REVIEW article
Front. Endocrinol.
Sec. Diabetes: Molecular Mechanisms
Volume 16 - 2025 | doi: 10.3389/fendo.2025.1533620
This article is part of the Research TopicThe Innate Immune System as a Driver of Diabetes and its ComplicationsView all articles
Trained immunity in diabetes: Emerging targets for cardiovascular complications
Provisionally accepted- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Diabetes is a metabolic disorder primarily characterized by persistent hyperglycemia. Diabetesinduced inflammation significantly compromises cardiovascular health, greatly increasing the risk of atherosclerosis. The increasing prevalence of harmful lifestyle habits and overconsumption has contributed substantially to the global rise in diabetes-related cardiovascular diseases, creating a significant economic and healthcare burden. Although current therapeutic strategies focus on blood glucose control and metabolic regulation, clinical observations show that diabetic patients still face persistent residual risk of AS even after achieving metabolic stability. Recent studies suggest that this phenomenon is linked to diabetes-induced trained immunity. Diabetes can induce trained immunity in bone marrow progenitor cells and myeloid cells, thus promoting the long-term development of AS. This article first introduces the concept and molecular mechanisms of trained immunity, with particular emphasis on metabolic and epigenetic reprogramming, which plays a crucial role in sustaining chronic inflammation during trained immunity. Next, it summarizes the involvement of trained immunity in diabetes and its contribution to AS, outlining the cell types that can be trained in AS. Finally, it discusses the connection between diabetes-induced trained immunity and AS, as well as the potential of targeting trained immunity as an intervention strategy. Understanding the molecular mechanisms of trained immunity and their impact on t disease progression may provide innovative strategies to address the persistent clinical challenges in managing diabetes and its complications.
Keywords: Diabetes1, Atherosclerosis2, trained immunity3, Metabolism4, inflammation5 , Epigenetics6
Received: 24 Nov 2024; Accepted: 24 Apr 2025.
Copyright: © 2025 Bai, Wu and Jian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Weixiong Jian, College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.