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Background: RNA-binding proteins (RBPs) have emerged as key regulators in

testis development and spermatogenesis, yet a comprehensive understanding of

their expression dynamics has been lacking.

Methods: This study leverages published single-cell RNA sequencing (scRNA-

seq) data to elucidate the complex expression patterns of RBP genes during

postnatal testis development and spermatogenesis. Additionally, it uses bulk

RNA-seq data to explore the regulatory impact of RBPs on alternative splicing

(AS) in non-obstructive azoospermia (NOA).

Results: We have identified cell-specific RNA-binding protein (RBP) genes in

various cell types throughout testis development. Notably, distinct RBP gene

clusters exhibit significant differential expression, particularly in Sertoli cells as

they mature from neonatal to adult stages. Our analysis has revealed temporally-

regulated RBP clusters that correlate with the developmental progression of

Sertoli cells and the advancement of spermatogenesis. Moreover, we have

established links between specific RBPs and the pathogenesis of non-

obstructive azoospermia (NOA) through the regulation of alternative splicing

(AS) events. Additionally, RPL10, RPL39, and SETX have been identified as

potential diagnostic biomarkers for NOA.

Conclusion: This research provided an in-depth look at RBP expression patterns

during human testis development and spermatogenesis. It not only deepens our

basic comprehension of male fertility and infertility but also indicates promising

directions for the creation of innovative diagnostic and treatment methods

for NOA.
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Introduction

Postnatal testicular development is a multifaceted and precisely

regulated process, predominantly orchestrated by sertoli cells, which

govern the differentiation of all the other cell types, including germ

cells (1, 2). Following birth, the testicular cord, composed mainly of

sertoli and germ cells, gradually evolves into the seminiferous tubule

structure, which is encircled by interstitial cells. This structure is

paramount for life-long sperm production and androgen secretion.

The progression of postnatal testicular development spans across

neonatal, infancy, puberty, and adulthood stages, encompassing

cellular proliferation, differentiation, and maturation (3).

Spermatogenesis, a complex and highly orchestrated process,

unfolds within seminiferous tubules of the testes, with the ultimate

goal of generating mature male gametes. This process involves the

proliferation of spermatogonia (SPG), differentiation into

spermatocytes (SPCs), meiosis to yield spermatids, and the

maturation of round spermatids. Sertoli cells, as key drivers of

spermatogenesis, provide structural support, establish the blood-testis

barrier, and offer immunoprotection, among other essential functions

(4–6). Various interstitial cell types complement this process and it is

widely acknowledged that these processes are modulated by a spectrum

of hormones, mediated by the hypothalamic-pituitary-gonadal axis, as

well as other growth factors and cytokines (7–9). Nonetheless, the

molecular mechanisms governing postnatal human testis development

and spermatogenesis remain elusive.

The mechanism of post-transcriptioinal regulation is well

recognized for its crucial role in testis development and

spermatogenesis. RBPs constitutet an extensive group of proteins that

play predominantly important roles in this regulation through a series

of mechanisms, including transcription, alternative splicing,

modification, RNA localization, mRNA stability and RNA translation

and decay (10). Mouse models have been invaluable in identifying the

essential roles of RBPs in nearly all stages of germ-line development

from the specification of primordial germ cells (PGC) to the final stage

of spermiation (11–14). The complex regulatory networks orchestrated

by RBPs are crucial for maintaining cellular homeostasis, and their

dysregulation could lead to many pathologies, including non-

obstructive azoospermia (NOA) (15). In groundbreaking research, Li

Yang and colleagues provided an RBP atlas of mouse male germ cells

during spermatogenesis (16). They further discovered that the glutamic

acid-arginine patch, a residue-coevolved polyampholytic element

present in coiled-coils, can enhance the RNA binding efficiency of its

host RBPs. This discovery highlights the nuanced ways in which RBPs

can modulate gene expression and suggests that such elements may be

important for the precise control of gene expression during

spermatogenesis. Due to the marked disparities in reproductive

function that exist between humans and rodents, examining RBP

expression patterns across human testicular development and

spermatogenesis could offer more valuable insights into the molecular

mechanisms underlying human spermatogenesis and male fertility.

scRNA-seq has emerged as a powerful tool for dissecting the

complexities of biological processes at single cell level (17). This

technology has been particularly transformative in the field of

testicular biology, significantly enhancing our comprehension of

human testicular development and spermatogenesis, as evidenced
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by several studies (18–25). These investigations have not only

mapped the transcriptional profiles across different stages of

testicular development but also traced the developmental paths of

specific cell types. They have uncovered critical signaling pathways,

expanded our knowledge of the expression patterns of key genes,

and aided in the identification of markers and genes essential for cell

lineage specification, including a number of RNA-binding proteins

(RBPs). The rich datasets accumulated through scRNA-seq analyses

hold vast potential for re-evaluating cell types, probing into

previously unexplored functional aspects, and broadening the

range of applications. Scientists have harnessed scRNA-seq to

discover new genes, scrutinize their expression patterns, and

confirm their roles in cellular processes (26–29). Among these,

the research by A.L. Voight is particularly noteworthy for its

revelations regarding metabolic changes during human

spermatogonial development (30). Despite these significant

strides, achieving a thorough molecular understanding of the

processes involved in testicular development and spermatogenesis

continues to be a fertile ground for further research.

To understand RBP expression during human postnatal testicular

development and spermatogenesis, this study utilized available

single-cell RNA-seq data, focusing on sertoli cell development and

spermatogenesis. By investigating RBP expression profiles, this

research aims to unveil specific RBP gene clusters, their dynamic

alterations, and potential involvement in NOA. The study strives to

deepen our understanding of molecular mechanisms governing

human postnatal testicular development and spermatogenesis,

particularly concerning NOA pathophysiology.
Materials and methods

Retrieval and processing of scRNA-
seq data

We obtained the Unique Molecular Identifier (UMI) count matrix

from the Gene Expression Omnibus (GEO) datasets GSE124263,

GSE149512, GSE134144, and GSE112013, encompassing single-cell

RNA-seq data from 17 human testis samples across four distinct age

groups (Table 1). This UMI count matrix underwent transformation

into a Seurat object using the R package Seurat (31) (version 4.0.4).

Cells with UMI counts <1000, genes detected in fewer than 500 cells, or

displaying over 25% mitochondrial-derived UMI counts were flagged

as low-quality cells and subsequently removed. Genes detected in fewer

than five cells were excluded from subsequent analyses.
scRNA-seq data preprocessing and
quality control

Following quality control, log normalization was applied to the

UMI count matrix. To establish potential Anchors for data

integration, the top 2000 variable genes were identified using the

FindIntegrationAnchors function in Seurat. Subsequently, the

IntegrateData function was employed to integrate the datasets.

Principal Component Analysis (PCA) was conducted on the
frontiersin.org
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integrated data matrix to reduce dimensionality. The Elbowplot

function in Seurat determined the top 50 principal components for

downstream analyses. Major cell clusters were identified using the

FindClusters function in Seurat (resolution set to default - res = 0.6).

These cells were then grouped into 25 distinct cell types and

visualized using Uniform Manifold Approximation and

Projection (UMAP) plots. To assign cell types to each cluster,

gene markers were identified using the “FindAllMarkers” function

in Seurat (v4.0.4) with specified parameters. Further cell type

annotation utilized ScType tools (32), employing previously

published testis marker genes (18, 33, 34).
Analysis of RBP genes

A catalog comprising 2,141 RBPs retrieved from four previous

reports (35–38) was utilized. The UMI count matrix of RBPs served

as input for Seurat to determine cell clusters, and differentially

activated RBPs were selected using the “FindAllMarkers” function.
scRNA-seq differential gene
expression analysis

Differentially expressed genes (DEGs) were identified using the

FindMarkers/FindAllMarkers function from the Seurat package

(one-tailed Wilcoxon rank sum test, p-values adjusted using the

Bonferroni correction). Genes exhibiting a natural log scale

expression difference of at least 1 and adjusted p-value < 0.05

were considered as DEGs.
Time course seq analysis

TCseq (https://bioconductor.org/packages/release/bioc/html/

TCseq.html) was employed to assess trends in RBP expression

across different ages of sertoli cells, evaluating the average

expression level of differentially expressed RBPs between any two

age groups. RBPs were clustered into 8 groups based on similar

expression patterns.
Pseudotime trajectory analysis
using monocle3

Monocle3 (39) (v1.0.0) was employed to unveil the pseudotime

trajectory in germ cells. Dimensionality reduction and trajectory analysis

were conducted using standard workflows and default parameters.
Retrieval and processing of bulk RNA-
seq data

Public sequence data files from GSE190752 were downloaded

from the Sequence Read Archive (SRA). SRA Run files were

converted to fastq format using NCBI SRA Tool fastq-dump
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(v.2.8.0). The raw reads were subjected to quality trimming using

FASTX-Toolkit (v.0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/).

Clean reads were evaluated using FastQC (http://www.bio

informatics.babraham.ac.uk/projects/fastqc).
Bulk-RNA-seq reads alignment and
DEG analysis

Clean reads were aligned to the human genome with HISAT2

(40). Uniquely mapped reads were used to calculate read number

and Fragments Per Kilobase of exon per Million fragments

mapped (FPKM) for each gene. DEseq2 (41) was applied to

identify DEGs based on fold change (FC≥2 or ≤0.5) and false

discovery rate (P value ≤ 0.05). The expression profile of

differentially expressed RBPs was filtered from all DEGs using a

catalog of 2,141 RBP genes from previous reports (35–38).
Alternative splicing analysis

Regulatory Alternative Splicing events (RAS) were defined and

quantified using the Splice site Usage Variation Analysis (SUVA)

pipeline (42). Analysis of different splicing for each group was

conducted, calculating Reads Proportion of SUVA AS event (pSAR)

for each AS event.
Co-expression analysis

Co-expression analysis was performed for all differentially

expressed RBPs and RAS (pSAR≥50%). Pearson correlation

coefficients between differentially expressed RBPs and RAS were

calculated, screening differentially expressed RBP-RAS relationship

pairs satisfying an absolute correlation coefficient ≥0.99 and P value

≤ 0.01.
Functional enrichment analysis

Gene Ontology (GO) terms and KEGG pathways were

identified using KOBAS 2.0 (43) to categorize functional gene

categories. Hypergeometric tests and Benjamini-Hochberg FDR

controlling were utilized for term enrichment.
Other statistical analysis

The heatmap package in R was employed for clustering based

on Euclidean distance.
Clinical sample collection

This study was conducted according to the guidelines of the

Declaration of Helsinki and approved by the Ethics Committee of
frontiersin.org

https://bioconductor.org/packages/release/bioc/html/TCseq.html
https://bioconductor.org/packages/release/bioc/html/TCseq.html
http://hannonlab.cshl.edu/fastx_toolkit/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://doi.org/10.3389/fendo.2025.1522394
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xu et al. 10.3389/fendo.2025.1522394
Scientific Research and Clinical Trial of the First Affiliated Hospital

of Zhengzhou University(protocol code YFSZ-2024-020). The

paraffin-embedded testicular biopsies of three obstructive

azoospermia (OA) and three NOA patients were provided by the

department of pathology, the first affiliated hospital of zhengzhou

university. The age of the donors ranged from 22 to 30 years old.

The NOA patients all have a Johnsen’s Score 6 (Table 1).
Immunohistochemical staining

The testicular slides were de-paraffinized in xylene and then

added to the ethanol following the below concentrations: 100%

ethanol (3 min), 100% ethanol (3 min), 85% ethanol (3 min), 75%

ethanol (3 min). Subsequently, the slides were repaired in boiling

EDTA solution(Servicebio,G1203-250ML) for 10 minutes. After

washing the slides three times in phosphate buffered saline (PBS),

5 minutes each, we incubated these slides in 3% hydrogen peroxide

in endogenous peroxidase blocking buffer in room temperature for

20 minutes. Non-specific binding were blocked in PBS

supplemented with 3% bovine serum albumin (BSA) for 30

minutes at 37°C. Slides were incubated with the primary antibody

at 4°C overnight and then incubated with the secondary antibody

for 30 minutes at 37°C. Peroxidase activity was detected by 3,30

-diaminobenzidine tetrahydrochloride (DAB) kid (Zli-9018) and

nuclei were counterstained with hematoxylin. After dehydration, a

coverslip was placed on the slides with mounting medium. Images

were obtained by a microscope (Nikon, 90i, Tokyo, Japan). The

antibodies used were as follows: Rabbit anti-RPL10 (1:200,

Proteintech, 17013-1-AP), Rabbit anti-RPL39 (1:100, Proteintech,

14990-1-AP), Rabbit anti-SETX (1:100, CSB-PA800097LA01HU),

Goat-anti-mouse/rabbit IgG(ZSGB-BIO, PV-6000).
Results

Profiling cell diversity across human
postnatal testis development

To delineate the cellular landscape during human postnatal

testicular development, we systematically curated single-cell

transcriptome datasets from four distinct stages, as represented by

NCBI GEO entries: neonate (postnatal day 2 and 7), infant (2, 5, 8

years), puberty (11-13 years), and adulthood (17-31 years). After

rigorous quality control, a total of 67,400 high-quality single cells

were retained for further analyses (Figure 1A).

Employing unbiased clustering analysis and UMAP for

dimensionality reduction, the integrated datasets yielded 25

distinct cell clusters (Figure 1B). Utilizing the SCTYPE software

in conjunction with establ ished cel l-specific markers

(Supplementary Figure S1A), we identified 10 predominant

testicular cell types (Figure 1C). These included various stages of

germ cells, such as undifferentiated SPG, differentiating SPG, early

and late primary SPCs, and spermatids. Additionally, prominent

somatic cell types were delineated, including sertoli cells, leydig

cells, macrophages, myoid cells, and endothelial cells.
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Further analysis of the distribution of cell types across

developmental stages revealed a significant increase in the

proportion of undifferentiated SPG upon entering the infant stage

(Supplementary Figure S1C). Each cell type expressed specific

marker genes, with the top three listed for each (Supplementary

Figure S1A). The functional pathways enriched by these marker

genes were consistent with the known functions of the respective

testicular cell types (Supplementary Figure S1B).

Among the cell-type specific genes, a substantial proportion was

identified as RBPs, particularly within undifferentiated SPG (35 out

of 100) and differentiating SPG (34 out of 100) (Figure 1D). These

two cell types also displayed higher Area Under the Curve scores for

RBP expression (Figure 1E). Interestingly, the expression pattern of

RBPs across different cell types exhibited dynamic changes with

development (Figure 1F, Table 2).
Profiling cell type-specific RBPs in
human testis

Given the established importance of RBPs in spermatogenesis

(11–13), we pursued a focused investigation into the role of RBPs

within the testicular cell atlas. Based on a curated list of 2141 RBPs

genes from prior studies, we performed re-clustering of these cells.

Unsupervised clustering with UMAP visualization revealed 30

clusters with similar RBPs expression patterns (Figure 2A). These

RBP clusters showed a high degree of specificity for distinct cell

types (Figure 2B), with distinct RBP marker genes associated with

each cluster presented in Supplementary Figure S2A.

Our analysis indicated that most cell types predominantly

exhibited one to two primary RBP clusters. For example,

undifferentiated SPG prominently expressed R0, macrophages

exhibited R19, and endothelial cells displayed R16 as the primary

RBP clusters (Supplementary Figure S2E). Notably, with increasing

age, certain cell types displayed significant alteration in the

composition of RBP clusters. For instance, sertoli cells

transitioned from cluster R8 in neonates to R1, R3, and R6

during infancy and puberty, ultimately stabilizing at R19 and R26

in adulthood (Supplementary Figure S2E). Additionally, the overall

heterogeneity of RBP clusters in the testis increased with age

(Supplementary Figure S2B).

Moreover, we identified cell-specific RBP genes across various

developmental stages and cell types, which may play crucial roles in

their respective cell biology. Consistent with prior reports,

numerous cell-specific RBPs were identified in germ-line cells,

including undifferentiated SPG, differentiating SPG, early and late

SPCs, and spermatids (Supplementary Figure S2C). The top ten

cell-specific RBP genes for each cell type are outlined in Figure 2C.

Interestingly, some of these genes, like ELAVL2 specifically

expressed in SPG, corroborate previous findings (18).

We further constructed co-expression networks of the top

specific RBP genes in each cell type (Figures 2D, E) and performed

Gene Ontology (GO) analysis (Supplementary Figure S2D).

Collectively, our study presents a comprehensive profile of cell

type-specific RBPs in the human testis, shedding light on their

potential regulatory roles in testicular cell biology.
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Heterogeneity and regulatory modules of
development-related RBPs revealed in
sertoli cells

Considering the pivotal role of sertoli cells in testis

development, we focused on the dynamic changes in RBPs across

different developmental stages within sertoli cells. Focusing on

sertoli cell datasets, we conducted unsupervised clustering

analysis. The UMAP uncovered 7 distinct cell clusters

(Figures 3A, B), each characterized by specific RBP marker genes

(Supplementary Figure S3A). The distribution of these RBP clusters
Frontiers in Endocrinology 05
across various developmental stages is depicted in Figure 3A,

highlighting pronounced stage-specific characteristics.

Each developmental stage prominently displayed one to two

dominant RBP clusters, such as R1 in neonate, R0, R2, R3and R5 in

infancy, R3 in puberty, and adulthood with R4 and R6 (Figure 3C).

We investigated the dynamic alterations of RBPs within sertoli cells

across different developmental stages by identifying differentially

expressed RBPs between adjacent time points and subjecting them

to TC seq analysis, which unraved 8 time-dependent RBP clusters

(Figure 3D). The expression pattern of gene cluster 6 shown a sharp

increase in purbery and remained low in other three stages,
FIGURE 1

ScRNA-seq analysis of human testis from different development stages identified distinct cell types. (A) Schematic illustration of scRNA-seq data
selection and processing. (B) UMAP plot of composite single-cell transcriptomic profiles from all samples from different age groups. (C) UMAP plot
of composite single-cell transcriptomic profiles. The 10 cluster identities were assigned based on the expression patterns of known marker genes.
(D) Bar plot showing the number of RBP in top100 marker genes in each cell type. (E) Box plot comparing the AUC score of each cell type within
each sample group. (F) The heatmap displays the number of RBPs for each cell type across different age groups.
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suggesting its potential role in driving sertoli cell maturation. The

biological functions of these gene clusters were evaluated via GO

enrichment analysis (Figure 3E), with gene cluster 6 notably

enriched in ribosomal small subunit biogenesis, cytoplasmic

translation, rRNA processing, translation and aerobic respiration,

etc. Cluster 6 pathway-related genes were shown in Figure 3F,

including ATP5B,CFL1,DYNLL1,EDF1,EIF31, etc.

Furthermore, we performed co-expression analysis between

these RBP genes and their target genes (Figure 3G), with UMAP

visualization demonstrating the expression profiles of RBM3,

NOP10, PAPK7 and FKBP1A across distinct developmental

stages (Supplementary Figure S3B). The function of these target

genes are involved in cell proliferation and differentiation(e.g.,
Frontiers in Endocrinology 06
CELF1 and PSMA7), cytoskeletal reorganization(e.g.,ARPC3 and

CFL1), energy metabolism (e.g.,NDUFS8 and SDHC), and cell cycle

regulation (e.g., STMN1 and TUBA1B).
Profiling development-associated RBP
modules in spermatogenesis

Recognizing the pivotal role of RBPs in spermatogenesis and

their implications in male infertility, we aimed to delineate the

landscape of RBP expression in germ cells throughout

spermatogenesis. Focusing on adult-stage germ cell datasets,

unbiased clustering analysis revealed a clear UMAP embedding
FIGURE 2

Comprehensive single-cell transcriptome analysis reveals a large number of RBPs specifically expressed in different cell types of testis. (A) UMAP plot
of scRNA-seq profile based on RBP expression module. (B) UMAP plot of scRNA-seq profile based on the known marker genes. (C) UMAP showing
relative expression (z score, column scaled) levels of top10 RBP markers of each cell type in single-cell dataset. (D) Cytoscape shows the co-
expression networks comprising 10 RBPs selected from 10 cell types and target genes. (E) Gene expression level of 10 RBPs was represented with
UMAP plot.
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representation that captured the dynamic progression of germ cells

from undifferentiated SPG to spermatids (Figure 4A).

Additionally, leveraging the RBP genes, we reclustered these

germ cells, identifying 11 distinct RBP-based cell clusters

(Figure 4B). Each distinct RBP cluster exhibited specific RBP

marker genes, with the top 3 markers highlighted in

Supplementary Figure S4B. Intriguingly, these RBP clusters

exhibited dynamic changes throughout the differentiation process.

Specifically, the RBP clustering composition displayed a notable

transition (Figure 4C), indicating a close association between

undifferentiated SPG, differentiating SPG, and early SPCs, while

late SPCs and spermatids showed a higher similarity. Importantly,

our analysis revealed a higher prevalence of cell-specific RBPs

during the early stages of spermatogenesis, as depicted in

Figure 4D. The top 10 RBP mark genes in each cell types were

shown in Supplementary Figure S4A.
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Standard trajectory analysis only reveals genes associated with

differentiation, but does not establish causality. RBPs have been

demonstrated as key upstream regulators during stem cell

differentiation (44, 45), thus we perform Pseudotime Trajectory

Analysis by Monocle3 based on RBPs and depicted the sequential

changes in germ cells during spermatogenesis (Figure 4E).

Subsequently, we investigated the dynamic alterations in RBP

gene expression during spermatogenesis, identifying eight clusters

with distinct time-dependent expression patterns (Figure 4F). The

biological functions of genes within these clusters were also

assessed, demonstrating associations with key terms such as

spermatogenesis, spermatid development, RNA splicing, mRNA

splicing, mRNA processing and cytoplasmic translation,

etc. (Figure 4G).

As shown in Figure 4F, the expression pattern of gene cluster 4

shown significant increase in late primary SPCs, while gene cluster 3
FIGURE 3

Single-cell analysis revealed heterogeneity and regulatory module of development-related RBPs in sertoli cells. (A, B) UMAP was reperformed to display the
distributions of 7 cell clusters based on RBP expression module using sertoli cells. (C) Stacked bar plot showing the relative proportions of RBPs expression
module in different age groups. (D) Dynamic cluster analysis of the RBP expression in sertoli cells across various age groups based on TCseq. (E) Gene
ontology enrichment analysis of biological processes of target genes associated with RBPs belonging to different clusters by TCseq. Top 5 terms were
selected for each cluster and heatmap shows the enrichment q-value of these terms (scaled by column). (F) Unsupervised clustering heatmap showing
relative expression (z score, column scaled) levels of RBP genes in Cluster 6 showed in E, according to different age groups. (G) Cytoscape shows the co-
expression networks comprising RBP genes from cluster 6 and their target genes.
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FIGURE 4

Identification of RBP modules in spermatogenesis. (A) UMAP displays the distribution of 5 cell types based on germ cells. (B) UMAP was reperformed to
display the distributions of 11 cell clusters based on RBP expression module. (C) Stacked bar plot showing the relative proportions of RBPs expression
module in different age groups. (D) Bar plot showing the number of RBP in marker genes of each cell type. (E) Pseudotime analysis of all germ cells.
(F) Dynamic cluster analysis of the RBP expression in germ cells across the four development stages based on TCseq. (G) Gene ontology enrichment analysis
of biological processes of genes involving target genes of RBPs belonging to different clusters by TCseq. Top 5 terms were selected for each cluster and
heatmap shows the enrichment q-value of these terms (scaled by column). (H) UMAP showing relative expression (z score, column scaled) levels of RBP
genes involved in cluster 4 showed in (G), according to different germ cell types. (I) Cytoscape shows the co-expression networks comprising target genes
selected from cluster 4 associated with spermatogenesis and RBPs.
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exhibited the opposite trend, indicating their potential role in late

meiosis. Their expression profiles across various cell types were

delineated, constructing co-expression networks with target genes

within germ cells (Figures 4H, I, Supplementary Figures S4C, D).

These results provide a comprehensive overview of RBP profiles and

reveal the intricate regulatory patterns of RBPs throughout

spermatogenesis, laying the foundation for further molecular

mechanism exploration.
Dysregulated cell-type specific RBPs and
their implication in splicing aberrations
associated with NOA

The significance of AS in spermatogenesis has been recognized

for several decades (46). RBPs are key regulators of AS and we

hypothesize that their dysregulation may precipitate AS

irregularities, consequently leading to impaired spermatogenesis,

like NOA. In this study, we conducted SUVA on bulk-seq data from

three patients with NOA and three patients with obstructive

azoospermia (OA) (26). Bulk RNA-seq generates an averaged

transcriptome across all constituent cells. However, it offers

profound sequence depth, facilitating the comprehensive capture

of the maximal number of genes and alternative splice variants. Our

results revealed thousands of significantly differential splicing

events, encompassing various types such as alternative 5’ splice

site (alt5p), alternative 3’ splice site (alt3p), intron retention (ir), and

other less frequent splicing types (Figure 5A). Notably, more than

75% of NOA-associated splicing alterations were complex splicing

events, highlighting the intricate nature of AS regulation in NOA

(Figures 5B, C).

Focusing on high-frequency and dominant RBP-associated

splicing (RAS) events (Figure 5D), we observed clear distinctions

between the NOA and OA groups in principal component analysis

based on splicing ratios (Figure 5E). Further investigation into 2928

dominant RAS-related genes revealed enrichments in essential

pathways like mRNA processing, RNA splicing, and DNA

damage response pathways (Figure 5F, Supplementary Figure S5C).

Subsequently, we identified differentially expressed RBPs

between NOA and OA patients, predominantly observing

downregulation, suggesting the potential inactivation of RBPs in

NOA pathogenesis (Supplementary Figure S5D). By overlapping

cell-type specific RBPs from scRNA-seq data with differentially

expressed RBPs from bulk RNA data, we pinpointed 10 upregulated

and 58 downregulated RBPs, primari ly expressed in

early spermatogenesis stages (e.g., undifferentiated SPG,

undifferentiated SPG, and early SPCs among the overlapping sets)

(Figures 5G, H). Consequently, we investigated the differential

protein expression of RPL10, RPL39 and SETX between OA and

NOA patients using immunohistochemistry staining (Figure 5I).

We found that RPL10 and RPL39 are primarily localized in the

cytoplasm, while SETX is localized in both the nucleus and the

cytoplasm. In the testicular tissue of OA, RPL10, RPL39, and SETX

are expressed in spermatogonia, early and late spermatocytes, as

well as Sertoli cell. Additionally, we observed differential expression
Frontiers in Endocrinology 09
in NOA, which is consistent with the mRNA data from single-

cell sequencing.

We further conducted Pearson’s correlation analysis between

these differentially expressed RBPs and spermatogenesis and

spermatid development pathway-related NOA-RAS, revealing a

strong correlation (correlation >= 0.99, p value <= 0.01). This

analysis allowed the prediction of the potential regulatory role of

these RBPs in AS. A coherent co-disturbed network was

constructed to visualize the relationship between the overlapped

RBPs and spermatogenesis pathways-related NOA-RAS, suggesting

a potential regulatory influence of these RBPs on NOA-associated

splicing alterations (Supplementary Figure S5F).

In summary, our findings elucidate dysregulated cell-type

specific RBPs in NOA and predict their potential role in AS

regulation, providing novel insights into the molecular

mechanisms underlying NOA and offering a prospective avenue

for utilizing these RBPs as biomarkers for NOA.
Discussion

This study represents a significant advancement in the field by

integrating scRNA-seq datasets across the human lifespan, with a

particular emphasis on RBPs. Our findings contribute three novel

insights to the existing literature: 1) The identification of cell-type

specific and stage-specific RBP gene clusters, revealing differential

expression patterns across various cell types during human

postnatal development and spermatogenesis; 2) The observation

of dynamic changes in RBP expression within sertoli and germ cells

as they transition through distinct developmental stages; and 3) The

revelation of RBPs’ role in the pathogenesis of NOA through the

regulation of AS.

Our research underscores the complexity and dynamism of testis

development and spermatogenesis in humans, processes that have been

extensively studied in rodents but remain inadequately characterized in

humans. The recent adoption of scRNA-seq technology has begun to

bridge this knowledge gap, providing a more nuanced understanding

of human testis development, spermatogenesis, and conditions such as

NOA (47, 48). Despite the generation of comprehensive cellular atlases,

the molecular mechanisms and regulatory pathways, particularly the

post-transcriptional processes mediated by RBPs, remain elusive. Our

study leverages the extensive datasets generated by scRNA-seq, coupled

with sophisticated bioinformatic analyses, to uncover specific RBPs that

are likely to regulate spermatogenesis at different life stages.

Our study’s contribution lies in the re-analyzing and integration

of published human testis scRNA-seq data, presenting for the first

time a detailed landscape of RBP expression patterns during

postnatal development and spermatogenesis. By meticulously

profiling 67,400 single cells post quality control and classifying 10

major cell types based on distinct marker genes, we have provided a

robust foundation for further investigation. GO analysis further

confirmed the enrichment of functional pathways associated with

specific cell functions, highlighting the significance of RBP genes in

cell type-specific functions, notably in undifferentiated SPG and

differentiating SPG. This aligns with previous rodent studies (49)
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and underscores their pivotal roles in spermatogonial proliferation

and differentiation.

Our examination of global RBP expressions across various cell

types during testis development unveiled 29 distinct RBP clusters with

cell type-specific genes, demonstrating the complex regulatory

dynamics during development. The increasing heterogeneity of RBP

clusters in the testis highlights the intricate regulatory mechanisms at

play. For instance, Sertoli cells, which play a pivotal role in supporting

germline development (6), exhibited RBP expression patterns that are

specific to certain stages of development, indicating their critical

involvement in the maturation process of the testis. In contrast,

macrophages and endothelial cells showed stable RBP patterns,

suggesting a more stable and less developmentally dynamic role.

In the postnatal development of the testis, Sertoli cells are

pivotal in nurturing germ cell development (6). Despite the
Frontiers in Endocrinology 10
active transcriptional activities within Sertoli cells, our

comprehension of post-transcriptional regulation in these cells

remains l imi ted . Prev ious research has char ted the

developmental trajectory of Sertoli cells, revealing that two

types of immature Sertoli cells evolve into a single mature form

(33). Our study’s identification of six distinct clusters of Sertoli

cells across various developmental stages, based on the

expression of RNA-binding proteins (RBPs), not only points to

different functional states but also suggests that Sertoli cell

maturation is a gradual process. This finding underscores the

importance of RBP expression patterns across different postnatal

stages, particularly the notable increase in cluster 6 RBP genes

during puberty, which may significantly influence Sertoli cell

maturation. The target genes of these RBPs are involved in cell

proliferation and differentiation, cytoskeletal reorganization,
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FIGURE 5

Cell type-specific RBPs associated with spermatogenesis and related RAS events are significantly co-disturbed in testis tissues of patients with NOA and OA.
(A) Five different types of AS event model defined by SUVA according to splicing site usage variation. Each type contains two paired splice junctions (SJ) (for
“ir” type paired SJs is one SJ). “alt3p” indicates model that 5’ splice site is shared and 3’ splice site is alternative. “alt5p” indicates model that 3’ splice site is
shared and 5’ splice site is alternative. “olp” indicates model that both splice sites are different but part of the splice junction are overlapped. “contain”
indicates model that both splice sites are different but one splice junction is contained in another splice junction. “ir” indicates model that a pair of splice sites
are either used or not used which is identical to the “intron retention” event in classical definition. Bar plot showing number of regulated RAS detected by
SUVA between NOA and OA samples. (B) Splice junction constituting RAS event detected by SUVA was annotated to classical AS event types. And the
number of each classical AS event types were showed with bar plot. (C) Bar plot showing number of SUVA RAS events contains SJs involved in two or more
different classical splicing events (complex) of in same classical splicing event (simple). (D) Bar plot showing RAS number with different abundance (pSAR) of
all detected RAS. RAS with pSAR>=50% were used for further analysis and were filled with dark red color. (E) PCA of splicing ratio of RAS which pSAR >=
50%. The ellipse for each group is the confidence ellipse. (F) Top10 enriched GO biological process terms of genes involved RAS with pSAR >= 50%.
(G, H) Venn diagram showing the overlap of DE RBPs from bulk RNA-seq and cell type specific RBPs of germ cells identified in scRNA-seq dataset. (I) In
comparison with the OA, there were significant up-regulation in the protein expression levels of RPL10 and RPL39 in testicular samples from NOA patients.
Conversely, the protein expression levels of SETX were notably down-regulated in the same testicular samples from NOA patients.
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TABLE 1 The clinicopathological features of the cohorts enrolled in this study.
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Individual NOA-

1
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OA OA OA NOA-1 NOA-2 NOA-3 control

1

Age 27

years

26
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32

years

26

years

35
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27

years

38 years 28 years 33 years 24 years

BMI 27.8 21.9 23.6 23.8 26.8 31.3 25.22 22.31 27.09 28.85

Testicular volume (Left/

Right, ml)

10/10 6/6 8/8 15/15 12/12 12/15 10/10 12/12 10/10 15/15

Somatic karyotype 46,XY 46,XY 46,XY 46,XY 46,XY 46,XY 46,XY 46,XY 46,XY 46,XY

Y
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No No No No No No No No No No
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previous pregnancies
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a child
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GSE124263: These testes were from unrelated day 2 and day 7 neonates who died as a result of nontesticular-re
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energy metabolism and cell-cycle regulation, all of which are

potentially crucial for Sertoli cell maturation.

Our identification of numerous specific RBP genes in each germ cell

type, some previously implicated in spermatogenesis (50, 51),

strengthens their significance and provides a basis for future

functional studies. Our findings underscore the developmental shifts

in RBP expression and reveal distinct dynamic patterns of RBPmodules

during spermatogenesis, aligning with previous studies on rodents (16).

In addition, we have primarily investigated the target genes of these

RBPs, some of which are associated with spermatogenesis, while further

research into RBP interaction networks and underlying molecular

mechanisms could provide more comprehensive insights.

Nonetheless, our study represents the initial effort to systematically

understand the activities of RBPs in human spermatogenesis.

In exploring the application of RBPs in NOA, our study

highlighted the association between AS events and dysregulated

RBPs. NOA, characterized by a severe reduction or absence of

multiple types of germ cells, remains poorly understood in terms of

its etiology and underlying pathological mechanisms. Our

identification of 63 differentially expressed RBPs in NOA, including

known spermatogenesis-related genes like RBM46, SAMD4a,

HMGA1, PIWIL1, DDX25, and HENMT1 (52–55), provides new

avenues for understanding the molecular mechanisms underlying this

condition. The mutation of DDX25, for example, has been associated

with spermatogenic failure andNOA in humans (55). Our validation of

the differential expression of proteins RPL10, RPL39, and SETX in

clinical samples aligns with findings from rodent studies (56–58),

suggesting their potential as diagnostic biomarkers for NOA.

The complexity of AS events in NOA cases, with over 75% being

complex AS events, indicates the intricate regulation of

spermatogenesis-related genes. Our study unveils the potential

regulatory roles of RBPs in AS within the context of NOA, offering

insights into the molecular mechanisms underlying this condition and

highlighting the need for further investigation into the targets and

associated regulatory pathways of RBPs.
Frontiers in Endocrinology 12
In conclusion, our work presents a comprehensive landscape of RBP

expression in postnatal testis development, with a focus on sertoli and

spermatogenic cells, and implicates RBPs in NOA pathogenesis through

AS mechanisms. While this study’s limitations, including partial

validation, it lays the groundwork for further investigations. Further

research into RBP targets and associated regulatory pathways hold

promise in unraveling the mechanisms governing testis development,

spermatogenesis, and identifying potential targets for NOA treatment.

This study, therefore, not only advances our fundamental understanding

of human testis biology but also has significant implications for clinical

practice and therapeutic development.
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SUPPLEMENTARY FIGURE 1

scRNA-seq analysis of human testis from different development stages
identified distinct cell types. (A) Dot plot showing expression of

representative genes in each cell type. (B) Heatmap plot showing the top

enrichment Gene Ontology of biological process pathways of marker genes
of each cluster. (C) Bar plot comparing the proportions of cell populations of

each cell type within each sample.

SUPPLEMENTARY FIGURE 2

Comprehensive single-cell transcriptome analysis reveals a large number of

RBPs specifically expressed in different cell types of testis. (A) UMAP showing

relative expression (z score, column scaled) levels of RBP markers of each
RBP expression cell module in single-cell dataset according to cell types.

Stacked bar plot showing the relative proportions of RBPs expression module
in different age groups. (B) Stacked bar plot showing the relative proportions

of RBPs expression module of each cell type in different age groups. (C) Bar
plot showing the number of RBP in marker genes in each cell type. (D)
Heatmap plot showing the top enrichment GO pathways of co-expressed

genes of each undifferentiated SPG-specific RBP. (E) Stacked bar plot
showing the relative proportions of RBPs expression module in different

age groups.

SUPPLEMENTARY FIGURE 3

Single-cell analysis revealed heterogeneity and regulatory module of

development-related RBPs in sertoli cells. (A) UMAP showing relative

expression (z score, column scaled) levels of RBP markers of each RBP
expression cell module using sertoli cells according to cell types. (B) Gene

expression level of RBM3, NOP10, PAPK7 and FKBP1A were represented in the
UMAP plot spited by different age groups.

SUPPLEMENTARY FIGURE 4

Identification of RBP modules in spermatogenesis. (A) UMAP showing relative

expression (z score, column scaled) levels of top10 RBP markers of each cell
type in germ cells. (B) UMAP showing relative expression (z score, column

scaled) levels of top3 RBP markers of each cluster in germ cells. (C) UMAP
showing relative expression (z score, column scaled) levels of RBP genes

involved in cluster3 showed in G, according to different sperm cell types. (D)
Cytoscape shows the co-expression networks comprising target genes

selected from cluster3 associated with spermatogenesis and RBP. Edges

connect RBP-target gene pairs while nodes represent genes. RBPs are
displayed in red and target genes are displayed in green. Metacells of all

cells were constructed and then co-expression associations of RBPs and
target genes were built with Persons’ correlation analysis. Pairs with |

correlation|>=0.8 and pvalue<=0.01 were left.

SUPPLEMENTARY FIGURE 5

Cell type-specific RBPs associated with spermatogenesis and related RAS
events are significantly co-disturbed in testis tissues of patients with NOA and

OA. (A) Bar plot showing number of detected alternative splicing events (AS) by
SUVA between NOA and OA samples. (B) Splice junction constituting AS event

detected by SUVAwas annotated to classical AS event types. And the number of
each classical AS event types were showed with bar plot. (C) Scatter plot

showing the most enriched KEGG pathways of genes involved RAS with pSAR

>= 50%. (D) Expression heatmap of all significantly differentially expressed (DE)
RBPs between NOA and OA samples. (E) Visualization of junction reads

distribution of one AS event located in STK11 in samples from NOA and OA
samples. Splice junctions were labeled with SJ reads number. (F) The co-

disturbed network among expression of overlapped RBPs showed in Figure 5
(G) and Figure 5 (H), and splicing ratio of RAS events (pSAR>=50%) was

constructed. |Pearson’s correlation| >=0.99 and pvalue <=0.01 were retained
for RBP and RAS correlation. RAS involved in spermatid development and

spermatogenesis terms and RBP regulators were illustrated with Cytoscape.

Ellipses represent RBP. Squares in around indicate RAS.
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