gaussian penalty

function, xref is the reference value of the vector x, and ξ is the error
factor between xref and x, ξ>0.

FIGURE 3
ADMM distributed computing framework.
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The iterative calculation order is x1 → z1 → λ1 → ρ1 → x2 → z2
→ λ2 → ρ2 → x3 → z3 → λ3 → ρ3. Using ADMM, the iterative
solution steps repeat the following steps for i =1,2,3 . . . and k=1, 2,
3 . . . :

xi
k � arg min

xi
f xi( ) + λi

k−1 xi − zi
k−1!!!! !!!!22( ), (32)

zi
k � arg min

zi

g zi( ) + λi
k−1 xi

k − zi
!!!! !!!!22

+ρi
k−1

2
xi − xi,ref + ξ
!!!! !!!!22

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠, (33)

λi
k � λi

k−1 + ρi
k−1 xi

k − zi
k( ), (34)

ρi
k ρi

k−1( ) � β exp − ρi
k−1 − v( )2
σ

[ ], (35)

where the penalty coefficient β, neighborhood size factor σ,
and the neighborhood center v are all greater than zero, and the
value of the parameter v determines the location of the
penalized region.

When t ∈ [v,+∞), the Gaussian penalty function ρ(t) takes a
large value at the initial trial stage and decreases rapidly, but at the
later stages of the iteration, ρ(t) is basically unchanged and exhibits
some localization.

The size of the penalty region is characterized by the parameter
σ, which gives different results for different values of σ.

When β = 0.5 and v = 0.5, the penalty function ρ(t) will
change over time with the difference in the value of
σ (Figure 4).

The change of the penalty function ρ(t) is roughly in line with
the normal distribution.When the value of σ is more significant than
0.25, then ρ(t) changes relatively gently throughout the iteration
process. When the value of σ is less than 0.25, it decreases rapidly
throughout the iteration process. In this paper, we specify σ = 0.25.

Convergence criteria:

r k( )!!!! !!!!22 � xi
k − zi

k
!!!! !!!!22 ≤ εpri, (36)

s k( )!!!! !!!!22 � ρi zi
k − zi

k−1( )!!!! !!!!22 ≤ εdul , (37)

where r(k) and s(k) are the primal and dual residual after the k
times iteration, corresponding to the upper residual tolerance limits of
εpri and εdul .

The flowchart of ADMM algorithm optimization is shown
in Figure 5.

The specific process of ADMM-ρ iterative optimization is
as follows.

(1) Load the WP data, SOC data, and load power; initialize
parameters such asH, ξ, εpri, and εdul; and make the number
of iterations k =0;

(2) k=k+1;
(3) Wind power generation subsystems are subjected to the

k-times iteration, solving x1 according to Eq. 32, z1
according to Eq. 33, λ1 according to Eq. 34, and ρ1
according to Eq. 35.

(4) Wind power generation subsystems pass the calculation
results PW,ref(k) to the photovoltaic power generation
subsystems through the contact line.

FIGURE 4
Whenβ=0.5 and v=0.5, the variation curve of the
penalty function.

FIGURE 5
ADMM-ρ Optimization flowchart.
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(5) Photovoltaic power generation subsystems are subjected to
the k times iteration, solving x2 according to Eq. 32, z2
according to Eq. 33, λ2 according to Eq. 34, and ρ2 according
to Eq. 35.

(6) The photovoltaic power generation subsystems transfer the
calculation results PS,ref(k) of the battery subsystems
through the contact line.

(7) Battery subsystems are subjected to the k times iteration,
solving x3 according to Eq. 32, z3 according to Eq. 33, λ3
according to Eq. 34, and ρ3 according to Eq. 35.

(8) The battery subsystems pass the k sub-corrected value to the
photovoltaic power generation subsystems through the
contact line.

(9) The photovoltaic power generation subsystems pass the k
sub-corrected values to the wind power generation
subsystems through the contact line.

(10) The photovoltaic power generation subsystems pass the k
sub-corrected values to the wind power generation
subsystems through the contact line.

(11) Calculate the values of residuals r(k) and s(k) according to
Eqs 36, 37.

(12) Compare whether r(k) ≤ εpri and s(k) ≤ εdul hold
simultaneously. If they hold, stop the iteration and
output the calculation results to obtain the optimal
solutions PW,ref

*, PS,ref
*, and Pb,ref

* for the three subsystem
powers; otherwise, k=k+1, go back to step (2), and

FIGURE 6
Input of the system.
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repeat the above steps until the residual convergence
is satisfied.

4 Simulation verification and
result analysis

4.1 Experimental data

In this paper, the WP data and load power for a day in a region
in southern China are selected as the inputs to the system
(Figure 6): As shown in Figure 6A, the temperature range is
6 °C–17 °C. As shown in Figure 6E, the range of light intensity
is 0.002–700 W/m2. As shown in Figure 6C, the range of wind

speed is 1.6–7.9 m/s. As shown in Figure 6D, the range of SOC is
0.4–0.9. As shown in Figure 6B, and the range of load power is
5–18 kW. The provided data include temperature, load power,
wind speed, and battery SOC, with consistent sharp, smooth, stable
constant changes. However, the amplitude of each parameter is
relatively limited. According to Y. Wang et al. (2017b), the
convergence of the ADMM algorithm depends mainly on the
concavity and convexity of the variables. In this paper, Eqs
23–28 define its convex set form, and the magnitude of each
parameter does not affect its concavity and convexity. These
data can be used as input to and are representative of the
distributed ADMM power optimal control for standalone
hybrid generation systems. Taking ξ =0.001 and εpri =
εdul =0.001, make h1 =25, h2 =32, and h3 =15. Let the

FIGURE 7
Output power of the system and the battery current.
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maximum value of the reference power of PV in the constraints be
11.9kW, the maximum value of the reference power of wind be
7.6kW, and the capacity of the battery be 1000Ah.

4.2 Simulation results

The standalone wind and storage hybrid power generation
system is simulated, and 24 h are selected as the simulation time.
The power of the wind and photovoltaic power generation
subsystems and the power and current of the battery
subsystems are shown in Figure 7.

Take 21:00-22:00 in 24 h as an example. The load power is a
constant value of 18kW, the reference power range of the wind
power generation subsystems obtained by the ADMM solution is
6716.0–6697.0 W, the reference power range of the photovoltaic
power generation subsystems is 262.6–654.9 W, and the total
output reference power range of the wind and photovoltaic power
generation subsystems is 6978.6–7351.9 W. However, the total
output actual power range of the wind and photovoltaic power
generation subsystems is 7303.0–6987.0 W, the wind and
photovoltaic subsystems cannot satisfy the power demand of
the load, the battery subsystems have an output power of
10,697.0–11013.0 W, and the controller adjusts the duty cycle
of the converter so that the battery subsystems are all working in
maximum power tracking from 21:00-22:00 mode so that the
battery is in a discharged state. The whole system is in an
insufficient state over 21:00–22:00. According to the
simulation results, during 0–24 h, the system is in a sufficient
state in the phase 12:00–18:00, in a balanced state in the phase 12:
00–18:00, and in a deficient state in the phases 0:00–12:00 and 18:
00–24:00. During 12:00–18:00, the wind power and photovoltaic
power generation subsystems are working in the load tracking
mode in which the battery absorbs excess power. For 0:00–12:
00 and 18:00–24:00, the wind and photovoltaic power generation
subsystems are operating in maximum power tracking mode, and
the battery subsystems make up the difference in power to
stabilize the system.

Figure 7E shows the power curve of the battery; the positive
power indicates that the battery is discharging, and the negative
power indicates that the battery is charging. Due to the rapid

response of the battery, its actual power value curve coincides
with the power reference value curve, which ensures the stable
operation of the system. Figure 7A shows the maximum, reference
and output power of wind power systems; Figure 7B shows the
maximum, reference and output power of the PV systems; Figure 7C
shows the reference power and output power of wind and PV; Figure
7D shows the actual output power of wind, PV and battery,
load power.

Figure 7F shows the current waveform of the battery; the current
is positive battery discharging, and the current is negative battery
charging. At 0:00–12:00 and 18:00–24:00, the battery is discharging,
and at 12:00–18:00, the battery is charging.

4.3 Convergence analysis of the
ADMM algorithm

To ensure that the output power of the hybrid power
generation system satisfies the user’s load power demand, the
ADMM algorithm must calculate the reference value of the
output power of the local controller of the wind, light, and
battery subsystems in real-time based on variations in the load
and different weather conditions during the simulation process.
This calculation alters the duty cycle of the DC/DC converter
and adjusts the output power of the wind, light, and battery
subsystems. As a result, multiple computations must be
conducted to address the issue during the 24-h simulation.
Due to space constraints, only the changes in values of the
original residuals, pairwise residuals, and convergence
thresholds with the number of iterations for a particular
calculation are presented. The convergence process of original
and pairwise residuals is displayed in Figure 8. As observed, the
pairwise residuals attained convergence threshold requirements
in the 10th iteration, while the original residuals reached the
same in the 14th iteration. The ADMM algorithm exhibits
superior capability in finding optimal solutions and achieving
convergence speed when addressing the power optimization
challenges in standalone hybrid generation systems.

For ADMM and ADMM-ρ with the addition of a Gaussian
penalty function, the convergence process of their original residuals
is shown in Figure 9. It can be seen that ADMM-ρ reaches

FIGURE 8
Convergence process for primal and dual residuals.

FIGURE 9
Original residual convergence process of ADMM and ADMM-ρ.
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convergence the 14th time. This can be compared with ADMM,
which is also a distributed optimization, which reaches convergence
the 16th time, with ADMM-ρ, which makes the residuals converge
to the convergence threshold of 0.001 in a shorter time, and with
ADMM-ρ, which has a better convergence characteristic. This
improves the optimization ability and convergence speed of the
standalone hybrid generation systems for wind, solar, storage, and
electricity generation.

5 Conclusion

For the power optimization problem of standalone hybrid
generation systems with wind and storage, an ADMM-ρ
distributed optimization method based on the Gaussian penalty
function is proposed, and the ADMM algorithm is used in the
solution of this optimization problem. The ADMM algorithm can
make full use of the decomposability of the system to solve the
multivariate optimization alternately, with good optimization-
seeking ability; at the same time, solving the power optimization
problem of the standalone hybrid generation systems of wind power
and storage is not subject to the limitation of the system size. Finally,
the comparison shows that ADMM-ρ with a Gaussian penalty
function can converge the residuals to the threshold range more
quickly and with better convergence properties than the ADMM
method. Power optimal control of standalone hybrid generation
systems is a complex and challenging problem. The distributed
ADMM approach provides an effective optimization method but
still requires further research and improvement to solve various
problems in practical applications. Such research can explore aspects
such as more efficient information exchange mechanisms,
optimization models that consider uncertainty and economics,
and integration with energy markets to further improve the
performance of optimal power control for standalone hybrid
generation systems.
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