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biomarkers for follicular
development and ovarian
function: a prospective
controlled study combining
serum and follicular fluid
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Xianhua Lin1* and Xiangjuan Li3*

1Department of Reproductive Medicine, Hangzhou Women’s Hospital, Hangzhou, China, 2Department
of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China, 3Department of Obstetrics
and Gynaecology, Hangzhou Women’s Hospital, Hangzhou, China
Background:Many components in follicular fluid (FF), such as peptide hormones,

cytokines, and steroids, undergo dynamic changes during folliculogenesis and

have important roles in follicular development. Because systemic inflammation

has also been found to contribute to diminished ovarian reserve (DOR) in

previous studies, do certain serum/FF inflammatory biomarkers affect both

follicular development and ovarian function?

Methods: Serum samples from the menstruation phase (n=26), serum samples

from the ovulation phase (n=26), FF samples of mature oocytes (n=26), and FF

samples of immature oocytes (n=10) were collected. Olink proteomic proximity

extension assay (PEA) technology was used to compare the differentially

expressed proteins (DEPs), and patients were divided into two subgroups—the

normal ovarian reserve (NOR) group and the DOR group—for further

bioinformatics analysis and verification by enzyme-linked immunosorbent

assay (ELISA).

Results: In total, 16 DEPs were detected between the mature group and the

immature group (FF), and 11 DEPs were detected between the ovulation group

and the menstruation group (serum). Further subdivision of the ovarian reserve

subgroups revealed 22 DEPs in FF and 3 DEPs in serum. Among all four

comparisons, only the expression of oncostatin M (OSM) significantly differed.

The OSM signaling pathway, the IL-10 anti-inflammatory signaling pathway, and

the PI3K−Akt signaling pathway are three notable pathways involved in affecting

ovarian reserve capacity according to bioinformatics analysis. In addition, the

concentration of estradiol on the hCG day was slightly but positively correlated

with OSM (r=0.457, P=0.029). A significantly greater level of OSM (5.41 ± 2.65 vs.

3.94 ± 1.23 pg/mL, P=0.007) was detected in the serum of NOR patients via ELISA
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verification, and the sensitivity and specificity of ovarian reserve division were

50.00% and 83.33%, respectively.

Conclusion: This study proposed that immunological changes assessed by PEA

technology affect ovarian function in humans and that OSM may serve as a

potential inflammatory biomarker for ovarian function in serum, thus revealing

alterations in FF.
KEYWORDS

follicular development, ovarian function, proximity extension assay, follicular
fluid, serum
Introduction

Many components in follicular fluid (FF), such as peptide

hormones, cytokines, steroids, and energy metabolites, undergo

dynamic changes during folliculogenesis, playing a positive or

negative role in follicular development. In previous studies,

researchers have shown that various immunology-related

proteins, such as interleukins (IL-1 and IL-6) (1, 2), chemokines

(CXCL8 and CCL11) (2, 3), vascular endothelial growth factor

(VEGFA) (4), and extracellular matrix proteins (MMP7, ICAM3,

and ITGA5) (5, 6), are involved in the process of folliculogenesis

and follicle depletion. Furthermore, chronic low-grade systemic

inflammation contributes to a diminished ovarian reserve (DOR) in

mice (7), highlighting immunological changes in ovarian function.

The latest research suggests that EXOSC10 is essential for the

maturation of oocytes, and blocking EXOSC10 activity can cause

the rapid depletion of oocytes, disrupting ovarian reserve function

and leading to a condition similar to primary ovarian insufficiency

(POI) (8). We believe that the function of specific genes/proteins in

the organism is not limited to one physiological role. Proteins that

have a role in both oocyte maturation and ovarian reserve function

will be more valuable in subsequent clinical applications and

translational research.

Although FF is the most important microenvironment for oocyte

development, the components of FF are closely linked to follicular

development. However, owing to their inaccessibility (such as surgical

retrieval), the components of FF are difficult to promote as biomarkers

more widely. Serum and plasma samples are more convenient to

obtain than FF samples and have been widely used in the diagnosis,

treatment, and screening of new drug targets for various diseases (9,

10). Schweigert et al. (11) revealed significant similarities between

serum and FF proteins during in vitro fertilization (IVF), with

inevitable differences caused by selective transport. Therefore, we

believe that the combined analysis of serum and FF could indicate

the state of the ovarian microenvironment more intuitively.

During folliculogenesis, follicles become more permeable,

resulting in a progressive increase in the number of serum proteins

that pass through the blood−follicle barrier. Researchers have reported
02
that the levels of the serum proteins IL-1 receptor antagonist (IL-1RA)

(12) and retinol-binding protein-4 (RBP-4) (13) change during the

menstrual cycle. Considering the correspondence with follicular

development, we collected serum samples from the menstrual and

ovulation phases for combined analysis.

Olink technology adopts a unique detectionmethod referred to as

the proximity extension assay (PEA), which combines traditional

sandwich enzyme-linked immunosorbent assay (ELISA) with

quantitative polymerase chain reaction (PCR)/second-generation

sequencing (14), which increases the depth and sensitivity of

proteome coverage. The Olink® Target 96 Inflammation Panel

contains 92 immunology-related proteins, including interleukins,

chemokines, extracellular matrix proteins, and tumor necrosis

factor. Nearly half of these proteins, such as IL-6, CXCL8, CCL11,

VEGFA, AXIN1, SIRT2, and tumor necrosis factor superfamily

member 12 (TWEAK), have been shown by previous researchers to

be associated with oocyte development and maturation (2–4, 15–17).

Moreover, the levels of inflammatory factors, such as IL-18 and TNF-

a, can influence the ovarian reserve and embryo grade (18).

Therefore, we used the Olink® Target 96 Inflammation Panel to

analyze both FF samples and serum samples with the objective of

determining the protein profile of oocyte maturation and the

ovarian reserve. In addition to a bioinformatics analysis of

differentially expressed proteins (DEPs), a Venn network of

DEPs, and subsequent validation, novel inflammatory biomarkers

for ovarian function were revealed. Special emphasis was placed on

the Venn intersection of the DEPs because it may play a key role in

ovarian function.
Materials and methods

Ethics statement

The complete details of the entire study design and procedures

involved were in accordance with the Declaration of Helsinki. This

study was approved by the Ethics Committee of the Faculty at

Hangzhou Women’s Hospital (approval number: 2024-A-055,
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2021-K7-02). Written informed consent was obtained from all the

subjects before sample collection.
Study design and sample collection

We recruited a total of 88 subjects who underwent IVF,

including intracytoplasmic sperm injection (ICSI), between

January 2022 and May 2022 at Hangzhou Women’s Hospital.

According to the Poseidon criteria (19), 26 subjects for Olink

PEA proteomic technology were divided into a normal ovarian

reserve group (NOR, N=13) and a DOR group (N=13).

Furthermore, 62 subjects for ELISA validation were divided into

32 NOR samples and 30 DOR samples. In particular, DOR patients

were defined as those with an antral follicle count (AFC) <5 and

anti-Müllerian hormone (AMH) <1.2 ng/mL, and patients with an

unexpected poor ovarian response (retrieving fewer than four

oocytes). Patients who had undergone ovarian surgery or

radiotherapy/chemotherapy, who had received steroid hormone

therapy in the past 3 months, or who had a history of pelvic

tuberculosis were excluded. The entire workflow is depicted

in Figure 1.

Peripheral blood was collected from the participants during the

menstruation and ovulation phases of the oocyte retrieval cycle. The

menstruation phase was from the 2nd day of menstruation to the 5th
Frontiers in Endocrinology 03
day of menstruation, before the start of ovarian stimulation. The

ovulation phase was determined by ultrasoundmonitoring of ovarian

follicles and luteinizing hormone (LH) and estradiol (E2)

measurements at the day of hCG administration. Blood for serum

was collected, centrifuged at 3,000 × g for 10 min, and stored at -80°C.

Ovarian FF was collected from each follicle separately and

allocated according to the maturity of the degranulated oocytes.

According to the degranulation status of the oocytes, all 26 patients

had mature oocytes (MII oocytes), whereas only 10 patients had

both immature oocytes (MI and Gv oocytes) and mature oocytes.

Immediately following oocyte retrieval, FF was collected and then

centrifuged at 3,000 × g for 15 min to collect the supernatant. The

supernatants were frozen at -80°C and stored.

We collected four samples from the same subjects for Olink

PEA proteomic technology, including the serum from the

menstruation phase (Ser_M), the serum from the ovulation phase

(Ser_OV), the FF from mature oocytes (FF_MII), and the FF from

immature oocytes (FF_NonMII). However, 16 subjects did not

contain immature oocytes (FF_NonMII). Overall, we obtained 88

samples from 26 subjects for Olink exploration (26 Ser_M, 26

Ser_OV, 26 FF_MII, and 10 FF_NonMII) and DEPs between Ser_M

vs. Ser_OV and FF_MII vs. FF_NonMII were analyzed.

Furthermore, the Ser_OV group was divided into two subgroups,

Ser_NOR (N=13) and Ser_DOR (N=13), and the FF_MII group

was divided into two subgroups, FF_NOR (N=13) and FF_DOR
FIGURE 1

Workflow of the comprehensive analysis of inflammatory biomarkers of oocyte function. Olink PEA technology screening was applied to identify FF
and serum protein changes during oocyte maturation, distinguishing subgroups through different ovarian reserves. After PCA analysis as quality
control, we obtained the FF DEPs and serum DEPs. Bioinformatics analysis was performed for FF DEPs, including STRING analysis, GO term
enrichment analyses, and pathway enrichment analyses. The correlations between the serum DEPs and clinical features were calculated. A Venn
network was constructed among FF and serum DEPs, including different oocyte maturities and ovarian reserves. The OSM was validated via ELISA
and evaluated via an ROC curve because it is the intersection of the Venn network. FF, follicular fluid; NOR, normal ovarian reserve; DOR, diminished
ovarian reserve; PCA, principal component analysis; DEPs, differentially expressed proteins; GO, Gene Ontology; ROC, receiver
operating characteristic.
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(N=13), according to ovarian reserve parameters. DEPs between

Ser_NOR vs. Ser_DOR and FF_NOR vs. FF_DOR were also

analyzed. The serum of the ovulation phase for the ELISA

validation subjects was also obtained (32 NOR samples and 30

DOR samples).
Bioinformatics analysis of DEPs

In total, 92 protein names and UniProt IDs of the Olink®

Target 96 Inflammation Panel (Uppsala, Sweden) are shown in

Supplementary Table 1. The samples are divided into four groups

on the basis of their sources: Ser_M, Ser_OV, FF_MII, and

FF_NonMII. Protein data were generated from serum and FF

samples submitted to the Olink® target 96 Inflammation Panel

via PEA technology (20, 21). Normalized protein expression (NPX)

values were provided as the final assay readout, which was an

arbitrary log2-scale unit that corresponds to higher protein levels.

An NPX distribution box plot and a principal component

analysis (PCA) plot were generated to check for outlier samples.

After quality control of the original data (e.g., excluding control and

outlier samples, merging and standardizing multiple sets of NPX

data), clean data on NPX expression were obtained. The DEPs in

the serum samples between the menstruation group and the

ovulation group (Ser_OV/Ser_M) and in the FF samples between

the mature group and the immature group (FF_MII/FF_NonMII)

were compared. DEPs were also compared across subgroups

(Ser_NOR/Ser_DOR, FF_NOR/FF_DOR) to identify biomarkers

for ovarian reserve. Moreover, volcano plots were generated to

visualize the DEPs (R software package “ggplot2”, V.3.3.5), and a

clustering heatmap of the DEPs was also constructed (R software

package “pheatmap”, V.1.0.12).

Using the STRING (http://www.string-db.org/) database, we

conducted an interaction network analysis of the DEPs (encoding

genes). All the FF DEPs were functionally classified (biological

process, cellular composition, and molecular function) according to

Gene Ontology analysis (GO, http://www.geneontology.org). Kyoto

Encyclopedia of Genes and Genomes (KEGG, http://www.kegg.jp/)

pathway analysis and enrichment analysis were performed via the

R software package “ggplot2”, in addition to WikiPathways

enrichment analysis (https://www.wikipathways.org/index.php/

WikiPathways).
Comprehensive analysis of serum and
FF DEPs

The Pearson correlation method was used to compare the

serum samples of the ovulation phase (Ser_OV) and the FF

samples of mature oocytes (FF_MII). The proteins related to

Ser_OV and FF_MII are listed.

The serum DEPs between the menstruation phase and the

ovulation phase (Ser_OV/Ser_M) were defined as Group 1, and the

FF DEPs between the mature oocyte and the immature oocyte

(FF_MII/FF_NonMII) were defined as Group 2. The serum DEPs
Frontiers in Endocrinology 04
between different ovarian reserve cases (Ser_NOR/Ser_DOR) were

defined as Group 3. The FF DEPs between different ovarian reserve

cases (FF_NOR/FF_DOR) were defined as Group 4. A Venn network

was constructed to assess the intersection among the four groups via

Wekemo Bioincloud (https://www.bioincloud.tech) (22).
Biomarker validation by ELISA methods

A human OSM ELISA kit (ab215543; Abcam, Cambridge, MA,

USA) was used to assess protein levels in the serum. The protein

concentrations were measured according to the manufacturer’s

instructions. Differential serum OSM levels were measured in 32

NOR patients and 30 DOR patients. A human GM-CSF ELISA kit

(CSB-E04568h; CUSABIO Co., Wuhan, China) and a human TNF-

a ELISA kit (CSB-E04740h; CUSABIO Co., Wuhan, China) were

used to assess protein levels in the FF.
Statistical analysis

The parametric data are presented as the means ± SDs and were

analyzed via t-tests to compare the means of two groups. The non-

parametric data are presented as the median ± IQR and were

compared via the Mann−Whitney U test. The statistical analyses of

the Olink results were performed via the R software package “Olink

Analyse” (V.1.2.6). Moreover, the correlations between serum DEPs

and clinical characteristics were determined via the package

“pheatmap” (0.3<| r |≤0.5, weak correlation; 0.5<| r |≤0.8, moderate

correlation; and | r |>0.8, strong correlation). P values <0.05 were

considered to indicate statistical significance. Receiver operating

characteristic (ROC) curves were calculated using MedCalc Software

(Version 12.4.2.0, Belgium). The diagnostic score for NOR was 1,

whereas that of DOR was 0. The study sample provided 80.56% power

to identify significant differences at a statistical significance level of

a=0.05 for the Olink results (NSer_M=25, NSer_OV=23, after sample

exclusion by PCA quality control) and provided 83.64% power for the

ELISA results (NSer_NOR=32, NSer_DOR=30).
Results

Overview of the study subjects

Olink inflammatory proteomic analysis for oocyte maturity and

ovarian reserve was performed with serum samples from subjects in

the menstruation and ovulation phases and FF samples from subjects

with mature and immature oocytes, including NOR and DOR

samples. A total of 88 samples from 26 subjects were included in

this cohort (26 Ser_M, 26 Ser_OV, 26 FF_MII, and 10 FF_NonMII).

According to the PCA quality control, 82 samples were included in

further analysis (Supplementary Figure 1, 25 Ser_M, 23 Ser_OV, 24

FF_MII, and 10 FF_NonMII). To verify the objectivity of our results,

ELISA experiments on a known oocytematurationmarker in FF were

performed (Supplementary Figures 2A, B).
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Moreover, the Ser_OV and FF_MII groups were divided into

the Ser_NOR, Ser_DOR, FF_NOR, and FF_DOR subgroups

according to ovarian reserve, and the clinical characteristics of the

NOR and DOR patients for Olink technology are shown in Table 1.
Potential inflammatory biomarkers for
oocyte maturation

A linked proteomic analysis of FF from mature oocytes and FF

from immature oocytes was performed to identify potential biomarkers

of oocyte maturation. The expression of 16 proteins was significantly

altered in the FF_MII group. TNFRSF9, VEGF-A, TWEAK, CCL11,

CCL4, CCL25, FGF-19, and MMP-1 were upregulated in the FF_MII

group, whereas CASP-8, 4E-BP1, AXIN1, STAMBP, OSM, TNFSF14,
Frontiers in Endocrinology 05
ST1A1, and SIRT2 were significantly downregulated in the FF_MII

group. The heatmap shows clustering patterns of the DEPs between the

two groups (Figure 2A).

We also screened the serum of the same patients at the

ovulation and menstruation phases to identify potential serum/

FF-correlated biomarkers for oocyte maturation. The expression

levels of CSF-1, HGF, VEGF-A, EN-RAGE, TGF-a, and OSM were

significantly elevated in the Ser_OV group. In contrast, the

expression levels of IL-8, TWEAK, MMP-10, FGF-19, and IL-12B

were significantly decreased in the Ser_OV group. A clustering

heatmap of the serum samples is shown in Figure 2B.
Potential inflammatory biomarkers for the
ovarian reserve

To identify potential biomarkers for ovarian reserve, we divided

the FF_MII subgroup into the FF_NOR (N=11) and FF_DOR

(N=13) subgroups and the Ser_OV subgroup into the Ser_NOR

(N=11) and Ser_DOR (N=12) subgroups according to the Poseidon

criteria. In total, 22 proteins—LAP TGF-b1, IL-7, IL-10RB, CSF-1,
CD244, OSM, TNFB, PD-L1, CD5, MCP-1, TWEAK, TNFRSF9,

CCL23, STAMBP, ARTN, IL-13, NRTN, IL-20RA, IL-10, TNFSF14,

TGF-a, and LIF-R—were significantly upregulated in the FF_NOR

group (Figure 3A). Only two upregulated proteins, namely, TGF-a
and OSM, and one downregulated protein, OPG, were significantly

altered in the Ser_NOR group (Figure 3B). The number of DEPs for

each comparison and their corresponding P values are presented in

Supplementary Table 2.
Bioinformatics analysis of FF biomarkers
for oocyte maturation and the
ovarian reserve

The STRING analysis revealed interactions among DEPs

(encoding genes) involved in oocyte maturation (Figure 4A). The

DEPs related to oocyte maturation (FF_MII/FF_NonMII) were

enriched in GO terms such as the cytokine-mediated signaling

pathway (10 proteins), lymphocyte chemotaxis (four proteins), and

leukocyte migration (six proteins) (Figure 4B). KEGG pathways

such as the PI3K−Akt signaling pathway (four proteins), the NF

−kappa B signaling pathway (two proteins), and the IL−17 signaling

pathway (three proteins) were significantly enriched (Figure 4C). In

addition, WikiPathways enrichment analysis highlighted the roles

of proinflammatory and profibrotic mediators (six proteins), the

oncostatin M signaling pathway (three proteins), the IL-18

signaling pathway (four proteins), and the PI3K-Akt-mTOR

signaling pathway (four proteins) in oocyte maturation (Figure 4D).

Further analysis revealed that the DEPs were associated with

IL10, which is related to the ovarian reserve (Figure 5A). The DEPs

related to ovarian reserve (FF_NOR/FF_DOR) were enriched in the

receptor signaling pathway via STAT (six proteins) and positive

regulation of leukocyte activation (eight proteins) (Figure 5B). The

JAK-STAT signaling pathway (seven proteins), the PI3K-Akt
TABLE 1 Clinical and laboratory characteristics of the patients included
in the Olink group.

IVF/ICSI patients

NOR (N=13) DOR (N=13)

Age (years)a 31.62 ± 2.33 33.85 ± 4.20

BMI (kg/m2)a 21.67 ± 3.37 22.51 ± 1.88

AMH (ng/mL)b 2.75 ± 1.64 1.07 ± 1.51**

AFCb 12.00 ± 3.00 5.00 ± 6.00**

Stimulation protocols (%)c

Long protocol 100.00 (13/13) 23.08 (3/13)**

PPOS protocol 0.00 (0/13) 53.84 (7/13)

Mild stimulation protocol 0.00 (0/13) 23.08 (3/13)

Number of retrieved oocytesb 9.00 ± 6.00 2.00 ± 3.00***

Number of matured oocytesb 5.00 ± 5.00 1.00 ± 3.00**

Rate of matured oocytes (%)a 62.43 ± 24.23 82.69 ± 37.34

Rate of fertilization (%)b 68.54 ± 22.45 82.69 ± 37.34

Basal hormone level

FSH (IU/L)a 3.86 ± 1.20 10.36 ± 5.93**

LH (IU/L)b 1.68 ± 1.55 2.37 ± 3.93

E2 (pg/mL)b 15.00 ± 4.27 31.98 ± 17.92*

P (ng/mL)b 0.43 ± 0.51 0.65 ± 0.54

Hormone level on hCG day

LH (IU/L)b 2.22 ± 1.59 4.12 ± 7.16*

E2 (pg/mL)a 2689.35 ± 1076.93 930.48 ± 698.72***

P (ng/mL)b 0.89 ± 1.02 4.04 ± 8.95
Parametric data are presented as the means ± SDs, whereas non-parametric data are presented
as the medians ± IQRs. NOR, normal ovarian reserve; DOR, diminished ovarian reserve; BMI,
body mass index; AMH, anti-Müllerian hormone; AFC, antral follicle count; PPOS, progestin-
primed ovarian stimulation; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2,
estradiol; P, progesterone. aP-value between two groups was determined via the t-test; bP-value
between two groups was determined via the Mann−Whitney U test; cP-value between three
groups was determined via the chi-square test; *P < 0.05; **P < 0.01; and ***P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1525392
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1525392
signaling pathway (four proteins), the intestinal immune network for

IgA production (two proteins), and the hematopoietic cell lineage

(three proteins) were significantly enriched in the KEGG pathways

(Figure 5C). Moreover, neuroinflammation and glutamatergic

signaling (five proteins), the oncostatin M signaling pathway (three

proteins), the IL-10 anti-inflammatory signaling pathway (two

proteins), and the PI3K−Akt pathway (four proteins) were

significantly enriched in the WikiPathways analysis (Figure 5D).
Clinical correlation of serum biomarkers
with the ovarian reserve

The associations between serum DEPs and different ovarian

reserves (Ser_NOR vs. Ser_DOR group; ovulation phase; and TGF-

a, OSM, and OPG) and clinical characteristics were analyzed. There

were moderate correlations between TGF-a and AMH (r=0.503,

P=0.017) and between TGF-a and AFC (r=0.552, P=0.006) and

weak correlations between TGF-a and the number of retrieved
Frontiers in Endocrinology 06
oocytes (r=0.454, P=0.030), OSM and E2 on the hCG day (r=0.457,

P=0.029) (Figure 6).
Comprehensive analysis of inflammatory
biomarkers for ovarian function

We investigated the correlation between the DEP concentrations

in the serum samples of the ovulation phase (Ser_OV) and the FF

samples of mature oocytes (FF_MII), and the results are shown in

Supplementary Table 3. The DEPs obtained by Olink PEA

technology, namely, CASP-8, EN-RAGE, CCL23, OSM, CCL4,

CSF1, CD5, TNFB,TGF-a, CCL25, and AXIN1 showed expression

correlation between Ser_OV and FF_MII.

We subsequently compared the serum DEPs and FF DEPs,

which represent oocyte maturity and ovarian reserve, via a Venn

network (Figure 7A). In the FF, five proteins, OSM, TWEAK,

STAMPB, TNFRSF9, and TNFSF14, were altered at different

stages of oocyte maturity and different stages of the ovarian
FIGURE 2

Differentially expressed proteins related to oocyte maturation identified via Olink PEA technology. Clustering heatmaps of (A) FF_MII vs. FF_NonMII
and (B) Ser_OV vs. Ser_M were generated to visualize the expression patterns of the DEPs. The PCA results for each comparison group are shown in
the lower right corner.
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reserve. Among the five proteins, only OSM was significantly

altered in the serum.
ELISA validation and diagnostic value of
the OSM

To confirm our inflammatory proteomics results, we verified

the serum OSM levels of NOR and DOR patients with a larger

sample size for further clinical application. The clinical and

laboratory characteristics are shown in Table 2. A significantly

greater level of OSM (5.41 ± 2.65 vs.. 3.94 ± 1.23 pg/mL, P=0.007,

Figure 7B) was detected in the NOR test. The level of OSM was

associated with the AFC (r=0.351, P=0.005), the number of

retrieved oocytes (r=0.345, P=0.006), the number of matured

oocytes (r=0.430, P=0.001), and the basal hormone level of

follicle-stimulating hormone (FSH) (r=-0.363, P=0.012).

Meanwhile, the level of OSM was also associated with the level of

GM-CSF (r=0.580, P=0.030, Supplementary Figure 2C), a known

oocyte maturation marker. Moreover, we performed ROC analysis

to evaluate the sensitivity and specificity of the OSM. The area
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under the curve (AUC) of serum OSM for distinguishing different

ovarian reserves was 0.661 (0.530-0.776) (Figure 7C), the sensitivity

was 50.00%, and the specificity was 83.33%.
Discussion

Several proteomic studies have focused on alterations in FF

proteins during follicular development and oocyte maturation

(23, 24). Moreover, 2D PAGE analysis revealed that alpha-1-

antitrypsin is the core protein that affects oocyte quality and

ovulation in both serum and FF (25). However, data indicating

that the serum protein concentration could also indicate oocyte

maturity and ovarian function are lacking.

Our Olink PEA results revealed 16 proteins whose expression

significantly differed between the FF of mature oocytes and the FF

of immature oocytes: TNFRSF9, VEGF-A, TWEAK, CCL11, CCL4,

CCL25, FGF-19, MMP-1, CASP-8, 4E-BP1, AXIN1, STAMBP,

OSM, TNFSF14, ST1A1, and SIRT2 (Figure 2). Among them,

CCL11 (3) in FF has already been shown to be altered during

oocyte maturation in non-human primates, and VEGFA (4) in in
FIGURE 3

Differentially expressed proteins related to the ovarian reserve identified via Olink PEA technology. Clustering heatmaps of (A) FF_NOR vs. FF_DOR
and (B) Ser_NOR vs. Ser_DOR were generated to visualize the expression patterns of the DEPs. The PCA results for each comparison group are
shown in the lower right corner.
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vitro maturation (IVM) culture medium has been shown to

improve the maturation of goat oocytes. Additionally, 4E-BP1

(26) and AXIN1 (15) have been shown to promote spindle

assembly and cell cycle progression during meiotic maturation in

mouse oocytes, whereas SIRT2 (16) has been shown to affect

ovarian granulosa cell mitochondrial function during sheep

oocyte maturation, as confirmed by molecular experiments.

Owing to the high sensitivity of Olink technology, compared with

our previous proteomic results, we detected many novel proteins,

including AXIN1 and SIRT2, in FF (24).

Although PEA technology increases the depth and sensitivity of

proteome coverage, it cannot reflect changes in the entire proteome,

because it only analyzes specific targets. Therefore, Olink PEA

technology is more suitable for combined analysis with other
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technologies covering the whole proteome or as a more in-depth

study in a specific direction after proteomics screening.

FF is derived mainly from plasma. Considering the routine

examination of serum sex hormones during controlled ovarian

stimulation (COS), we also measured protein alterations during

COS, mainly during the menstruation and ovulation phases, to

identify biomarkers of oocyte maturation in the serum. Cytokines,

such as VEGF-A, FGF-19, TWEAK, and OSM, which account for

more of the FF DEPs, were also altered in the peripheral circulation

(Figure 7A, intersection of the green and red nodes). Transcriptomic

studies of mammalian cumulus−oocyte complexes (COCs) have

confirmed the role of the VEGFA gene in IVM (27, 28), and

supplementation with VEGFA has been shown to promote oocyte

maturation and developmental potential (29, 30). Inconsistent with
FIGURE 4

Bioinformatics analysis of the FF biomarkers for oocyte maturation. (A) STRING analysis revealed that the FF DEPs associated with different stages of
oocyte maturity formed a good interaction network. (B) GO, (C) KEGG, and (D) WikiPathways enrichment analyses revealed different enriched terms
for the DEPs.
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FIGURE 5

Bioinformatics analysis of the FF biomarkers for ovarian reserve. (A) STRING analysis revealed that FF DEPs with different ovarian reserves formed a
good interaction network around IL-10. (B) GO, (C) KEGG, and (D) WikiPathways enrichment analyses revealed different enriched terms for the DEPs.
FIGURE 6

Correlations between serum biomarkers and clinical characteristics. Red, positively correlated; blue, negatively correlated, and white, not correlated.
BMI, body mass index; AMH, anti-Müllerian hormone; AFC, antral follicle count; hLH, luteinizing hormone on hCG day; hE2, estradiol on hCG day;
hP, progesterone on hCG day. *P< 0.05 and **P<0.01.
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our results, no variation in the serum VEGF concentration was

detected during the menstrual cycle in Zolton et al.’s study (31).

FGF-19 may serve as an intermediary, resulting in typically reduced

LH during the menopausal transition (32), whereas TWEAK

suppressed the ovarian progesterone (P) content in gonadotropin-

primed rats (17), which is related to sex hormones during the

menstrual cycle.

In our study group, a long protocol, progestin-primed ovarian

stimulation (PPOS) protocol, mild stimulation protocol, and an

antagonist were used as stimulation protocols (Tables 1, 2). PPOS

and the mild stimulation protocol are commonly used in DOR

patients with poor reserve ovarian parameters (AMH < 1.2 ng/mL,

AFC < 5). The long protocol and antagonists are commonly used in

populations with normal ovarian reserve parameters in our center.
FIGURE 7

Comprehensive analysis and diagnostic value of the OSM. (A) A Venn network of FF and serum DEPs, including different oocyte maturities and
ovarian reserves, was constructed. Among all four comparisons, only OSM showed consistently significant differences. (B) A significantly greater level
of serum OSM was detected in NOR patients, and (C) the AUC of serum OSM for distinguishing different ovarian reserves was 0.661. **P<0.01.
TABLE 2 Clinical and laboratory characteristics of the patients included
in the ELISA group.

IVF/ICSI patients

NOR (N=32) DOR (N=30)

Age (years)a 32.06 ± 4.27 37.17 ± 5.30***

BMI (kg/m2)a 22.57 ± 3.01 21.44 ± 2.98

AMH (ng/mL)b 2.92 ± 2.70 0.94 ± 0.87***

AFCb 10.00 ± 6.50 3.50 ± 2.25***

Stimulation protocols (%)c

Long protocol 84.37 (27/32) 0 (0/30)***

PPOS protocol 9.38 (3/32) 80.00 (24/30)

Mild stimulation protocol 0.00 (0/32) 16.67 (5/30)

Antagonist 6.25 (2/32) 3.33 (1/30)

Number of retrieved oocytesb 9.00 ± 6.50 3.00 ± 2.00***

Number of matured oocytesb 8.00 ± 4.75 2.00 ± 2.00***

Rate of matured oocytes (%)a 80.16 ± 18.07 80.00 ± 29.41

Rate of fertilization (%)b 72.38 ± 21.07 71.28 ± 32.33

Basal hormone level

FSH (IU/L)b 4.10 ± 2.69 8.52 ± 3.22***

LH (IU/L)b 1.85 ± 1.45 3.99 ± 2.94***

E2 (pg/mL)b 17.48 ± 13.04 32.84 ± 28.84*

P (ng/mL)b 0.54 ± 0.41 0.55 ± 2.26

(Continued)
TABLE 2 Continued

IVF/ICSI patients

NOR (N=32) DOR (N=30)

Hormone level on hCG day

LH (IU/L)b 2.63 ± 1.66 4.81 ± 4.89**

E2 (pg/mL)b 2563.00 ± 1717.00 837.20 ± 621.10***

P (ng/mL)b 0.76 ± 0.46 4.47 ± 5.79***
Parametric data are presented as the means ± SDs, whereas nonparametric data are presented
as the medians ± IQRs. NOR, normal ovarian reserve; DOR, diminished ovarian reserve; BMI,
body mass index; AMH, anti-Müllerian hormone; AFC, antral follicle count; PPOS, progestin-
primed ovarian stimulation; FSH, follicle-stimulating hormone; LH, luteinizing hormone; E2,
estradiol; P, progesterone. aP-value between two groups was determined via the t-test; bP-value
between two groups was determined via the Mann−Whitney U test; cP-value between four
groups was determined via the chi-square test; *P < 0.05; **P < 0.01; and ***P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1525392
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2025.1525392
However, there are patients with sufficient prestimulation ovarian

reserve parameters but unexpected poor ovarian responses in

clinical practice. Meanwhile, we noticed that the P level of DOR

patients on hCG day was significantly higher than that of NOR

patients (Tables 1, 2). Due to the DOR patients tending to use the

PPOS protocol as their ovarian stimulation protocol, it was

expected that the P level of this group would be elevated as they

take two tablets of utrogestan (progesterone capsules) orally

every day.

OSM is a cytokine of the IL-6 family, and with its receptors,

OSM has been shown to be expressed in both oocytes and granulosa

cells (33). Many studies have shown that OSM expression is closely

related to ovarian and even reproductive system functions. In

patients with polycystic ovary syndrome (PCOS), OSM is

associated with obesity, insulin resistance, hyperandrogenism, and

inflammation, ultimately resulting in androgen excess and

ovulatory irregularities (34). OSM has also been found to be an

important cause of ovarian cancer, cervical cancer, breast cancer,

testicular cancer, and other cancers (35). In FF, a decreased level of

OSM has been shown to negatively affect oocyte maturation (36),

and the addition of OSM to IVMmedium has been shown to rescue

the maturation rate (37). However, previous studies have not

addressed the expression level of OSM in the serum of IVF

patients. In our study, the FF OSM level between mature oocytes

and immature oocytes (Figure 2A), the FF OSM level between NOR

patients and DOR patients (Figure 3A), the serumOSM level during

the menstrual cycle (Figure 2B), and the serum OSM level between

NOR patients and DOR patients (Figures 3B, 7B) were significantly

different. Moreover, serum OSM levels were weakly correlated with

the number of matured oocytes (r=0.430, P=0.001) in ELISA

validation, confirming our Olink results (Figure 2A). It was also

correlated with a known oocyte maturation marker (r=0.580,

P=0.030, Supplementary Figure 2C). Meanwhile, a weak

correlation was found between FF and serum OSM (r=0.391,

P=0.041; Supplementary Table 3). Tian et al. (38) noted that

OSM is a risk factor for the onset of PCOS, which confirms that

OSM may potentially improve ovarian responsiveness and the

ovarian reserve. Therefore, we perceived that OSM is a potential

inflammatory biomarker in both the peripheral circulating and

ovarian microenvironments, representing oocyte maturity and the

ovarian reserve. Additional studies are needed to clarify the

molecular mechanisms through which OSM restores ovarian

function via communication between the peripheral circulation

and FF.

OSM can bind to two different receptors, leukemia inhibitory

factor receptor (LIFR) and oncostatin M receptor (OSMR) (39). LIF-

R and OSM were downregulated in DOR patients (Figure 3A).

Therefore, we believe that the role of the OSM signaling pathway

in ovarian function needs further exploration. Interestingly, FF

inflammatory biomarkers for ovarian reserve are centered on IL-10

(Figure 5A), such as IL-13, CCL2, and TGF-b1. The association

between the gene polymorphism of IL-13 and various infertility risk

factors, such as PCOS, endometriosis, premature ovarian failure

(POI), and DOR, has been confirmed (40). Genomic methods such
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as whole-exome sequencing and Illumina HiSeq technology have also

confirmed the differential expression of the CCL2 (41) and TGF-b
(42) signaling pathways in granulosa cells between DOR patients and

NOR subjects. Wang et al. (43) demonstrated that decreased levels of

IL-10 are linked to an elevated risk of POI via a bidirectional

Mendelian randomization study. Our bioinformatics analysis also

highlighted the role of the IL-10 anti-inflammatory signaling pathway

in different ovarian reserves (Figure 5D). Correlation analysis

revealed correlations between TGF-a and the following ovarian

reserve indicators: AMH (r=0.503, P=0.017), AFC (r=0.552,

P=0.006), and the number of retrieved oocytes (r=0.454, P=0.030)

(Figure 6). Both TGF-a and LAP TGF-b1 were downregulated in

DOR patients. Mito et al. (44) demonstrated that FSH and TGF-a
synergistically increase porcine oocyte maturation via cumulus cells.

Moreover, overexpression of TGF-a might result in reduced ovarian

reserve and premature ovarian insufficiency in mice (45). Other

studies have demonstrated that the TGF-b1/Smad3 signaling

pathway contributes to the restoration of ovarian function in POI

rats (46, 47). Therefore, we assumed that the OSM signaling pathway,

the IL-10 anti-inflammatory signaling pathway, and the TGF

signaling pathway are important inflammatory pathways for

ovarian reserve capacity.

Our study investigated the changes in the inflammatory proteome

affecting oocyte function in human FF and serum. Notably, OSM is a

novel inflammatory biomarker in both the peripheral circulatory

microenvironment and ovarian microenvironment and may be a

potential therapeutic target for improving fertility, especially during

ovarian ageing.
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