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What is known and
unknown about the
role of neuroendocrine
genes Ptprn and Ptprn2
Stanko S. Stojilkovic*, Srdjan J. Sokanovic
and Stephanie Constantin

Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and
Human Development, Bethesda, MD, United States
The protein tyrosine phosphatase receptors N and N2 are encoded by the Ptprn

and Ptprn2 genes expressed in neuroendocrine cells of the hypothalamus,

pituitary gland, and diffuse neuroendocrine system, including the pancreas,

lung, and intestine. Unlike other members of the protein tyrosine phosphatase

receptor family, PTPRN and PTPRN2 lack protein tyrosine phosphatase activity

due to mutation of two residues in their intracellular catalytic domains. However,

during evolution these proteins acquired new cellular roles beyond tyrosine

dephosphorylation in the centralized and diffuse neuroendocrine systems. Here

we discuss the current understanding and lack of information about the actions

of these proteins, focusing on neuroendocrine cells of the hypothalamus,

pituitary, and pancreas.
KEYWORDS
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Introduction

Protein tyrosine phosphatase receptors (PTPRs), a family of proteins encoded by 21

genes in humans, are signaling molecules composed of an extracellular domain, a

transmembrane domain, and an intracellular domain. The diverse extracellular domain

shares homology with cell adhesion molecules and encompasses a wide range of

physiological functions, the transmembrane domain makes them a type of membrane

receptor protein and the intracellular domain contains either one or two highly conserved

intracellular phosphatase domain (1, 2). Protein tyrosine phosphatase receptor type N

(PTPRN, also known as IA-2 and ICA512) and PTPRN2 (also known as IA-2b and

phogrin) are atypical members of this protein family. PTPRN consists of 979 amino acids

encoded by the Ptprn gene, located on human chromosome 2q35, while PTPRN2 consists

of 986 amino acids, and its Ptprn2 gene is located on human chromosome 7q36 (3).
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Comparison of the amino acid sequences of human, mouse, and

rat PTPRN revealed that the intracellular domain is over 97%

conserved in these species, while the extracellular domain is 80–

90% conserved. The intracellular domain of PTPRN2 is 92%

conserved in human, mouse and rat, whereas the extracellular

domain shows only 50–60% identity (3). PTPRN and PTPRN2

share 74% identity within the intracellular, but only 27% in the

extracellular domains (4–6). A splice variant of human Ptprn

lacking exon 13 encoding the transmembrane region (7, 8), as

well as three splice transcripts of human Ptprn2 (9), have been

detected in the pancreas. The extracellular domain of PTPRN and

PTPRN2 proteins (hereinafter referred to as PTPRNs) show partial

homology with the extracellular domain of regulated endocrine

specific protein 18, which is another protein marker of

neuroendocrine cells (10–12), indicating a potential physiological

significance for their function (13).
PTPRNs are expressed in neuronal and
neuroendocrine cells

Central and peripheral nervous system

Western blot analysis and physiological responses suggest that

PTPRN is expressed in hippocampal tissues in mice (14, 15).

PTPRN expression has also been detected in autonomic nerve

fibers and ganglia (16, 17). However, others have argued that

PTPRN immunoreactivity is below detectable level in the

hippocampus, cerebral cortex, cerebellum, striatum, and thalamus

(16). In situ hybridization, western blot, and immunohistochemical

analyses revealed PTPRN2 expression in the cerebral cortex,

hippocampus, thalamus, choroid plexus, Purkinje cells, granular

layer of the cerebellum, and medulla oblongata (18, 19).

Immunostaining and immunohistochemical evidence also support

PTPRN2 expression in hippocampal interneurons and suggest the

existence of molecularly distinct populations of secretory vesicles in

different types of inhibitory neurons (20).
Neuroendocrine regions of the brain

The hypothalamus is a central neuroendocrine hub that expresses

PTPRN and PTPRN2 proteins and mRNAs (16, 18, 21–23). Within

the hypothalamus, Ptprn and Ptprn2 were detected in cells of the

arcuate and periventricular nuclei (22) as well as in gonadotroph-

releasing hormone (GnRH) neurons (24, 25), and Ptprn+Ptprn2

deletion affected suprachiasmatic function (17). A high level of

PTPRN immunoreactivity was detected in the amygdala, which is

also considered a neuroendocrine region of the brain. The highest

levels of PTPRN immunoreactivity were observed in the infundibular

tract, which contains the axons of hypothalamic vasopressin and
Abbreviations:DKO, double knockout; GnRH, gonadotroph-releasing hormone;

LH, luteinizing hormone; RP3V, the rostral periventricular region of the third

ventricle, PTPR, protein tyrosine phosphatase receptors; PTPRN, PTPR type N;

PTPRN2, PTPR type N2; PTPRNs, PTPRN+PTPRN2
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oxytocin secreting neurons that terminate in the posterior

pituitary (16).
Pituitary gland

Ptprn was originally cloned from the bovine pituitary (26). The

rodent pituitary also expresses Ptprn and Ptprn2 (18, 19, 22, 23, 27)

as well as immortalized pituitary cells (28). Single cell RNA

sequencing experiments with freshly dispersed rat pituitary cells

revealed that these genes are expressed in hormone-producing

corticotrophs, melanotrophs, gonadotrophs, thyrotrophs,

somatotrophs, and lactotrophs, but not in folliculostellate cells

and pituicytes (29, 30). Because pituicytes are the resident cells of

the posterior pituitary, the finding that PTPRN is detected in the

posterior pituitary (16) suggests that nerve endings of hypothalamic

vasopressin and oxytocin neurons express this protein.
Diffuse neuroendocrine system

In addition to neuroendocrine brain and pituitary gland,

neuroendocrine cells can be found as single cells or small groups of

cells scattered throughout the parenchymal surface epithelium of

various tissues, including the pancreas, lung, and intestine. PTPRN

is present in alpha, beta, and delta cell of the pancreas, chromaffin cells

of the adrenal medulla, and thyroid C cells, also known as

parafollicular cells, which are calcitonin-secreted neuroendocrine

cells (16, 19, 21, 31). Immunohistochemical analysis also indicated

PTPRN expression in rat gastrointestinal neuroendocrine cells (19, 32).

Ptprn is also expressed in human lung cancer cell lines with a

neuroendocrine phenotype (33).
PTPRNs are pseudophosphatases that
exhibit other cellular functions

Unlike other PTPR members, which have a tandem phosphatase

domain, PTPRNs have a single phosphatase domain (34).

Furthermore, the structure of the catalytic domain is altered in

PTPRN and PTPRN2, suggesting that both proteins are

pseudophosphatases. According to the bioinformatic definition, a

pseudophosphatase is a member of phosphatase family that contains

a mutation that predicts impairment or loss of its catalytic activity,

regardless of whether this protein is enzymatically active or not (35).

However, neither PTPRN nor PTPRN2 exhibit tyrosine phosphatase

activity (36, 37). Furthermore, the enzymatic portion of PTPRNs can

heterodimerize with another PTPRs and cause a 20% decrease in

enzyme activity (38). However, the biological roles of PTPRNs have

been investigated for several decades and have provided strong

evidence that these proteins have acquired novel cellular roles

beyond tyrosine dephosphorylation. In general, the sequence

similarity between PTPRN and PTPRN2 suggests some levels of

redundancy. Consequently, the effects on neuroendocrine cells are

enhanced or observed only in double knockout (DKO) mice (39).
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Loss of tyrosine phosphatase activity of PTPRNs due to mutation

of two residues in the catalytic domain does not exclude the possibility

that these proteins act as enzymes for other substrates. To date, no

replacement substrate for PTPRN has been identified, but PTPRN2 has

been reported to be able to dephosphorylate specific inositol

phospholipids, including PI(3)P, PI(4,5)P2, but not PI(3,4,5)P3.

When the transmembrane form of PTPRN2 was overexpressed in

mammalian cells, it reduced plasma membrane PI(4,5)P2 levels in a

dose-dependent manner (40). Other have reported that PTPRN2 and

phospholipase C beta enzymatically reduce plasma membrane PI(4,5)

P2 levels in metastatic breast cancer cells. They also found that the

expression of these genes was increased in these cells, which coincided

with human metastatic relapse. The authors further suggested that

depletion of PI(4,5)P2 by these enzymes releases the PI(4,5)P2‐binding

protein cofilin into the cytoplasm where it increases cellular migration

and metastatic capacity (41). However, we observed no significant

changes in InsP3-dependent calcium oscillations in gonadotrophs from

DKOmice, which argues against a physiologically significant reduction

in phospholipase C activity (23).
Cell type-specific role of PTPRNs in
hormone secretion by exocytosis

Several lines of research with pancreatic b-cells have shown that

the secretory pathway is affected by deletion of Ptprn and/or Ptprn2.

These genes appear to be required to accumulate normal levels of

insulin-containing vesicles and prevent their degradation (42).

Global knockout of Ptprn led to impaired glucose-mediated

insulin secretion (43), whereas overexpression of Ptprn in an

insulinoma cell line led to increased insulin secretion (42). Ptprn2

knockout mice also show impaired glucose tolerance and reduced

glucose-induced insulin secretion but was not sufficient to prevent

the development of diabetes (27). However, the role of PTPRNs in

exocytosis appears to be specific to b-cells. Renin release from dense

core vesicles of neuroendocrine juxtaglomerular granular cells is not

directly inhibited by DKO, but reflects reduced catecholamine

release from sympathetic nerve endings (17). In female but not in

male mice, it was originally suggested that DKO inhibits the

accumulation and secretion of the pituitary gonadotropins

luteinizing hormone (LH) and follicle-stimulating hormone,

leading to infertility (27). Subsequent studies have shown that this

is not the case for these hormones, that the exocytotic pathway of

other anterior pituitary cells is also intact, and that the levels of

hormones secretes by melanotrophs from the intermediate pituitary

lobe are higher in DKO animals (see below).

Immunocytochemistry performed on cultured cells suggests

that PTPRN is colocalized with neurosecretory granules and it is

not a resident plasma membrane protein (16). PTPRN2 has also

been reported to be enriched in the membranes of b-cell secretory
granules (44). Proteomics analysis also revealed the presence of

PTPRN and PTPRN2, as well as peptidyl-glycine-a-amidating

monooxygenase (PAM), a neuropeptide processing enzyme (45),

in insulin secretory granules (46). PTPRN has also been identified

in the secretory granules of chromaffin cells (47). Expression of a
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fusion construct between PTPRN2-enhanced green fluorescent

protein in b-cells and pheochromocytoma PC12 cells revealed the

presence of this chimera in dense-core secretory granules (48, 49).

PTPRN has also been reported to tether insulin secretory granules

to actin microfilaments via its association with the adapter protein

syntrophin beta 2 (50, 51). The same group also reported that the F-

actin modifier villin-1 regulates insulin granule dynamic and

exocytosis downstream of PTPRN (52). However, PTPRNs were

not detected in pituitary corticotroph dense core vesicles (53) and

TT endocrine cells (54), unlike PAM, the typical enzyme for this

organelle. This may provide a rationale for the lack of effects of

DKO on pituitary corticotroph secretion. Furthermore, Sntb2

encoding syntrophin beta 2, and Vil1 encoding Villin-1, are

unlikely to play this role in pituitary hormone release because

these genes are not expressed or are below detection by single cell

RNA sequencing in hormone-producing cells (30).
Common roles of PTPRNs in
neuroendocrine cells

Solimena’s laboratory proposed the association of PTPRN with

insulin secretory granules not only to explain the initiation of the

exocytotic process, but also to have a post-exocytotic functions.

First, they reported that exocytosis of secretory granules leads to

insertion of PTPRN in the plasma membrane, which promotes

calcium-dependent cleavage of its cytoplasmic domain by mu-

calpain. It has been suggested that this cleavage results in the

generation of a cytosolic fragment of PTPRN that is targeted to

the nucleus, causing upregulation of insulin gene expression.

Therefore, this new pathway links regulated exocytosis to the

control of gene expression and suggests that calcium acts as a

dual signal: it triggers exocytosis and activates the retrograde

pathway (55). Second, the same group proposed signal transducer

and activator of transcription 5 (STAT5) as the binding domain for

the cytosolic fragment of PTPRN and described the synergy of

glucose and growth hormone signaling (56). Third, the C-terminal

fragment of PTPRN has been proposed to promote b-cell
proliferation by linking signaling by STAT3 and STAT5 (57).

Consistently with these findings, effects of DKO on gene

expression and/or cell proliferation have also been observed in

neuroendocrine cells of the hypothalamus and pituitary gland (see

below). Furthermore, knockout of Ptprn has been reported to

reduce, whereas overexpression of PTPRN increases proliferation

and migration of glioma cells (58). PTPRN2 has also been suggested

to play a role in other types of cancers (59).
The role of PTPRNs in hypothalamic-
pituitary-gonadal function

Early work with the pituitary gland suggested that DKO directly

affects gonadotroph functions, particularly in females but not in

males. In parallel with the b-cell secretion model, it has been

suggested that PTPRNs are required for LH secretion, and DKO
frontiersin.org
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causes a lack of LH surge and ovulation. Therefore, PTPRNs in

female gonadotrophs have been described as crucial for the

structure and function of the dense core secretory vesicles,

implying sexual dimorphism in exocytotic LH release (27).

However, proteomics analysis of dense core secretory vesicles

was not performed in pituitary cells to elucidate the presence/

absence of PTPRNs in dense core secretory vesicles in female/male

gonadotrophs. In addition, the authors did not examine the status

of hypothalamic neurosecretory neurons that control pituitary

gonadotroph functions.

Pituitary gonadotroph gene expression and hormone secretion

are controlled by GnRH-secreting neurons (60), whose function is

critically dependent on connections with kisspeptinergic neurons

(61). GnRH is released in a pulsatile manner in females and males,

causing oscillatory release of LH, a secretory pattern required for

gonadal spermatogenesis/oogenesis and steroidogenesis (62).

Pulsatile GnRH/LH release is driven by “GnRH pulse generator”, a

neuronal assembly in the arcuate nucleus of the hypothalamus (63),

which consist of kisspeptin-secreting neurons that control the distal

processing of GnRH neurons and their secretion at the median

eminence (64). The pulsatile release of GnRH/LH is sufficient for
Frontiers in Endocrinology 04
male fertility, but female fertility also depends on the sustained release

of GnRH called the surge, which is necessary for ovulation (65). A

distinct population of kisspeptin neurons is located in the rostral

periventricular region of the third ventricle (RP3V) and stimulates

the cell bodies of GnRH neurons to release GnRH, which causes the

LH surge necessary for ovulation (65). Both GnRH and kisspeptin

neurons also express Ptprn+Ptprn2 (24, 25), so DKO may affect

their functions.

In a recent study (23), we showed that the density of kisspeptin

staining was significantly reduced in both the arcuate nucleus and

the RP3V region of DKO mice (Figures 1A, B). Moreover, the

expression of Gnrh1 and Kiss1 was decreased in the hypothalamic

tissue of DKO animals (Figure 1C). Expression of the pituitary

gonadotroph-specific genes Lhb, Fshb, and Gnrhr was also

significantly reduced in females and males (23). These changes

were accompanied by significantly reduced pituitary LH

accumulation and released in both females and males, arguing

against sexual dimorphism at the pituitary level (Figure 1D).

Significant changes in ovarian steroidogenesis and gene

expression were also observed in DKO females, leading to the

delay in puberty and female reproductive organ development
FIGURE 1

PTPRNs contribute to the control of reproduction by stimulating kisspeptin-GnRH secreting neurons. (A) Quantification of kisspeptinergic cell bodies
(left) and fiber densities (right) in the RP3V region of WT and DKO females. (B) Quantification of kisspeptinergic fiber densities in the arcuate nucleus
of WT and DKO males and females. (C) Inhibition of expression of Gnrh1 (left) and Kiss1 (right) in DKO animals. (D) Inhibition of pituitary and serum
luteinizing hormone (LH) in DKO mice. (E) Schematic representation of the proposed stimulatory effect of PTPRN on the hypothalamic-pituitary-
gonadal axis by increasing the synthesis and release of kisspeptin, which influences the pulsatile and surge release of GnRH/LH, the former being
responsible for spermatogenesis, follicle maturation and steroidogenesis, and later for ovulation. Asterisks indicate significant differences between
pairs, P < 0.01 Asterisks.
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(23). Others have also reported a delay in onset of puberty in

Ptprn2-only knockout females (22). Finally, DKO females were in

constant diestrus, indicating a lack of ovulation, in contrast to

control females that had a 4–5-day estrous cycle. However,

no changes were observed in testicular steroidogenesis and

spermatogenesis, and seminal vesicles development in DKO males

(23). The interpretation of these findings is summarized in the

scheme shown in Figure 1E.
The role of PTPRNs in hypothalamic-
pituitary-adrenal function

A marker gene for the hypothalamic-pituitary-adrenal axis is

Pomc, which is expressed in both the hypothalamus and the

pituitary gland. In the hypothalamus, Pomc is expressed in the

arcuate nucleus (66) and in the pituitary Pomc is expressed in

corticotrophs and melanotrophs (67). DKO did not affect Pomc

expression in the hypothalamus (Figure 2A), but dramatically

increased expression in the pituitary (Figure 2B), although both

tissues express PTPRNs. Pomc regulatory sequences in the pituitary

and hypothalamic tissues differ (68), indicating that the tissue-

specific PTPRNs actions are transcriptionally related. Single

knockouts of Ptprn and Ptprn2 also increased Pomc expression,

but of smaller amplitudes compared to DKO (69).

Pituitary expression of Pomc is stimulated by hypothalamic

corticotropin-releasing hormone (68), which is a ligand for

corticotropin-releasing hormone receptor 1 expressed in

corticotrophs and melanotrophs (67). However, DKO did not

affect Crh expression (69). Tbx19 is a common developmental

transcription factor gene for corticotrophs and melanotrophs,

whereas Pax7 is expressed only in melanotroph (67) and ts

expression in the pituitary was significantly elevated in DKO

females and males (Figure 2C). TBX19 controls terminal

differentiation of both lineages and, in cooperation with PITX1,

activates Pomc transcription (70). PAX7 controls melanotroph

differentiation (71) and facilitates TBX19-controlled Pomc

transcription via chromatin remodeling (72).

DKO-increased Pomc expression in the pituitary gland was

associated with increased hormone secretion in vivo and in vitro.

Serum beta-endorphin was significantly elevated in both DKO

females and males (Figure 2D), as were serum concentrations of

alpha-melanocyte stimulating hormone (Figure 2E) and

adrenocorticotropic hormone (Figure 2F). In cultured pituitary

cells, both hormone release and cellular content of these

hormones were significantly elevated, further indicating that

Ptprn and Ptprn2 regulate their synthesis ad release. DKO also

increased serum corticosterone concentration, adrenal mass, and

gene expression of the steroidogenic enzyme Star in adrenal tissue

in both sexes (69).

Elevated expression of Pax7 in the DKO pituitary is consistent

with the hypothesis that Pomc expression and hormone synthesis
Frontiers in Endocrinology 05
and release are elevated in melanotrophs. The hypothesis was

additionally confirmed by the finding that the expression of

melanotroph-specific genes Pcsk2, Esm1, Doc2g, and Oacyl was

also increased in DKO pituitaries. In contrast, there was no increase

in the expression of the corticotrophs-specific genes Chrna1, Clrn1,

Trdn, andHspb3 (69). Finally, immunohistochemical analysis using

a POMC/adrenocorticotropic hormone-specific antibody to

identify corticotrophs and melanotrophs and PAX7-specific

antibody to label melanotrophs, showed that the intermediate

lobe (home to melanotrophs) was enlarged, reflecting an increase

in the population size of DKO melanotrophs. In contrast, we failed

to detect an increase in the number of corticotrophs in the anterior

lobe (Figure 2G). Therefore, both melanotrophs. hyperplasia and

increased Pomc expression per cell in DKO mice are responsible for

the significant increase in POMC-derived hormones. The scheme

shown in Figure 2H illustrates the interpretation of these findings.
Conclusions

A review of the PTPRN literature suggests an important

conclusion; all neuroendocrine cells express PTPRN genes,

but their knockout disrupts the function of only some of

these cell types, suggesting a cell type-specific role for these

pseudophosphatases. In the diffuse neuroendocrine system, the

cells themselves control their own secretion, gene expression, and

proliferation in response to stimulation. Thus, the role of PTPRNs

in their function is more readily elucidated. In pancreatic b-cells,
PTPRNs have been suggested to be an integral part of a system for

monitoring b-cell-stimulated secretory activity and for adjusting

insulin expression and initiating cell proliferation. There has also

been significant progress in characterizing the molecular

mechanism of action of PTPRNs in the exocytotic pathway,

insulin gene expression, and cell proliferation. A growing number

of reports also indicate that PTPRNs are involved in the

tumorigenesis, but their mechanism of action has not been

proven. The role of PTPRNs in other diffuse neuroendocrine cells

has not been studied.

In the centralized neuroendocrine system organized as the

hypothalamic-pituitary-target organ axes, there is a complex

relationship as the participating cells synchronize their activity

through feedforward and feedback mechanisms. It is therefore

more difficult to identify the cell type directly affected by DKO, as

demonstrated in work with the hypothalamic-pituitary-gonadal

axis in female and male mice. Although PTPRNs are expressed in

kisspeptinergic and GnRH neurons, as well as in gonadotrophs,

only kisspeptinergic neurons in both regions of the hypothalamus

have been identified as PTPRNs-responsive cell types, suggesting

that stimulation of Kiss1 expression increases hormone gene

expression and secretion downstream of the axis (Figure 1E). In

contrast, in the hypothalamic-pituitary-adrenal axis, melanotrophs

have been identified as directly responding cells. Moreover,

PTPRNs appear to inhibit both Pomc expression and
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FIGURE 2

DKO increases pituitary melanotroph gene expression and hormone secretion, reflecting an increase in pituitary melanotroph population. (A–F) DKO
does not affect Pomc expression in hypothalamus (A) but stimulates expression of this gene in pituitary (B) as well as Pax7 expression in pituitary (C).
(D–F) Increase in Pomc expression was accompanied by elevation in serum hormone concentration: beta-endorphin (b-END; D), alpha-melanocyte
stimulating hormone (a−MSH; E) and adrenocorticotropic hormone (ACTH; F). (G) Representative images of PAX7 (a maker protein of melanotrophs)
and POMC immunostaining in intermediate lobe (IL) and anterior lobe (AL) of control and DKO female and male mice. The PAX7-immunopositive
cells (red) were detected in IL, while POMC immunoreactivity (green) was present in both AL and IL of control and DKO animals. Note that IL of DKO
mice of both sexes was larger than those from controls. The scale bar of 20 µm applies to all panels. (H) Schematic representation of the proposed
inhibitory effect of PTPRNs on the hypothalamic-pituitary-gonadal axis by reducing Pomc expression and slowing melanotroph proliferation/
differentiation. Red arrows - stimulation; blue arrows – inhibition. Asterisks indicate significant differences between pairs, P < 0.01.
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melanotroph proliferation/differentiation, in parallel with the action

of dopamine (Figure 2G). Further studies are needed to characterize

the role of PTPRNs in the function of other hypothalamic and

pituitary cells.

It is known that transcription factors can act as activators and

repressors in different cells, but it is currently unknown whether

PTPRNs act as transcription factors or upstream elements in the

control of gene transcription. Further studies are needed to

elucidate the molecular mechanism of this process. The cellular

specificity of the PTPRNs actions is consistent with the specificity of

promoter activation and repression for different genes, as suggested

by the failure of DKO to increase Pomc expression in the

hypothalamus but facilitate Pomc expression in the pituitary. The

role of PTPRNs in normal and carcinoma cell proliferation also

requires further studies.
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