![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
REVIEW article
Front. Endocrinol.
Sec. Thyroid Endocrinology
Volume 16 - 2025 | doi: 10.3389/fendo.2025.1529948
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Background: Increasing numbers of cytologically indeterminate thyroid nodules (ITNs) present challenges for preoperative diagnosis, often leading to unnecessary diagnostic surgical procedures for nodules that prove benign. Research in ultrasound radiomics and genomic testing leverages highthroughput data and image or sequence algorithms to establish assisted models or testing panels for ITN diagnosis. Many radiomics models now demonstrate diagnostic accuracy above 80% and sensitivity over 90%, surpassing the performance of less experienced radiologists and, in some cases, matching the accuracy of experienced radiologists. Molecular testing panels have helped clinicians achieve accurate diagnoses of ITNs, preventing unnecessary diagnostic surgical procedures in 42%-61% of patients with benign nodules. Objective: In this review, we examined studies on ultrasound radiomics and genomic molecular testing for cytological ITNs conducted over the past 5 years, aiming to provide insights for researchers focused on improving ITN diagnosis. Conclusion:Radiomics models and molecular testing have enhanced diagnostic accuracy before surgery and reduced unnecessary diagnostic surgical procedures for ITN patients.
Keywords: Ultrasonography, Radiomics, Genomics, molecular testing, Indeterminate thyroid nodule, high throughput sequencing, Assisted diagnosis
Received: 18 Nov 2024; Accepted: 12 Feb 2025.
Copyright: © 2025 Chen, Zhang and Luo. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Lu Chen, Department of Ultrasound, The First Medical Center of Chinese PLA General Hospital, Beijing, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.