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Recent advancements in multi-omics technologies have provided unprecedented

opportunities to identify biomarkers associated with prediabetes, offering novel

insights into its diagnosis and management. This review synthesizes the latest

findings on prediabetes from multiple omics domains, including genomics,

epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and

radiomics. We explore how these technologies elucidate the molecular and

cellular mechanisms underlying prediabetes and analyze potential biomarkers

with predictive value in disease progression. Integrating multi-omics data helps

address the limitations of traditional diagnostic methods, enabling early detection,

personalized interventions, and improved patient outcomes. However, challenges

such as data integration, standardization, and clinical validation and translation

remain to be resolved. Future research leveraging artificial intelligence and

machine learning is expected to further enhance the predictive power of multi-

omics technologies, contributing to the precision diagnosis and tailored

management of prediabetes.
KEYWORDS
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1 Introduction

Diabetes has emerged as a critical global public health issue, with its prevalence nearly

doubling over the past three decades and continuing to rise unabated (1, 2). The

International Diabetes Federation reported that approximately 537 million adults (aged

20–79) were living with diabetes in 2021, with this number expected to reach 643 million by

2030 and 783 million by 2045 (3). Diabetes is characterized by numerous complications,
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substantial healthcare expenditures, and high mortality, ranking it

among the top ten global causes of death. It not only reduces the

quality of life for patients but also imposes significant economic and

societal burdens (4–6). Age and disease duration are key predictors

of diabetes management outcomes, underscoring the importance of

early diagnosis and timely intervention in prediabetes (7).

Prediabetes is defined as an intermediate metabolic state where

blood glucose levels are elevated but not yet meet the diagnostic

thresholds for diabetes. It encompasses impaired fasting glucose

(IFG), impaired glucose tolerance (IGT), or both. The global

prevalence of prediabetes is also on the rise, with approximately

373.9 million individuals (7.5%) affected in 2019. This figure is

projected to reach 453.8 million (8.0%) by 2030 and 548.4 million

(8.6%) by 2045 (8). Prediabetes is often asymptomatic, and studies

suggest that approximately 50% of individuals with diabetes are

unaware of their condition (8). Prediabetes constitutes a high-risk

state, with approximately 70% of individuals progressing to diabetes

over time (9, 10). Many individuals may already have macrovascular

complications at the time of diabetes diagnosis. Moreover, prediabetes

substantially increases the risk of cardiovascular disease and stroke,

challenging its classification as a benign condition (11, 12). Lifestyle

interventions in individuals with prediabetes have been shown to

reduce the risk of diabetes by 40% to 70%. Early detection of

prediabetes is critical to extending the intervention window and

improving disease management, ultimately reducing morbidity,

complications, and premature mortality.
2 Pathophysiological mechanisms
underlying prediabetes

Compared to type 2 diabetes (T2D), blood glucose levels in type

1 diabetes mellitus rise more rapidly, presenting as a more acute and

severe condition. Consequently, clinicians have more time to detect

glucose abnormalities associated with prediabetes in T2D (13). The

pathophysiology of prediabetes shares substantial overlap with

T2D, characterized by insulin resistance (IR) and b-cell
dysfunction. IR leads to increased insulin demand, and when b-
cells fail to compensate, glucose levels begin to rise, marking the

transition from normoglycemia to prediabetes and eventually T2D

(14–16).

b-cell dysfunction is a critical feature in the progression of T2D,

often manifesting years before the clinical diagnosis. In individuals

with severe IR, plasma glucose levels may remain within the normal

range as long as b-cell compensation is adequate. Conversely,

prediabetes emerges when b-cells fail to secrete sufficient insulin

to maintain normal glucose levels. Timely interventions targeting b-
cell function can reverse or delay the progression toward T2D in

individuals at risk (17).

Weir et al. proposed a three-stage model of diabetes

development. In the first stage, IR arises, accompanied by

increased insulin secretion and b-cell mass. As long as insulin

secretion compensates for IR, glucose levels remain within the

normal range. In the second stage, b-cell adaptation becomes

insufficient to fully compensate for the growing IR, resulting in
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mild hyperglycemia, reflected in elevated fasting or post-load

glucose levels, which are hallmarks of prediabetes. The third stage

marks early decompensation, where b-cells can no longer meet the

body’s insulin demands, causing glucose levels to rise rapidly and

leading to overt diabetes (16, 18).

Although individuals with IFG and IGT both exhibit IR, the

distribution of IR differs. Hepatic IR is predominant in individuals

with IFG, while skeletal muscle IR is relatively uncommon (18–20).

In contrast, IGT is primarily associated with skeletal muscle IR, with

minimal changes in hepatic insulin sensitivity (20, 21). The decline

in insulin sensitivity is progressive, transitioning from normal

glucose tolerance (NGT) to IFG, IGT, and eventually T2D. Both

IFG and IGT are accompanied by b-cell dysfunction, with early-

stage insulin secretion deficits observed in both conditions. Notably,

individuals with IGT also exhibit impaired insulin secretion during

the later stages of glucose intolerance (21).

Emerging evidence suggests that chronic low-grade inflammation

and adipose tissue dysfunction also play pivotal roles in the

development of prediabetes and T2D (22, 23). Dysregulated

adipokine secretion and ectopic fat deposition, such as hepatic

steatosis, further exacerbate IR and b-cell dysfunction (22, 24). These

additional factors highlight the complexity of the pathophysiological

processes underlying prediabetes, underscoring the need for

multifaceted therapeutic approaches targeting both metabolic and

inflammatory pathways.
3 The current status of
prediabetes diagnosis

The diagnostic criteria for prediabetes vary among international

professional organizations. According to the American Diabetes

Association, prediabetes is defined by IFG (5.6 mmol/L ≤ fasting

plasma glucose [FPG] < 7.0 mmol/L), IGT (7.8 mmol/L ≤ 2-hour

postprandial glucose [2hPG] < 11.1 mmol/L), and/or glycated

hemoglobin (HbA1c) levels between 5.7% and 6.5% (25).

Although HbA1c is a widely utilized screening tool for glucose

monitoring, its correlation with IFG and IGT remains weak (26–

28). The HbA1c test remains the most commonly employed

screening method for monitoring blood glucose levels, yet it does

not adequately assess blood glucose variability. Therefore, it may

obscure glycemic excursions, potentially underestimating the risk of

both acute and chronic complications associated with prediabetes

(29–31). The HbA1c measurement may also fail to capture

important clinical events, such as episodes of hypoglycemia or

postprandial hyperglycemia, which are crucial for assessing

glycemic control (32). The diagnostic accuracy of HbA1c can be

influenced by biological variability, particularly due to individual

differences in red blood cell lifespan (33–36). Certain medical

conditions, such as hemoglobinopathies, anemia, HIV, glucose-6-

phosphate dehydrogenase deficiency, hemodialysis, recent blood

transfusions, or pregnancy, may further compromise the precision

of HbA1c measurements (37). It is worth noting that certain racial

groups are more susceptible to conditions that can affect the

accuracy of HbA1c measurements. For instance, the African
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American population is approximately 5.2 times more likely to have

anemia than the white population, which may lead to an

underestimation of HbA1c levels, thereby affecting the accuracy

of its use in this group (38).

Both IFG and IGT reflect distinct pathological abnormalities in

glucose metabolism. Elevated postprandial glucose levels or oral

glucose tolerance test (OGTT) results are often the earliest

indicators of impaired glycemic control. Insulin clamp tests have

confirmed a progressive decline in islet b-cell function, even when

glucose levels remain below the diagnostic threshold for prediabetes

(39). Additionally, studies show that young males with fasting

glucose levels below 5.6 mmol/L may still progress to T2D within

six years (40). In light of this, some studies propose using a 1-hour

OGTT glucose level ≥ 8.6 mmol/L as an early diagnostic marker for

prediabetes, which could facilitate timely lifestyle interventions and

offer significant clinical benefits (41). However, the routine use of

OGTT is limited by its fasting requirement, time-consuming

procedure, and the risk of hypoglycemia, which hinder its

widespread adoption (42). Furthermore, the need for multiple

blood draws and patient compliance issues further restrict its

practicality (43). By the time hyperglycemia is detected using

standard diagnostic methods, most islet b cells have already

undergone irreversible damage. Therefore, identifying new

biomarkers for the early detection of prediabetes is essential to

improving outcomes through timely intervention.
4 Biomarkers discovery utilizing multi-
omics techniques

Multi-omics technologies have become powerful tools for

identifying biomarkers and therapeutic targets in prediabetes

research. This paper provides a comprehensive review of biomarkers
Frontiers in Endocrinology 03
discovered through genomics, epigenomics, transcriptomics,

metabolomics, proteomics, microbiomics, and radiomics, along with

insights into future research directions (Figure 1).
4.1 Proteomics

Proteomics is increasingly recognized as a powerful approach

for directly identifying biomarkers relevant to disease diagnosis.

Protein biomarkers demonstrate high sensitivity and specificity in

detecting T2D, providing valuable insights into both systemic and

dynamic disease progression (44). Furthermore, unlike genes,

proteins are subject to stringent regulation in response to cellular

stimulation (45). The integration of protein biomarkers into clinical

practice holds the potential to significantly improve prediabetes

screening and management, ultimately enhancing patient outcomes

and quality of life.

4.1.1 Proteomics-based biomarkers
Liquid chromatography (LC) combined with mass

spectrometry (MS) provides a high-throughput platform for

large-scale protein analysis, enabling comprehensive investigation

of protein expression, post-translational modifications, and

interactions. The isobaric tags for relative and absolute

quantitation (iTRAQ) method allows isotopic labeling and the

simultaneous quantification of protein abundance from various

sources. Hence, the iTRAQ-LC-MS/MS method is widely used in

quantitative proteomics because of its efficiency in saving time and

minimizing the number of experimental procedures when

compared to traditional proteomic methods (46). Using this

technique, researchers identified LAMA2, MLL4, and PLXDC2 as

novel serum biomarkers for prediabetes, with 0-20% higher

specificity and 20-40% greater sensitivity than FBG and HbA1c
FIGURE 1

Multi-omics for prediabetes biomarkers identification. Leveraging diverse tissue sources, a comprehensive application of multi-omics methodologies
—including both experimental animal models and human studies—has led to the identification of numerous potential biomarkers for prediabetes,
thereby enhancing diagnostic predictive capabilities and providing a foundation for precision therapy.
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(47). MLL4 plays a key role in transcriptional activation, regulating

islet b-cell function (48). LAMA2 deficiency is associated with

impaired skeletal muscle metabolism, where muscle IR is a major

driver of prediabetes (49). These proteins were absent or low in

healthy individuals but significantly elevated in prediabetic subjects.

Their combined use shows promise for developing a precise

diagnostic tool for prediabetes, though further studies are needed

to validate their clinical utility across diverse populations.

Selected Reaction Monitoring (SRM) is a key targeted

proteomics technique for detecting and quantifying multiple

proteins with high precision and specificity (50). Nano-LC/MS in

SRM mode (SRM-MS) identified positive correlations between

MASP1, THBS1, GPLD1, and prediabetes, while ApoA-IV

showed a negative association. Bonferroni correction confirmed

the positive association between MASP1, prediabetes, and fasting

glucose levels. This link is likely mediated by elevated IR (51).

Evidence suggests that THBS1 contributes to adipose tissue

inflammation and metabolic dysregulation, explaining its elevated

levels in prediabetes. A prospective cohort study using targeted

SRM-MS found an independent association between MASP levels

and the development of T2D and prediabetes, even after adjusting

for known risk factors. Individuals with normal glucose levels who

progressed to diabetes or prediabetes within 6.5 years showed

significantly higher MASP levels, underscoring its predictive value

(52). These proteins show promise as biomarkers, but further large-

scale validation studies are essential. A label-free quantitative SRM-

LC/MS/MS study revealed that when FPG ≥ 5.6 mmol/L, CD14

expression increased while CSF-1R decreased, suggesting early

chronic inflammation (53). This indicates that CD14 and CSF-1R

could be crucial biomarkers for prediabetes and potential new

targets for therapy.

Two-dimensional electrophoresis (2-DE) combined with MS is

a widely used technique to quantify disease-related protein

alterations. This technique enables the simultaneous separation of

hundreds to thousands of proteins from complex biological samples

in a single run (54). A serum proteomics study using this method

identified seven distinctive proteins: AACT, AAT, ApoA-I, HP,

RBP4, TTR, and ZAG. These proteins show significant differences

between individuals with normal glucose levels and those with

prediabetes or diabetes (55). Most of these proteins play crucial

roles in the transport, localization, and regulation of serum

lipoprotein particles. Assessing the levels of these biomarkers may

aid in the early diagnosis of prediabetes and diabetes.

2-DE is often regarded as an outdated technique, primarily due

to its limitations in analytical depth, sample consumption, and time

efficiency. As a derivative of 2-DE, two-dimensional differential gel

electrophoresis (2D-DIGE) offers enhanced sensitivity, a wider

linear range, more accurate quantification, and the ability to

effectively separate and analyze protein isoforms, making it a

more advanced alternative (56). Takahashi et al. performed a

serum quantitative proteomics analysis in a prediabetic rat model

utilizing 2D-DIGE and LC-multiple reaction monitoring (MRM).

They successfully identified five differentially expressed proteins in

prediabetes, namely A1I3, ApoE, MUG1, CRP, and SERPINA3N

(57). The increased expression of SERPINA3N may lead to
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impaired insulin secretion in the pancreas by inhibiting Wnt/b-
catenin signaling (58). These biomarkers may play a pivotal role in

prediabetes pathogenesis and hold potential as diagnostic and

therapeutic targets, though further replication and functional

studies are needed to clarify their mechanisms.

Skeletal muscle IR is an early and critical abnormality in the

development of T2D and prediabetes, making skeletal muscle a

promising source for identifying biomarkers and therapeutic targets

(59). Sequential window acquisition of all theoretical (SWATH) MS

is an emerging MS technique that offers high quantitative accuracy,

extensive proteomic coverage, reproducibility in proteome

coverage, and sample throughput while minimizing the number

of missing values. The application of this technology in proteomics

studies has unveiled a notable decrease in proteins linked to

mitochondrial energy metabolism and oxidative phosphorylation

in the muscle tissues of IFG and IGT. The expression of SUPV3L1

protein is uniquely reduced in IFG muscles compared to NGT,

while the expression of SNRPN is uniquely down-regulated in IGT

muscles (60). These findings indicate that SUPV3L1 and SNRPN in

skeletal muscle could serve as potential biomarkers for prediabetes,

offering valuable insights into the pathogenesis of prediabetes from

a skeletal muscle perspective. The biomarkers identified through

proteomic analysis are presented in Table 1.

Overall, insulin resistance and b-cell function regulation are the

most common pathways affected by prediabetes biomarkers

identified through proteomics. In the biological pathway of

insulin resistance, the elevated levels of MASP1, THBS1, GPLD1,

AAT, HP, RBP4, ZAG, and ApoA-I may be positively correlated

with each other, synergistically exacerbating insulin resistance (51,

55). These biomarkers are closely associated with metabolic

disturbances and may collectively influence insulin sensitivity. In

contrast, the decreased levels of ApoA-IV, AACT, and TTR may

also exhibit positive correlations, suggesting their potential role in

alleviating insulin resistance through metabolic regulation (51, 55).

On the other hand, in the pathway of b-cell function regulation, the

increased levels of LAMA2, MLL4, PLXDC2, MASP, ApoE, MUG1,

CRP, and SERPINA3N may act synergistically, contributing to b-
cell damage and reflecting alterations in the pathway (47, 52, 57).

Meanwhile, the reduced levels of A1I3 are negatively correlated with

the elevated levels of other biomarkers, suggesting a protective role

for A1I3 in b-cell function regulation (57).
4.1.2 Limitations and future directions
Proteomic methods have identified several promising

biomarkers for prediabetes, yet key challenges remain. The

molecular mechanisms underlying these biomarkers remain

unclear, and their sensitivity and specificity require further

clarification (53). Clear concentration thresholds for diagnosing

prediabetes are lacking, representing a critical area for future

research (52). Many studies have relied on cross-sectional designs,

limiting their ability to establish causation. Consequently, cohort

studies may serve as an important approach to establishing causal

relationships. Exploring biomarkers in other tissues, such as urine

and saliva, offers promising avenues for future research.
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4.2 Metabolomics

Metabolomics has become an essential high-throughput tool for

exploring disease mechanisms and identifying biomarkers.

Monitoring changes in metabolite levels between patients and

healthy individuals provides key insights into metabolic profiles

under different conditions. Targeted and non-targeted

metabolomics offer complementary insights into metabolic shifts

from NGT to T2D, shedding light on disease progression (61).

Recent studies in metabolomics have identified promising

biomarkers for diagnosing prediabetes, highlighting their

potential clinical value (Table 2).
4.2.1 Metabolomics-based biomarkers
Blood samples, including serum and plasma, are primary materials

in metabolomics research due to their ability to reflect systemic

physiological and pathological states. These samples are rich in

metabolites and provide crucial indicators of disease onset,

progression, and therapeutic response. Their accessibility and the

maturity of analytical technologies make blood samples ideal for

large-scale clinical and epidemiological research. Among

carbohydrate biomarkers for prediabetes, mannose is the most

prominent besides glucose (65). Prediabetes involves metabolic

disruptions in carbohydrates, amino acids, and lipids, reflecting its

complexity beyond glucose regulation. Thesemetabolites are frequently

integrated to construct a prognostic model, aiming to enhance the

diagnostic accuracy of prediabetes. Elevated branched-chain amino

acids (BCAAs) have been identified as early biomarkers, predicting

T2D development up to ten years before onset (75, 76). Increased levels

of BCAAs, including valine, leucine, and isoleucine, are frequently

observed in prediabetes compared to individuals with normal glucose

levels. This indicates their potential as important biomarkers for

prediabetes and IR (65). Reduced tryptophan levels in prediabetes

suggest its potential as a biomarker and highlight tryptophan
Frontiers in Endocrinology 05
metabolism as a promising therapeutic target (62). Other amino

acids, such as glycine, glutamine, and alanine, also show distinct

variations between prediabetic and normoglycemic individuals (64,

68, 70). These amino acids also possess the potential to serve as

biomarkers for identifying prediabetes. Lipid metabolites, including

lysophospholipids, acylcarnitine, and lysophosphatidylcholine, may

serve as predictive indicators of prediabetes and T2D (64, 66). IR

and mitochondrial dysfunction are key mechanisms driving these

metabolic changes (61, 64–66). In summary, blood metabolites offer

broad potential as biomarkers for prediabetes, and their integration

into predictive models may provide novel strategies for prevention

and diagnosis.

Most identified metabolites are associated with IR rather than

direct changes in b-cell function. Identifying reliable biomarkers

that reflect b-cell function is essential for detecting prediabetes.

Using a combination of untargeted and targeted metabolomics, Li

et al. employed both untargeted and targeted metabolomics to

analyze the liver and plasma metabolome in two mouse models.

They identified deoxyhexose 1,5-dehydrosorbitol as a biomarker

reflecting the gradual loss of functional b-cell mass in asymptomatic

prediabetes (67).

The liver is essential for regulating glucose homeostasis. In

normal physiology, the liver regulates glycogenesis, glycogenolysis,

glycolysis, gluconeogenesis, and lipogenesis in response to insulin

during fasting and feeding (77). In pathological conditions,

impaired hepatic insulin signaling, such as IR, disrupts

metabolism, leading to hyperglycemia, inflammation, and adipose

remodeling (78–80). Dahl salt-sensitive (SS) rats, which mimic

prediabetic lesions, show impaired tricarboxylic acid (TCA) cycle

function, reducing glucose utilization compared to salt-tolerant rats

(81). Metabolomic analysis revealed higher levels of L-lactic acid

and L-propionic acid in the livers of SS rats compared to salt-

resistant SS.13BN rats. These findings suggest that L-lactic acid and

L-propionic acid are potential hepatic biomarkers for prediabetes.

Increased L-lactic acid may reflect lactic acid buildup due to
TABLE 1 Proteomics biomarkers associated with prediabetes.

Source Species Protein Potential pathogenesis Refs.

Serum Human LAMA2↑, MLL4↑, PLXDC2↑ Skeletal muscle metabolism, regulation of islet b cell function (47)

Plasma Human MASP1↑, THBS1↑, GPLD1↑, ApoA-IV↓ IR, inflammation (51)

Plasma Human MASP↑ Impaired secretory function of islet b cells (52)

Serum Human CD14↑, CSF-1R↓ The early initiation of chronic inflammation (53)

Serum Human AACT↓, AAT↑, ApoA-I↑, HP↑, RBP4↑,
TTR↓, ZAG↑

Regulation of lipolysis, IR (55)

Serum Long-Evans
Agouti rat

A1I3↓, ApoE↑, MUG1↑,
CRP↑, SERPINA3N↑

Impaired secretory function of islet b cells (57)

Skeletal
muscle

Human SUPV3L1↓, SNRPN↓ Dysregulation of mitochondrial RNA metabolism, abnormalities in
mRNA metabolism

(60)
frontie
LAMA2, laminin subunit alpha 2; MLL4, mixed-lineage leukemia 4; PLXDC2, plexin domain containing 2; MASP, mannan-binding lectin serine peptidase; THBS1, thrombospondin 1; GPLD1,
glycosylphosphatidylinositol specific phospholipase D1; ApoA, apolipoprotein A; CD14, cluster of differentiation 14; CSF-1R, colony-stimulating factor 1 receptor; AACT, alpha-1-
antichymotrypsin; AAT, alpha-1-antitrypsin; HP, haptoglobin; RBP4, retinol-binding protein 4; TTR, transthyretin; ZAG, zinc-alpha2-glycoprotein; A1I3, a‐1‐inhibitor 3; MUG1,
murinoglobulin‐1; ApoE, apolipoprotein E, CRP, c-reactive protein; SERPINA3N, serine protease inhibitor A3N; SUPV3L1, supervisor of mitochondrial RNA processing 3 like 1; SNRPN,
small nuclear ribonucleoprotein-associated protein N.
“↑” The symbol indicates upregulation of the marker in prediabetes. “↓” The symbol indicates downregulation of the marker in prediabetes.
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impaired pyruvate oxidation, while elevated L-propionic acid

suggests abnormal gluconeogenesis activation (69).

Urine offers a non-invasive and easily accessible sample

material for metabolomics analysis. Despite these advantages,
Frontiers in Endocrinology 06
urine has been underutilized for identifying metabolic disease

biomarkers in mass spectrometry-based metabolomics studies

(82–84). Recent research developed sex-specific diagnostic models

using urine metabolomics, incorporating a wide range of metabolic
TABLE 2 Metabolomics biomarkers associated with prediabetes.

Source Species Metabolites Potential pathogenesis Refs.

Plasma Spontaneously
diabetic Torii

Tryptophan↓, kynurenine↓ Tryptophan metabolism (62)

Plasma Human a-HB, L-GPC, oleic acid, 3-MOB, 4-MOP, a-KB IR, decreased BCKD activity (63)

Serum Human Glycine↓, lysophosphatidylcholine (LPC) (18:2)
↓, acetylcarnitine C2↑

IR, increased cellular lipid metabolites and
impaired mitochondrial b-oxidation, Metabolism
of arachidonic acid

(64)

Plasma Human Mannose↑, adrenate↑, arachidonate↑,
BCAAs↑(valine, isoleucine, leucine), BCKAs↑(3-
methyl-2-oxovalerate, 4-methyl-2-oxopentanoate,
3-methyl-2-oxobutyrate)

Breakdown of BCAAs,
mitochondrial dysfunction

(65)

Plasma Human BCKAs↑, acylcarnitines↑,
lysophospholipids↑, phosphatidylcholines↑

IR, impaired signaling through mammalian
target of rapamycin uncoupling downstream
signal transduction of insulin

(66)

Plasma/Liver b-cell-specific
prohibitin-2 knockout
mice and leptin
receptor–deficient mice

1, 5-dehydrosorbitol↓ Loss of functional b cell mass (67)

Serum Human 2-acetolactate↑, 2-hydroxy-2↑, 4-pentadienoate↑,
L-arabinose↓, L-glutamine↓

Amino acid metabolism (68)

Liver Dahl salt-sensitive rats L-lactic acid↑, L-propionic acid↑ acquired pyruvate oxidation deficiency, abnormal
gluconeogenesis activation

(69)

Serum Human C18:1↑, Ala↑, Met↑, Val↑, PC aa C36:1↑, SM
(OH) C22:2↑, Gly↓, Tyr↓, lysoPC a C18:2↓, PC
ae C30:0↓, PC ae C42:1↓, SM C18:1↓

excessive IR-induced b oxidation, insulin-
resistant and b-cell dysfunctions

(70)

Plasma Human C6DC↑, C14↑, C12↑, C14-OH↑, C14:1↑, Leu↓,
C16↓, C14:2↑, Cit↓

The mammalian target of rapamycin signaling
pathways, IR

(71)

Plasma Human Threonic acid↑, Indolelactic acid↑,
Trimethylamine↑, 5-Hydroxy-L-tryptophan↑,
Quinaldic acid↑, Nutriacholic acid↑,
Pyroglutamic acid↑, L-Glutamic acid↑,
Phenylacetaldehyde↓, Urea↓, L-Acetylcarnitine↓,
5-Hydroxylysine↓, Pregnenolone sulfate↓, 2-
Phenylbutyric acid↓, Deoxycholic acid glycine
conjugate↓, Vitamin D3↓, Sphinganine↓, 9-
Methyluric acid↓

The Arginine Biosynthesis Pathway, The D-
Glutamine and D-Glutamate Metabolism
Pathway, The Glutathione Metabolism Pathway

(72)

Urine Human Male: Pentosidine glucuronide, Glutamyl-lysine
sulfate, 5-(3’,4’-dihydroxyphenyl)-gamma-
valerolactone-3’-O-glucuronide, 5-Phenylvaleric
acid glucuronide, 3-Methoxy-4-
hydroxyphenylethyleneglycol sulfate, Hippuric
acid glucuronide, Cortisol glucuronide isomer,
Tetrahydrocortisone glucuronide, Cortisol
glucuronide isomer

–

(73)

Female: Pentosidine glucuronide, Indoxyl sulfate,
5-(3’,4’-dihydroxyphenyl)-gamma-valerolactone-
3’-O-glucuronide, Suberic acid, Aspartyl-
threonine glucuronide, Glycyl-lysine

–

Skeletal muscle Human Glutamate↑, ornithine↑, carnosine↑,
sphingomyelins 41:1↓, sphingomyelins 41:2↓

IR, oxidative stress, glutathione
synthesis pathway

(74)
fron
The absence of a biomarker labeled up or down is unclear whether it is up-regulated or down-regulated in prediabetes. “–” The information has not been obtained from the primary publication or
has not been found yet.
“↑” The symbol indicates upregulation of the marker in prediabetes. “↓” The symbol indicates downregulation of the marker in prediabetes.
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biomarkers. This model outperforms current blood-based

parameters for IGT screening, highlighting the potential of sex-

specific diagnostic models for urine-based prediabetes

screening (73).

Skeletal muscle, one of the most insulin-sensitive tissues, is the

primary site for insulin-stimulated glucose uptake (85). Along with

the liver, skeletal muscle plays a key role in regulating glucose

uptake and maintaining glucose homeostasis (86, 87). Szczerbinski

et al. compared skeletal muscle metabolomics profiles in patients

with varying glucose levels, revealing significant differences in

glutamate, ornithine, carnosine, and sphingomyelins (41:1, 41:2)

between normoglycemic and prediabetic individuals. These findings

suggest these metabolites may serve as biomarkers for prediabetes

and help prevent progression to T2D (74).

Insulin resistance is also the most frequently identified biological

pathway in metabolomic biomarkers associated with prediabetes.

Elevated levels of a-HB, L-GPC, oleic acid, 3-MOB, 4-MOP, a-KB,
acetylcarnitine C2, BCKAs, acylcarnitines, lysophospholipids,

phosphatidylcholines, C6DC, C14, C12, C14-OH, C14:1, C14:2,

glutamate, ornithine, and carnosine may exhibit positive

correlations within the biological pathways associated with insulin

resistance (63, 64, 66, 71, 74). These biomarkers potentially act

through multiple mechanisms, such as influencing BCKD activity,

promoting the accumulation of lipid metabolites, impairing

mitochondrial b-oxidation, and disrupting insulin signaling

pathways, thereby exacerbating insulin resistance. Conversely, the

downregulation of glycine, lysophosphatidylcholine (LPC) (18:2),

leucine, C16, citrate, and sphingomyelins (41:1, 41:2) may also

show positive correlations, suggesting their potential protective

roles in maintaining metabolic homeostasis, which could contribute

to the mitigation of insulin resistance (64, 71, 74).

4.2.2 Limitations and future directions
Current metabolomics studies have identified distinct metabolic

profiles across various samples, including blood, urine, liver, and

skeletal muscle, demonstrating strong predictive potential for

prediabetes risk. However, as with proteomics, most studies are

cross-sectional, identifying metabolic differences between prediabetic

and normoglycemic groups without validation through cohort studies.

Limited sample sizes in current studies hinder the exploration of

correlations and replication. The mechanisms underlying differential

metabolites remain speculative and require further validation. Current

research relies heavily on animal models, requiring clinical validation to

assess diagnostic efficacy and therapeutic potential (69). Saliva, as a

non-invasive, stable, and readily accessible sample, shows promise as a

superior alternative to other bodily fluids for biomarker identification

(88, 89). Saliva metabolomics holds significant potential for identifying

biomarkers, presenting new opportunities for scientific research.
4.3 Transcriptomics

Transcriptomics studies RNA transcripts in specific cells or tissues,

using techniques such as bulk RNA sequencing and single-cell RNA

sequencing (scRNA-seq), often integrated with polymerase chain
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reaction (PCR) technologies (90). Gene expression can be analyzed

at both bulk and single-cell levels, with scRNA-seq providing high-

throughput insights into individual cell behavior. This approach

provides a comprehensive view of gene expression, revealing

differences among cells of various types, states, and functions.

Identifying differentially expressed genes and mapping them to

biological pathways deepens our understanding of genetic regulation

networks (91). Transcriptomics facilitates the discovery of disease

biomarkers, improving diagnostic and predictive accuracy.

4.3.1 Transcriptomics-based biomarkers
Most transcriptomic studies on prediabetes utilize blood

samples due to their accessibility, minimal invasiveness, and

reproducibility. A recent study identified four mRNAs—ZBP1,

DDX58, NFKB1, and CHUK—with elevated expression in

prediabetic individuals compared to healthy controls or T2D

patients. These mRNAs are involved in the cGAS/STING and

NOD-like receptor (NLR) pathways, which are critical in

inflammation-driven IR (92). Lee et al. identified differential

mRNA expression of inflammation and lipogenesis genes—such

as FCGR2b, LGALS1, VCAM1, IGFBP5, and GAS6—in a high-fat

diet-induced prediabetic mouse model (93). Microarray analysis

revealed distinct mRNA expression profiles in prediabetic patients

compared to normoglycemic controls. These mRNAs are involved

in key biochemical pathways, including starch and sucrose

metabolism, pantothenate and coenzyme A biosynthesis, and

niacin metabolism (94).

The transcriptomic landscape of prediabetes extends beyond

mRNA, with non-coding RNAs (ncRNAs) playing key roles. Long

ncRNAs (lncRNAs), over 200 nucleotides in length, lack protein-

coding capacity but regulate gene expression via epigenetic,

transcriptional, and post-transcriptional processes (95, 96).

Dysregulated lncRNAs have been implicated in various diseases,

making them promising biomarkers and therapeutic targets (97).

LncRNAs influence IR by regulating lipid, carbohydrate metabolism,

and inflammation (98). Several lncRNAs identified via microarray and

validated internally play crucial roles in the pathophysiology of

prediabetes (94). LncRNA H19 regulates lipid, glucose, and immune

metabolism, showing high sensitivity for identifying prediabetes (99). It

promotes hyperglycemia by upregulating hepatic FoxO1 expression

and enhancing gluconeogenesis (100). Additionally, lncRNA H19

shows diagnostic and predictive potential for diabetes-related

microvascular complications (99). LncRNA HCG27_201, with 91%

sensitivity and 64% specificity, is a promising biomarker for

prediabetes, though its mechanism requires further study (101).

MicroRNAs (miRNAs), 19 to 22 nucleotides long, are small non-

coding RNAs that regulate post-transcriptional gene expression (102).

MiRNAs regulate key processes such as proliferation, differentiation,

and apoptosis by modulating protein translation (103). Prediabetes

involves hyperglycemia-induced stress, withmiRNAs playing a key role

in regulating this response (104). Changes in serum or plasma miRNA

profiles are commonly observed in individuals with prediabetes (105).

MiRNAs regulate glucose homeostasis, insulin production, and

secretion (106, 107). MiR-126-3p outperforms HbA1c in detecting

prediabetes, offering greater diagnostic precision (108). TaqMAN-
frontiersin.org

https://doi.org/10.3389/fendo.2025.1520436
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2025.1520436
based RT-qPCR identified elevated miR-375 and miR-9, two islet-

specific miRNAs, in prediabetic patients (109). They play a crucial role

in glucose homeostasis and the pathogenesis of diabetes by regulating

insulin secretion mechanisms (110). While most prediabetes

biomarkers are also present in diabetes, miR-192 and miR-193b

levels are elevated exclusively in prediabetes, with no increase in

T2D. This differential expression suggests that prediabetes reflects a

dynamic adaptation to metabolic changes, potentially progressing to

diabetes (111). Most studies have focused on male or mixed-sex

cohorts, lacking female-specific miRNA profiles for prediabetes.

Kovac et al. divided female patients into IFG and NGT groups,

profiling plasma miRNAs and validating them in islet cells and

adipocytes of female mice. They found elevated let-7i-5p levels under

prediabetic conditions. Let-7i-5p may regulate systemic insulin

sensitivity and serve as a biomarker for prediabetes in women by

impairing insulin signaling and glucose homeostasis (112).

Circular RNAs (circRNAs) are closed-loop non-coding RNAs

involved in key biological processes across eukaryotes and

prokaryotes (113, 114). CircRNAs act as miRNA sponges,

sequestering miRNAs and regulating their target genes by

competing for miRNA binding sites (115–117). CircRNAs such as

hsa_circ_0063425, hsa_circ_0056891, hsa_circ_0111707, and

hsa_circ_0071336 regulate target gene expression by sequestering

miRNAs, highlighting their potential as prediabetes biomarkers

(118–120). Table 3 delineates the potential biomarkers identified

through transcriptomic methodologies.

Insulin resistance and dysregulation of pancreatic b-cell
function are the predominant pathways implicated in

transcriptomics-based biomarkers of prediabetes. In the biological

pathways underlying insulin resistance, the upregulation of let-7b,

miR-144, miR-29a, and miR-148b-3p may be positively correlated,

collectively contributing to the exacerbation of insulin resistance

through various mechanisms (122, 125). In contrast, the

downregulation of miR-27a-3p and miR-142 may also be

positively correlated, suggesting a protective role in modulating

insulin resistance, potentially alleviating its effects. In the context of

pancreatic b-cell dysfunction, the upregulation of miR-30a-5p,

miR-182-5p, miR-375, and miR-9 may interact synergistically,

adversely affecting b-cell function and further exacerbating b-cell
damage (109, 126). These changes in miRNA expression highlight

their involvement in the complex regulatory networks associated

with both insulin resistance and b-cell dysfunction.
4.3.2 Limitations and future directions
The current research is limited by the lack of large-sample

validation, multi-population studies, and prospective trials to

confirm these biomarkers’ role in diabetes risk screening

strategies. Many mechanisms remain unclear, requiring further

experimental studies to explore the regulatory roles of ncRNAs in

downstream gene expression and their entry into the bloodstream

(118, 124). Differential expression of prediabetic RNAs is mainly

observed in serum and plasma, indicating potential for future

exploration in diverse tissues.
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4.4 Genomics

Genomics focuses on analyzing genome sequences and linking

them to molecular and phenotypic traits (127). It explores genetic

variations such as single nucleotide polymorphisms (SNPs) and

chromosomal abnormalities, which are associated with disease

susceptibility. Such variations influence health outcomes and

treatment responses. Genomics employs tools such as genotype

microarrays, next-generation sequencing, and exome sequencing.

The field has experienced a surge in available genomic data (128).

Genome-wide association studies (GWAS) identify genetic variants

associated with complex diseases and traits by analyzing large

sample sizes. Through GWAS, researchers have uncovered

significant associations between specific genotypes and increased

disease risk.

4.4.1 Genomics-based biomarkers
Genomic approaches have elucidated numerous biomarkers of

considerable significance associated with prediabetes (Table 4,

Figure 2). Feng et al.’s study indicated that allele C of SNP

rs867529 at the PERK gene locus is associated with an increased

risk of prediabetes, whereas allele G of SNP rs10986663 in the BIP

gene is inversely correlated with prediabetes risk. Genetic variations

in these genes may play a role in the development of endoplasmic

reticulum stress (130). A GWAS-based on changes in prediabetes

status has identified five novel genes associated with changes in

prediabetes status, including SGCZ at 8p22, HPSE2 at 10q24.2,

ADGRA1 at 10q26.3, GLB1L3 at 11q25, and PCSK6 at 15q26.3

(131). Sparsø et al. discovered that the G allele of MTNR1B

rs10830963 is associated with an increased risk of isolated IFG in

a large sample of European populations (134).

The correlation between genetic susceptibility markers and the

prediabetes phenotype has been a prominent focus of research in

recent years. Lin et al. utilized GWAS technology to investigate the

Chinese Han population, revealing a significant association between

genetic variations of CTAGE11P, MARCHF2, KRT71, ABO and

other genes with fasting proinsulin (FPI), fasting insulin (FI), 2

hours postprandial proinsulin (2hPI) and 2 hours postprandial

insulin (2hI). These genetic variants may be indicative of IR and

abnormal insulin secretion, holding promise as potential

biomarkers for prediabetes prevention (129). The MRPS6/

SLC5A3 gene rs13052524 and rs62212118 sites were found to be

correlated with 2hPG levels in prediabetic patients from Hainan,

China, according to a study conducted there. Six loci within four

prediabetic genes (LINC01648, MATN1, CRAT37, and SLCO3A1)

exhibited associations with HbA1C. This indicates that these loci

may play a role in the regulation of 2hPG and HbA1C levels (135).

Genetic loci associated with waist-hip ratio, such as rs6795735

(ADAMTS9), rs984222 (TBX15-WARS2) and rs1011731 (DNM3-

PIGC), were found to be linked to the risk of IFG, indicating a

potential association between genetic predisposition to central

obesity and impaired islet function (133). Wang et al. conducted

a GWAS and identified two independent significant sites
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(rs9457733 and rs11243373) as well as 37 candidate genes

associated with prediabetic 25 (OH) D3, indicating its importance

as a risk factor for prediabetes (137). Choi et al. discovered that

GCK and YKT6 were susceptibility loci associated with prediabetes

in a GWAS study involving two population cohorts, a control

group, and a prediabetic group. Additionally, polymorphisms of
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these genetic variants were independently linked to an elevated risk

of microalbuminuria. This suggests that the genetic mechanism of

prediabetes may serve as a predictor for the risk of renal

microvascular complications to some extent, thereby laying the

groundwork for early detection and management of high-risk

patients (136).
TABLE 3 Transcriptomic biomarkers associated with prediabetes.

Source RNA
classification

Species RNA transcript Potential pathogenesis Refs.

Serum mRNA Human ZBP1↑, DDX58↑, NFKB1↑, CHUK↑ cGAS/STING, NOD-like
Receptor Pathways

(92)

Serum mRNA High-fat diet-
induced pre-DM
mouse model

FCGR2b↑, LGALS1↑, VCAM1↑,
IGFBP5↑, GAS6↑

Inflammation and lipogenesis (93)

Blood mRNA Human BX571672.2↑, RP11-195E2.4↑, SIRPB2↓,
HIST1H4D↓, CCNJL↓, CADM1↑, KCNJ2↓,
CASP5↓, IL1B↓, MGAM↓

Starch and sucrose metabolism,
pantothenate and coenzyme A
biosynthesis, and nicotinate and
nicotinamide metabolism

(94)

Serum lncRNA Human lncRNA HCG27_201↓ – (101)

Plasma lncRNA Human lncRNA H19↓ – (99)

Whole Blood lncRNA Human lncRNA ENST00000550337.1↑ - (121)

Blood lncRNA Human NONHSAT010921↑, NONHSAT108315↑, lnc-
SOX6-6↓, NONHSAT070281↓,
NONHSAT122651↓, NONHSAT081137↑,
NONHSAT073729↓, NONHSAT123762↓,
NONHSAT058496↑, NONHSAT096326↑

- (94)

Plasma miRNA Human has-miR-1249↓, has-miR-320b↓, has-
miR-572↑

- (103)

Whole Blood miRNA Human miR-1299↑, miR-126-3p↑, miR-30e-3p↑ - (108)

Serum miRNA Human miR-192↑, miR-193b↑ - (111)

Plasma miRNA Human let-7b↑, miR-142↓, miR-144↑, miR-29a↑ IR (122)

Plasma miRNA Human miR-21↑ ROS damage (123)

Plasma miRNA Human miR-145-5p↓ – (124)

Plasma/Pancreatic
islets/white
adipose tissue

miRNA Human/
Mouse (female)

let-7i-5p↑ Impairment of insulin signaling in
pancreatic b cells

(112)

Plasma miRNA Human miR-148b-3p↑, miR-27a-3p↓ IR (125)

Whole Blood miRNA Human miR-30a-5p↑, miR-182-5p↑ Pancreatic b cell dysfunction (126)

Whole Blood miRNA Human miR-375↑, miR-9↑ Pancreatic b cell dysfunction (109)

Peripheral blood
mononuclear cells

circRNA Human hsa_circ_0111707↓ – (118)

Peripheral blood
mononuclear cells

circRNA Human hsa_circ_0063425↓, hsa_circ_0056891↓ PI3K/AKT signaling pathway (119)

Peripheral blood
mononuclear cells

circRNA Human hsa_circ_0071336↓ - (111)
frontie
ZBP1, Z-DNA-binding protein 1; DDX58, DexD/H-Box Helicase 58; NFKB1, Nuclear Factor Kappa B Subunit 1; CHUK, conserved helix–loop–helix ubiquitous kinase; FCGR2b, fc receptor, IgG, low
affinity Iib; LGALS1, lectin, galactose binding, soluble 1; VCAM1, vascular cell adhesion molecule 1; IGFBP5, insulin-like growth factor binding protein 5; GAS6, growth arrest specific 6; SIRPB2, signal
regulatory protein b 2; HIST1H4D, histone cluster 1 H4 family member d; CCNJL, cyclin J-like; CADM1, cell adhesionmolecule 1; KCNJ2:Potassium inwardly rectifying channel subfamily J member 2;
CASP5, caspase 5; IL1B, Interleukin 1 b; MGAM, Maltase-glucoamylase. “–” The information has not been obtained from the primary publication or has not been found yet.
“↑” The symbol indicates upregulation of the marker in prediabetes. “↓” The symbol indicates downregulation of the marker in prediabetes.
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4.4.2 Limitations and future directions
Prediabetes often arises from a combination of minor variations

in multiple genes and the interplay between genetic factors and

environmental influences, which presents challenges in interpreting

and applying genetic test results. Most studies do not stratify SNPs

by age/sex to investigate age/sex-specific differences in SNP effects

(130, 131, 134). Furthermore, environmental factors such as

lifestyle, diet, and physical activity significantly impact the onset

and progression of prediabetes (138). However, genomics struggles

to comprehensively encompass the influence of these factors.

Studies based on GWAS can only identify correlations, not

causations. Therefore, it is essential to validate the association

between genetic loci or candidate genes and prediabetes through

molecular experiments. Current genomic studies are limited by

relatively small sample sizes. Future large-scale genomic research

will be essential to validate the identified SNPs and uncover

additional genetic loci associated with prediabetes (131).

Although genomic biomarkers have been identified in

European and Chinese populations, their applicability in

underrepresented populations remains to be fully explored, given

the genetic diversity across different ethnic and geographic groups.
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For example, cross-population GWAS could validate the relevance

of these biomarkers in other populations and potentially identify

novel genetic markers specific to these groups. Such efforts would

contribute to a better understanding of the genetic heterogeneity of

prediabetes across diverse populations and support the

development of precision medicine and global prediabetes

diagnostic strategies.
4.5 Epigenomics

Epigenetic modifications, such as DNA methylation and histone

alterations, regulate gene expression without altering the DNA

sequence and play a key role in prediabetes pathophysiology.

Through epigenomic analysis, researchers can identify DNA

methylation changes in gene promoters and histone modifications

linked to prediabetes traits. Advanced technologies, including whole-

genome methylation sequencing and ChIP-seq, enable the discovery

of specific biomarkers. These findings provide essential support for

early diagnosis and personalized treatments, offering new avenues for

precision medicine in prediabetes management (139, 140).
4.5.1 Epigenomics-based biomarkers
As a common epigenetic modification, DNA methylation involves

adding methyl groups to the fifth carbon of cytosine in cytosine-

phosphate-guanine (CpG) dinucleotides, catalyzed by DNA

methyltransferase (141, 142). Hypermethylation in gene promoters

impedes transcription factor binding, inhibiting transcription and

silencing gene expression. In contrast, hypomethylation enhances

transcription factor binding, often increasing gene expression. Using

methylated DNA immunoprecipitation (MeDIP) technology, Matsha

et al. identified distinct DNA methylation patterns in South African

individuals of mixed ancestry, showing both hypermethylation and

hypomethylation in gene promoters. These changes affect genes

involved in immune function, signal transduction, glucose transport,

and pancreatic development. The affected pathways include linoleic acid

and arachidonic acid metabolism, both showing hypomethylation in

prediabetes (143). This study lays a foundation for exploring epigenetic

mechanisms in prediabetes and identifying potential biomarkers.

Testosterone and estrogen directly affect skeletal muscle, liver,

and adipose tissue, influencing carbohydrate metabolism. They also

indirectly influence metabolism by modulating body fat quantity

and distribution (144, 145). These hormones thus play a pivotal role

in glucose regulation and prediabetes pathogenesis. Peripheral

blood DNA methylation analysis in a case-control study found

a positive correlation between AR gene methylation and IFG in

females. Serum testosterone negatively modulated the link between

AR gene methylation and IFG, suggesting that low testosterone and

AR methylation levels reduce IFG risk (146). This phenomenon

may be attributed to the capacity of testosterone to ameliorate IR

and dysregulated glucose metabolism resulting from AR gene

methylation by modulating the expression or activity of the AR,

thereby reducing the risk of IFG. Feng et al. examined how estrogen

receptor a (ESRa) methylation and progesterone influence glucose
TABLE 4 Genomics biomarkers associated with prediabetes.

Species Genes Potential
pathogenesis

Refs.

Human CTAGE11P,
MARCHF2,
KRT71, ABO

IR and abnormal
insulin secretion

(129)

Human PERK, BIP endoplasmic reticulum stress (130)

Human SGCZ, HPSE2,
ADGRA1,
GLB1L3, PCSK6

– (131)

Human GLIS3, CRY2 Impaired islet b cell function (132)

Human ADAMTS9, TBX15-
WARS2, DNM3-PIGC

Central obesity (133)

Human MTNR1B Pancreatic b cell dysfunction (134)

Human MRPS6, SLC5A3,
LINC01648, MATN1,
CRAT37, SLCO3A1

– (135)

Human GCK, YKT6 Initiation of abnormal
glucose homeostasis,
development
of microalbuminuria

(136)
CTAGE11P, cutaneous T cell lymphoma-associated antigen 11 pseudogene; MARCHF2,
membrane-associated ring-CH-type finger 2; KRT71, keratin 71; ABO, ABO blood group
system; PERK, protein kinase RNA-like endoplasmic reticulum kinase; BIP, binding
immunoglobulin protein; SGCZ, sarcoglycan zeta; HPSE2, heparanase 2; ADGRA1,
adhesion G protein-coupled receptor A1; GLB1L3, galactosidase beta 1 like 3; PCSK6,
proprotein convertase subtilisin/kexin type 6; GLIS3, GLIS family zinc finger 3; CRY2,
cryptochrome circadian regulator 2; ADAMTS9, a disintegrin and metalloproteinase with
thrombospondin motifs 9; TBX15-WARS2, TBX15-WARS2 fusion gene; DNM3-PIGC,
DNM3-PIGC fusion gene; MTNR1B, melatonin receptor 1B; MRPS6, mitochondrial
ribosomal protein S6; SLC5A3, solute carrier family 5 member 3; LINC01648, long
intergenic non-protein coding RNA 1648; MATN1, matrilin 1; CRAT37, carnitine
acetyltransferase 37; SLCO3A1, solute carrier organic anion transporter family member
3A1; GCK, glucokinase; YKT6, ykt6 v-SNARE homolog. “–” The information has not been
obtained from the primary publication or has not been found yet.
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metabolism disorders in a case-control study. In men and

postmenopausal women, CpG 1 methylation in the ESRa gene and

elevated progesterone levels were positively associated with IFG.

Individuals with both high CpG 1 methylation and progesterone

levels showed a higher IFG risk (147). This mechanism likely involves

IR caused by ESRa methylation, progesterone levels, and pancreatic

secretory cell apoptosis. These factors may act synergistically through

the PI3K/AKT pathway, but further research is needed to clarify the

underlying mechanisms (148–150).

In late pregnancy, hormonal fluctuations increase IR, requiring

greater insulin secretion by pancreatic b cells to maintain normal

blood glucose (151). If b-cell secretion fails to meet increased

demand, hyperglycemia occurs. A cohort study using DNA

methylation assays identified differential methylation at three

CpG sites—LINC00917, TRAPPC9, and LEF1—in women with

abnormal glucose tolerance. LINC00917 and TRAPPC9 sites were

independently linked to glucose tolerance status four years

postpartum, suggesting their role in postprandial prediabetes (152).

Modifications to histones alter their structure and function,

influencing chromatin architecture and gene expression. Histone

methylation is a key post-translational modification; for example,

H3K4me3 refers to the trimethylation of histone H3’s fourth lysine

residue. The myeloid/lymphoid or mixed-lineage leukemia (MLL)
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gene encodes a histone methyltransferase that methylates H3K4,

modulating gene transcription (153). Yoshino et al. demonstrated

the crucial role of the MLL gene in pancreatic b cells. In bHC-9 cells

with MLL knockout, insulin secretion declined, along with reduced

expression of glucose-sensitive genes SLC2A1 and SLC2A2.

Moreover, MLL heterozygous knockout mice showed impaired

glucose tolerance and reduced insulin secretion (154). These

results suggest that MLL genes contribute to prediabetes

pathogenesis through histone modifications. Castellano-Castillo

et al. provided the first analysis of H3K4me3 markers on gene

promoters involved in lipogenesis, lipid metabolism, and

inflammation in human visceral adipose tissue. They found

significant enrichment of H3K4me3 at the promoters of E2F1,

LPL, SREBF2, SCD1, PPARG, and IL6 in lean individuals with

normal glucose compared to obese individuals with prediabetes.

This suggests that H3K4me3 plays a critical role in prediabetes

onset and progression (155). Table 5 presents potential biomarkers

identified through epigenomic analysis.

4.5.2 Limitations and future directions
In the field of epigenomics related to prediabetes, current

research has predominantly focused on 5-methylcytosine (5mC)

and 5-hydroxymethylcytosine (5hmC). However, emerging
FIGURE 2

Genomics biomarkers associated with prediabetes. The inner circle denotes the gene name, while the outer circle illustrates the corresponding SNP
associated with that gene. “–” The information has not been obtained from the primary publication or has not been found yet.
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epigenetic modifications, such as N6-methyladenine (6mA) and

other non-canonical DNA modifications, remain underexplored in

this context. Future studies should investigate these additional

modifications to gain a more comprehensive understanding of the

epigenomic landscape and their potential roles in prediabetes

pathogenesis. MeDIP cannot distinguish between 5mC and 5hmC

or identify differentially methylated CpG sites. Advanced

techniques are needed for more precise DNA methylation

analysis in future research. Although some studies used

peripheral blood leukocytes, future research should focus on

tissues more relevant to prediabetes, such as pancreatic b cells,

due to variations in methylation across blood cell types (143, 146).

Moreover, future studies should control for confounding factors

like smoking and obesity to reduce potential interference. Since

many studies are observational case-control studies, cohort studies

are needed to establish causality and provide further validation

(146). Animal study findings must be validated in clinical settings.
4.6 Microbiomics

4.6.1 Gut microbiome-based biomarkers
The gut microbiome, consisting of trillions of microbes residing

in the gastrointestinal tract, has been recognized as a virtual organ

that interacts with the gut and other organs in the host’s body to

facilitate various physiological processes (156). Multiple research

has shown that gut microbiota and its metabolites are essential

in controlling inflammation, maintaining energy equilibrium,

and regulating lipid and glucose metabolism (157–159). Emerging

evidence reveals significant gut microbiota dysbiosis in individuals

with prediabetes. High-throughput 16S rRNA sequencing, widely

used in microbiome research, provides insights into bacterial

diversity and community structure in health and disease.

Prediabetes alters gut microbial structure, reducing both diversity

and relative abundance (160). Compared to individuals with NGT,
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there is a notable decrease in the presence of bacteria that produce

short-chain fatty acids (SCFAs) in the gut microbiota of those with

prediabetes, including genera such as Anaerostipes, Enterococcus,

Intestinibacter, Faecalibacterium prausnitzii, Roseburia and others

(161–164). The primary SCFAs present in the intestinal tract are

acetate, propionate, and butyrate. The population of butyrate-

producing bacteria in the intestines of individuals with prediabetes is

notably reduced, including species such as Roseburia, Faecalibacterium

prausnitzii, Clostridium spp., Alistipes spp., Pseudoflavonifractor spp.,

Oscillibacter spp., and others (161, 163, 165, 166). In contrast, an

increased abundance of some opportunistic pathogenic bacteria was

observed, including species from Enterobacteriaceae, Streptococcus,

Pseudomonadota, and Shigella spp./Escherichia spp., among others

(162, 164, 166–168). The increased presence of opportunistic

pathogens and bacteria-derived lipopolysaccharides can lead to the

development of low-grade inflammation and IR (169, 170), both of

which are key characteristics of prediabetes. Table 6 summarizes the

potential biomarkers for prediabetes identified through gut

microbiota profiling.

As the main product of dietary fiber fermentation in the large

intestine, butyrate provides a critical energy source for colon cells (178).

Butyrate and the bacteria that produce it promote anti-inflammatory

properties, maintain intestinal immune homeostasis, and can also

enhance insulin sensitivity and glucose tolerance (179, 180). The

mechanisms through which SCFAs like butyrate regulate blood

glucose may include several key aspects (Figure 3).

Butyrate supplementation has been demonstrated to elevate

levels of glucagon-like peptide-1 (GLP-1) and significantly enhance

glycemic control in individuals with T2D (181). The hormone GLP-1,

produced in the intestines, acts to stimulate pancreatic b cells and

induce the secretion of insulin for the regulation of glucose levels.

Butyrate and other SCFAs stimulate the secretion of GLP-1 by

binding to FFAR2 receptors on intestinal L cells (182). The GLP-

1R (receptor) gene is also expressed in b cells, and butyrate can

induce activation of the GLP-1R gene and subsequent release of GLP-

1 (183). The potential mechanism involves GLP-1 promoting the

upregulation of cAMP (cyclic adenosine monophosphate), leading to

postprandial insulin secretion through acceleration of glucose-

dependent closure of ATP-regulated potassium channels (184–186).

In addition to its pro-insulin effect, GLP-1 also maintains pancreatic

b cell mass by promoting b cell proliferation and inhibiting b cell

apoptosis, and has been utilized in the transdifferentiation of insulin-

producing cells (187–189).

The impact of SCFAs extends beyond the gastrointestinal tract,

as they are absorbed into the peripheral circulation and contribute

to tissue metabolism. Butyrate signaling plays a crucial role in islet

function. Butyrate and other SCFAs can serve as ligands for G

protein-coupled receptors (GPR), binding to free fatty acid receptor

3 (FFAR3) (GPR41) and FFAR2 (GPR43), among others. Both

GPR41 and GPR43 are expressed in pancreatic islets (190, 191).

Through GPR41 signaling, butyrate can enhance b cell metabolism

and inhibit islet cell apoptosis (192). On the other hand, by

activating GPR43, SCFAs such as butyrate can stimulate insulin

secretion, b cell proliferation, and the expression of b cell
TABLE 5 Epigenomics biomarkers associated with prediabetes.

Source Species Biomarkers or key pathways Ref.

Peripheral
blood

Human Linoleic acid and arachidonic
acid metabolism

(143)

Peripheral
blood

Human AR, testosterone (146)

Peripheral
blood

Human ESRa, progesterone, PI3K/AKT
signaling pathway

(147)

Peripheral
blood

Human LINC00917, TRAPPC9, LEF1 (152)

Pancreas islet Mouse MLL, SLC2A1, SLC2A2 (153)

Adipose
tissue

Human E2F1, LPL, SREBF2, SCD1, PPARG, IL6 (155)
LINC00917, long intergenic non-protein coding RNA 917; TRAPPC9, trafficking protein
particle complex subunit 9; LEF1, lymphoid enhancer-binding factor 1; SLC2A, solute carrier
family 2 member; E2F1, E2F transcription factor 1; LPL, lipoprotein lipase; SREBF2, sterol
regulatory element-binding transcription factor 2; SCD1, stearoyl-CoA desaturase 1; PPARG,
peroxisome proliferator-activated receptor gamma.
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differentiation genes, indicating that GPR43 holds promise as a

target for future research (193).

SCFAs, primarily butyrate, function as a natural inhibitor

of histone deacetylase (HDAC) and regulate gene expression

through epigenetic mechanisms (194). Animal experiments

have demonstrated that sodium butyrate may ameliorate

IR, dyslipidemia, fat accumulation, and gluconeogenesis in rats
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by inducing hyperacetylation of histone H3, thereby enhancing

glucose homeostasis (195). Furthermore, it has been demonstrated

that sodium butyrate can enhance insulin sensitivity in skeletal muscle

cells exposed to long-term palmitate by promoting hyperacetylation

of insulin receptor substrate-1 (196). Therefore, the reduction of

butyrate may lead to IR through epigenetic mechanisms,

subsequently causing disorders in blood glucose metabolism.
TABLE 6 Microbiomics biomarkers associated with prediabetes.

Gut/oral
microbiota

Species Enrichment Depletion Refs.

Gut microbiota Human Dorea spp., Pseudomonadota, Enterobacterales,
Shigella spp. & Escherichia spp., Bacilli,
Lactobacillales, Streptococcaceae, Streptococcus,
Eisenbergiella, Eisenbergiella massiliensis, Neglecta,
Neglecta timonensis

Roseburia sp., Roseburia intestinalis,
Faecalibacterium prausnitzii, Dialister invisus,
Veillonella spp., Sutterella wadsworthensis,
Oscillibacter valericigenes,
Bacteroides coprocola

(162)

Human Collinsella, Allisonella, Escherichia/Shigella,
Senegalimassilia, Prevotella_9,
Granulicatella, Veillonella

Intestinibacter, Enterococcus,
Anaerostipes, Blautia

(161)

Human Dorea, Ruminococcus, Sutterella, Streptococcus Clostridium, Akkermansia muciniphila (167)

Human Comamonadaceae - (171)

Human Megamonas,
Haemophilus, norank_p_Saccharibacteria

Ruminococcaceae, Barnesiella, Sutterella,
Ruminiclostridium, Clostridiales,
Coriobacteriaceae,
Ruminiclostridium, Flavonifractor

(160)

Human – Roseburia (163)

Zucker Diabetic Sprague
Dawley rat

Alistipes, Ruminococcus Lactobacillus (172)

Human An unknown genus from
family Pseudonocardiaceae

– (173)

Human Bproteobacteria, genus Prevotella, genus
Megamonas, Clostridiales sp. SS3/4

Verrucomicrobia, Verrucomicrobiae,
Streptococcus, Akkermansia muciniphila
ATCCBAA-835, Faecalibacterium prausnitzii
L2-6

(166)

Human Escherichia coli, Streptococcus salivarius,
Eggerthella sp., Megasphaera elsdenii

Clostridia class (e.g. Dialister invisus,
Roseburia hominis),
Faecalibacterium prausnitzii

(164)

Human Blautia genus, Serratia genus - (174)

Human Escherichia, Veillonella Blautia, Anaerostipes (175)

Human Clostridium bolteae Faecalibacterium spp., Clostridium spp.,
Alistipes spp., Pseudoflavonifractor spp.,
Oscillibacter spp.

(165)

Human Megasphaera elsdenii, Streptococcus equinus/
gallolyticus/infantarius/lutetiensis, Prevotella_9,
Alistipes finegoldii/onderdonkii, Mitsuokella,
Escherichia/Shigella albertii/boydii/coli/dysenteriae/
fergusonii/flexneri/sonnei/vulneris, Megasphaera,
Prevotella_2, Vibrio cholerae, Lactobacillus,
Alloprevotella, Rhodococcus baikonurensis/
boritolerans/degradans/erythropolis/
globerulus/hoagii/opacus/qingshengii/rhodochrous,

Prevotella_9, Phascolarctobacterium faecium,
Barnesiella intestinihominis, Flavonifractor
plautii, [Family]Ruminococcaceae,
Tyzzerella_4 nexilis, Bacteroides nordii,
Faecalibacterium, Agathobacter, [Family]
Muribaculaceae, Ruminococcaceae_UCG-002,
Christensenellaceae_R-7_group,
Ruminococcaceae_UCG-010

(168)

Human Blautia obeum, Blautia wexlerae, Clostridium
clostridioforme, Ruminococcus gnavus

Bacteroides dorei, Coprococcus eutactus,
Eubacterium eligens, Bacteroidetes eggerthii

(176)

Oral microbiota Human Absconditabacteriales, Stomatobaculum,
Leptotrichia, Campylobacter

Alloprevotella, Neisseria, Rothia,
Streptococcus, Ruminococcaceae, Leptotrichia

(177)
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SCFAs binding receptors, such as GPR109A, are also present

in adipose tissue. A study demonstrated that the administration

of a GPR109A agonist inhibited lipolysis to improve glucose

homeostasis in T2D patients (197). Therefore, it can be

hypothesized that the deficiency of SCFAs, such as butyrate, may

lead to impaired blood glucose regulation by accelerating lipolysis;

however, further confirmation is still required through human

cohort studies.

4.6.2 Oral microbiome-based biomarkers
Both salivary glucose levels and pH influence the composition of

the oral microbiome. Studies show that individuals with diabetes have

lower salivary pH compared to non-diabetic individuals, and salivary

glucose levels are closely linked to hyperglycemia (198–200). Thus,

individuals with hyperglycemia are expected to display a distinct oral

microbiome composition compared to healthy individuals.

Significant structural changes in the oral microbiome have been

observed in individuals with diabetes (201, 202). Although the oral

bacterial population is significantly smaller than that of the gut, it has

the potential to disseminate to other body sites, leading to localized

and systemic inflammation (203, 204). These potentially harmful

pathogens may have a notable influence on the development of IR,

akin to the effect of the microbiota in the gut. Thus, oral microbiota

dysbiosis is not only a marker of hyperglycemia but may also drive

disease progression. The findings indicate that the traits displayed by

the oral microbiota could serve as potential indicators of disease

status. The analysis of bacterial microbiome composition in saliva has

the potential to serve as a valuable non-invasive approach for

diagnosing prediabetes.

The limited research in this area has resulted in no consensus on

whether oral microbial abundance and diversity increase or
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decrease in prediabetes. One study analyzing the salivary

microbiome based on HbA1c and FBG reported that prediabetic

individuals exhibit greater microbial richness and diversity

compared to normoglycemic individuals (177). However, a study

by Saeb et al. reached the opposite conclusion, finding a significant

reduction in the biological and phylogenetic diversity of the

prediabetic oral microbiota (205). Rungrueang et al. discovered

that the ratio of firmicutes to bacteroides in the oral microbiota of

prediabetic patients was higher compared to healthy controls,

consistent with previous findings in T2D. The abundance of

Rothia significantly decreased in prediabetes, irrespective of

whether HbA1c or FPG was used as the classification criterion

(177). The mechanism may be that nitrate reductase in Rothia

metabolizes nitrate to nitrite, which can be further reduced to nitric

oxide (NO) in blood and muscle. NO has been shown to have a

substantial impact on the control of metabolic processes, and it has

the ability to enhance insulin secretion and promote muscle glucose

uptake (206). Therefore, a reduction in the abundance of oral

bacteria Rothia may serve as a significant indicator for the

presence of prediabetes. The potential biomarkers for prediabetes,

identified through oral microbiome analysis, are outlined in Table 6.

4.6.3 Limitations and future directions
Due to the multifactorial nature of the impact on intestinal flora, it

is challenging for many studies to effectively control for potential

confounding variables, which may somewhat limit the generalizability

of study findings. Among the various factors influencing gut

microbiome composition and diversity, diet stands out as one of the

most significant. For instance, a high-carbohydrate diet has been linked

to elevated levels of Prevotella, while a high-fat/protein diet is

associated with a predominant presence of Bacteroides (207). By
FIGURE 3

Mechanisms through which SCFAs, particularly butyrate, modulate blood glucose levels. Butyrate and other SCFAs can induce the secretion of GLP-
1 by activating FFAR2 receptors on intestinal L cells, thereby modulating the metabolism of islet b cells. Butyrate and other SCFAs are involved in the
metabolism of islet b cells through their binding to FFAR2 and FFAR3 receptors in islet cells. Butyrate modulates gene expression through the
promotion of histone acetylation, leading to enhanced insulin sensitivity and decreased gluconeogenesis. SCFAs like butyrate may enhance glucose
homeostasis by inhibiting lipolysis.
frontiersin.org

https://doi.org/10.3389/fendo.2025.1520436
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2025.1520436
adopting a plant-based diet, you can enhance the abundance of

beneficial bacteria in your gut, such as Bacteroidetes, thereby

supporting gastrointestinal and overall health (208). Furthermore,

the administration of hypoglycemic agents, antibiotics, probiotics,

and other pharmaceuticals may influence the diversity of gut

microbiota. For instance, metformin treatment elevates Firmicutes

while reducing Bacteroidetes (209). The use of antibiotics often

results in damage to the gut microbiota. For instance, broad-

spectrum antibiotics like ampicillin disrupt the microbial community

and lead to a reduction in the diversity of the gut microbiota (210).

Therefore, minimizing the impact of confounding factors to the

greatest extent possible may be crucial for enhancing the reliability

of changes observed in gut microbiota outcomes. Since some studies

were cross-sectional and focused on single-race cohorts, further

longitudinal studies across diverse populations are needed.
4.7 Radiomics

Radiomics represents a burgeoning field within medical imaging

that emphasizes the high-throughput extraction and analysis of

quantitative features from various imaging modalities, including

magnetic resonance imaging (MRI), computed tomography (CT),

and ultrasound (US) (211). Through precise feature extraction

techniques and comprehensive data analysis, radiomics thoroughly

explores the vast information embedded in medical images, thereby

facilitating the identification of disease-specific biomarkers (212).

These biomarkers elucidate the pathophysiological state, monitor

disease progression, and predict treatment response, providing a

critical foundation for clinical diagnosis, therapeutic decisions, and

prognostic evaluations (213, 214).

4.7.1 Radiomics-based biomarkers
Visceral adipose tissue (VAT) serves as a critical predictor of IR

and is prominently featured as a biomarker in imaging studies related

to diabetes and prediabetes (215). The increased metabolic activity of

VAT promotes the release of free fatty acids into circulation, thereby

inducing IR in adjacent tissues (216). A German population-based

study employed quantitative MRI to evaluate the link between

hepatic steatosis and prediabetes. Results showed that MRI-defined

hepatic steatosis was significantly higher in individuals with

prediabetes and positively correlated with several glucose

metabolism markers, such as HbA1c, fasting glucose, and 2hPG

(217). The underlying cause may be associated with IR induced by an

accumulation of lipid metabolites in the liver (218), indicating that

hepatic steatosis could serve as a potential biomarker for prediabetes.

Bamberg et al. evaluated liver proton density fat fraction (PDFF)

along with subcutaneous and visceral abdominal fat using MRI

techniques. The findings indicated that PDFF levels, as well as total

and visceral fat quantities, were significantly elevated in individuals

with prediabetes, suggesting their potential role as indirect

biomarkers (219). Borel et al. conducted simultaneous

measurements of visceral fat and liver fat using CT imaging,

revealing that liver fat content exhibited a positive correlation with

isolated IGT (ilIGT), whereas visceral adiposity demonstrated a
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positive correlation with both ilIFG and ilIGT (220). Similarly,

research measuring VAT volume through CT suggests it could

serve as a reliable tool for assessing metabolic risk factors in

individuals with prediabetes (221). Taking liver adipose tissue as an

example, radiomics quantifies hepatic fat accumulation while

metabolomics elucidates changes in metabolites associated with

hepatic lipid metabolism, such as L-lactic acid and L-propionic acid

(69). The integration of these two approaches not only facilitates the

early identification of prediabetes risk but also enhances our

understanding of its metabolic mechanisms, thereby providing a

more precise foundation for personalized treatment and intervention.

Peripheral insulin sensitivity in humans largely depends on glucose

utilization within skeletal muscle tissue. Consequently, alterations in

skeletal muscle composition regarding fat content and lipid

distribution may serve as critical determinants of IR (222). Kiefer

et al. conducted a quantitative analysis of intracellular lipids (IMCLs)

and extracellular lipids (EMCLs) in abdominal skeletal muscle using

MRI, revealing that the levels of IMCLs and EMCLs in prediabetic

patients were significantly elevated compared to those in

normoglycemic control groups. This finding suggests that the

distribution patterns of IMCLs and EMCLs may serve as promising

biomarkers for prediabetes (223). Lipid metabolism abnormalities in

skeletal muscle are closely associated with insulin resistance. Radiomics

quantifies the distribution of IMCLs and EMCLs, revealing changes in

lipid accumulation, while metabolomics analyzes shifts in metabolites

such as glutamate, carnosine, and sphingomyelins, which are closely

linked to lipid metabolism disturbances (74). The integration of these

approaches provides a more comprehensive understanding of skeletal

muscle metabolism, thereby facilitating the early identification and

diagnosis of prediabetes.

Ectopic fat accumulation in the pancreas, known as pancreatic

steatosis or fatty pancreas, increases the risk of prediabetes and

diabetes (224). A fatty pancreas is typically characterized by

hyperechoic pancreas (HP) when assessed via US. Research

utilizing abdominal ultrasound has demonstrated that the risk

ratio for glucose progression escalates with the severity of

hyperechoic pancreatitis (225). Furthermore, moderate to severe

HP serves as a reliable predictor for prediabetes and diabetes (226).

Research has demonstrated that pancreatic fibrosis can lead to the

destruction of pancreatic tissue, resulting in impaired secretion of

pancreatic b cells and subsequent insulin deficiency (227). The

hyperglycemic milieu induced by diabetes can lead to the aberrant

activation of pancreatic stellate cells. These cells are capable of

secreting a diverse array of pro-inflammatory and growth factors,

which not only facilitate the synthesis of a-smooth muscle actin but

also expedite the deposition of extracellular matrix components

such as collagen, ultimately resulting in pancreatic fibrosis (228,

229). An extracellular volume fraction (fECV) derived from

contrast-enhanced CT was employed to evaluate the extent of

pancreatic fibrosis in prediabetic patients. The findings indicated

that pancreatic fECV was significantly elevated in prediabetic

individuals compared to non-diabetic counterparts and exhibited

a moderate correlation with HbA1c levels (230). These findings

suggest that pancreatic fECV could be a valuable biomarker for

monitoring glucose dysregulation.
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The investigation conducted by Askani et al. examined the

correlation between adrenal volume measurements derived from

MRI and impaired glucose metabolism. The findings revealed a

significant increase in adrenal volume among prediabetic patients

compared to healthy controls. However, this association weakened

after adjusting for BMI (231). Therefore, adrenal volume could

serve as an indirect biomarker of prediabetes, offering valuable

insights for future research into its pathophysiology and the

discovery of reliable biomarkers. Normally, perirenal fat appears

hyperechoic or moderately echogenic on ultrasound imaging. In

diabetes and prediabetes, IR and metabolic disorders often disrupt

lipid metabolism and alter adipose tissue composition, resulting in a

hypoechoic appearance on ultrasound. Shen et al. conducted an

evaluation of 240 renal ultrasound cases and discovered that

hypoechoic perinephric fat (HPF) demonstrated exceptionally

high specificity and positive predictive value in patients diagnosed

with prediabetes and diabetes (232). This finding indicates that HPF

serves as a significant imaging biomarker closely associated with

metabolic syndrome and IR.

Hyperechoic deltoid indicates that ultrasound imaging of the

shoulder reveals an echo intensity greater than normal for this

muscle. In individuals with diabetes or prediabetes, fatty infiltration

and IR may lead to diminished glycogen levels within the deltoid

muscle, resulting in a hyperechoic appearance. Research utilizing

ultrasound assessments of the shoulder has demonstrated that the

characteristic hyperechoic deltoid appearance serves as a robust

predictor for prediabetes and can function as an adjunctive tool for

early detection (233). The biomarkers associated with prediabetes,

identified through radiomics analysis, are summarized in Table 7.

Overall, insulin resistance is the most prevalent pathway

implicated in radiomics-based biomarkers of prediabetes.

Radiomics biomarkers, including adrenal volume, hepatic

steatosis, IMCLs, EMCLs, liver PDFF, abdominal fat mass, VAT
Frontiers in Endocrinology 16
volume, HPF, HP, and hyperechoic deltoid, may be positively

correlated with one another, working synergistically to promote

the development of insulin resistance (217, 219, 221, 223, 225, 231–

233). These biomarkers may interact through various mechanisms,

such as influencing fat distribution, lipid accumulation, liver

function, the endocrine role of adipose tissue, and local

inflammatory responses, thereby contributing to the exacerbation

and progression of insulin resistance.

4.7.2 Limitations and future directions
Cross-sectional designs pose challenges in establishing causality,

requiring future validation through larger cohort studies to confirm

their clinical applicability (217). Many of these investigations have

ambiguous underlying mechanisms, requiring further exploration for

confirmation. Manual image segmentation is prone to subjective bias

(231). However, integrating artificial intelligence (AI) into radiology

could enable automated segmentation, facilitating data extraction from

large datasets and identifying markers associated with disease risk

profiles. Current radiomics research often lacks histopathological

validation, and future investigations in this domain could be fortified

to improve the robustness of their conclusions (230). Most imaging

studies currently operate independently. Future efforts should integrate

multiple imaging modalities to gain more comprehensive insights.

Concurrently, the incorporation of advanced deep learning algorithms,

such as convolutional neural networks and recurrent neural networks, is

essential for enhancing diagnostic accuracy and predictive capabilities.
5 Multi-omics integration
in prediabetes

Single omics studies concentrate on a singular type

of biomolecule, often yielding a limited perspective (234).
TABLE 7 Radiomics biomarkers associated with prediabetes.

Types of
radiomics
techniques

Source Species Biomarkers Potential pathogenesis Ref.

MRI Adrenal gland Human Adrenal volume The hypothalamic–pituitary–adrenal axis
activation, IR

(231)

MRI Liver Human Hepatic steatosis IR (217)

MRI Abdominal
skeletal muscle

Human IMCLs, EMCLs IR (223)

MRI Liver, abdominal fat Human Liver PDFF, abdominal
fat quantities

IR, abnormal fat metabolism (219)

CT Pancreas Human Pancreatic fECV Impaired secretion of pancreatic b cells (230)

CT VAT Human VAT volume IR, abnormal fat metabolism (221)

CT Liver, VAT Human Liver fat and visceral adiposity IR, abnormal fat metabolism (220)

US Perirenal fat Human HPF IR (232)

US Pancreas Human HP IR, impaired pancreatic b cell function (225, 226)

US Deltoid Human Hyperechoic deltoid IR, Adipose tissue accumulation (233)
fro
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Incontrast, multi-omics provides a more comprehensive

understanding of disease pathogenesis and progression by

analyzing gene expression, protein synthesis and modifications,

and changes in metabolic products. Combining biomarkers from

different omics approaches may generate a synergistic effect,

enhancing diagnostic accuracy and offering deeper insights into

disease mechanisms, compared to using individual markers alone.

Furthermore, the integration of multi-omics data facilitates the

identification of novel biomarkers, thereby providing new targets

for disease diagnosis and treatment. Therefore, combining multi-

omics with systems biology and bioinformatics tools is essential for

achieving a holistic understanding of biological functions and the

molecular mechanisms underlying diseases through cross-layer

data integration (235, 236).
5.1 Biomarkers derived from multi-
omics integration

Given the intricate upstream-downstream relationship between

transcriptomics and proteomics, integrating them provides distinct

advantages for disease research (236). Transcriptomic studies

can reveal gene expression levels linked to disease states.

However, transcription alone cannot confirm whether the

corresponding proteins perform functional roles. Proteomics

confirms the presence of these proteins and their disease-related

alterations, providing more precise insights for identifying disease

biomarkers. Moreover, transcriptomic and proteomic data

complement each other (237). Sometimes, fluctuations in

transcription levels are not reflected at the protein level due to

post-transcriptional regulation, translational control, or protein

degradation. Integrating these two datasets allows for

collaborative learning, fostering a deeper understanding of

regulatory mechanisms and enhancing biomarker reliability (238,

239). Belongie et al. conducted a comprehensive three-year cohort

study focusing on plasma proteomics and miRNA to identify

circulating biomarkers indicative of diminished b cell function

and IGT. In the cross-sectional analysis conducted at year 3,

adiponectin (ADPN), a1-AT, ESM-1, miR-181a, miR-342, and

miR-323 exhibited the most pronounced differential expression as

biomarkers in patients with IGT or a decline in b-cell glucose
sensitivity. At baseline, the levels of ADPN, CTSD, and NCAM.L1

—proteins produced by pancreatic b-cells—were significantly lower

in individuals who progressed to IGT (240). These biomarkers

effectively monitor b-cell function and predict future decline,

positioning them as potential therapeutic targets for prediabetes.

Growing attention has been given to the interaction between

intestinal microbiota and host metabolism, as both mutually influence

each other and contribute to the pathophysiology of prediabetes.

Following metagenomic sequencing and serum metabolomics analysis

of gut microbiota, Zhang et al. discovered dysregulation in both the

microbiome and metabolome among individuals with IGT, identifying

numerous gut microbial taxa and metabolites that serve as predictors for

the progression from IGT to diabetes (241).
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Integrating imaging techniques and transcriptomic analysis

provides a novel perspective in the search for prediabetes

biomarkers. Chen et al. employed metabolic imaging techniques

to visualize endogenous fluorescent compounds in adipose tissue,

including reduced nicotinamide adenine dinucleotide (phosphate)

[NAD(P)H], oxidized flavin adenine dinucleotide (FAD), and

lipofuscin-like pigments, thereby achieving non-invasive

visualization of the metabolic characteristics of macrophages and

adipocytes within adipose tissue. This methodology enables the

localization of macrophages and has revealed that only adipocytes

within the adipose tissue of prediabetic individuals exhibit specific

metabolic fluorescence alterations, such as a low oxidation-

reduction ratio and an elevated free NAD(P)H fraction.

Furthermore, RNA-Seq analysis revealed alterations in the

expression of several genes associated with oxidative metabolism

in adipose tissue of prediabetic individuals, including the

downregulation of PGC-1a and ETC genes (242). This finding

aligns with the metabolic imaging observations of changes in

adipocyte metabolism, further substantiating the correlation

between metabolic fluorescence variations and gene expression.

Consequently, alterations in adipocyte metabolic fluorescence are

anticipated to serve as potential biomarkers or risk factors for IR in

prediabetic individuals. Table 8 summarizes the prediabetes-

associated biomarkers identified via multi-omics integration.
5.2 The challenges and future directions of
multi-omics technology

Integrating multi-omics to identify novel biomarkers is a

rapidly evolving and promising field. However, several challenges

remain, including data quality, standardization, noise interference,

reproducibility issues, and validation processes (234). High-

throughput technologies generate exceptionally large datasets,

placing significant demands on computational resources. A

promising trend is the integration of multi-omics data analysis

with AI and machine learning. This approach is expected to

enhance the predictive power and accuracy of multi-omics

research, facilitating the development of precise disease models

and personalized therapies (243, 244). Additionally, access to

diverse omics databases and analytical tools provides researchers

with extensive options to analyze and interpret complex omics data,

enabling deeper insights into the biological mechanisms underlying

disease (245).
6 Conclusion and perspective

Timely identification of prediabetes and prompt intervention

are essential to halt the progression of diabetes. Although some

biomarkers overlap between prediabetes and diabetes, the two

conditions are not fully congruent. This observation suggests that

prediabetes may represent a distinct disease stage, thereby

facilitating independent investigation of its diagnostic markers
frontiersin.org

https://doi.org/10.3389/fendo.2025.1520436
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Song et al. 10.3389/fendo.2025.1520436
(111). Molecular, cellular, and tissue changes occur during

prediabetes. Recent progress in high-throughput methodologies

has provided a distinct opportunity to explore the complex

connections among different histological and phenotypic targets

(246). Utilizing multi-omics technology allows systematic

investigation of effector molecule variation across levels,

deepening our understanding of biomolecular interactions and

their impact on functional and phenotypic traits. This approach

offers robust theoretical and data support for uncovering

mechanisms regulating prediabetes. The biomarkers identified

through multi-omics technology can partially compensate for the

limitations of traditional screening indicators and significantly aid

in the screening, diagnosis, and management of prediabetes.

Although numerous predictive biomarkers for prediabetes have

been identified, the sensitivity and specificity of most remain poorly

understood, and their underlying mechanisms are not fully

elucidated (53, 118, 124). The majority of biomarkers are

identified from clinical samples and hold practical significance in

clinical applications. However, some biomarkers derived from

animal samples may exhibit limited reliability when applied to

humans (57, 67, 153, 172). To translate potential biomarkers into

clinically applicable diagnostic tools, it is essential to first validate

their sensitivity, specificity, and applicability through large-scale

clinical studies. Concurrently, efforts should be made to streamline

the detection process and develop low-cost, high-throughput

platforms to facilitate widespread implementation. Rigorous

quality control and robust statistical methodologies are crucial to

ensure the reliability and reproducibility of the biomarker findings

(247, 248). Ultimately, these biomarkers must undergo regulatory

approval and satisfy clinical standards before they can be effectively

integrated into disease screening, diagnosis, and management (249).

Current findings suggest that combining biomarkers to form

predictive models could enhance the diagnostic predictive

capability for prediabetes (73). Future research could integrate
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omics biomarkers with traditional clinical indicators (such as

BMI, blood pressure, and lipid profiles) to develop multi-

dimensional predictive models, thereby enhancing the accuracy

and predictive power of early prediabetes diagnosis. Such

comprehensive models would not only improve early detection of

disease onset but also offer better adaptability to the clinical needs of

diverse populations, thereby increasing their potential for

widespread application. Omics data should be integrated into a

unified framework to advance precise diagnosis (250, 251).

Specifically, this can be achieved by establishing cross-omics data

integration platforms, standardizing the data, applying machine

learning algorithms for data fusion, and incorporating clinical

validation to assess the clinical relevance of biomarkers (252).

Moreover, the development of visualization tools and decision

support systems will enhance diagnostic accuracy and improve

clinical applicability. It is worth noting that many prediabetic

patients may already have complications (253, 254), but current

biomarkers rarely predict these conditions. When evaluating the

predictive capacity of biomarkers for prediabetes, it is crucial to

consider their ability to forecast long-term risks. Future studies

should investigate the role of these biomarkers in assessing the long-

term risk of progression from prediabetes to diabetes, as well as

their potential in monitoring the effects of lifestyle interventions or

pharmacological treatments on the disease trajectory.

In conclusion, multi-omics technologies hold considerable

promise in providing novel insights into prediabetes. Biomarkers

can play a pivotal role in personalized treatment by enabling the

comprehensive assessment of a patient’s metabolic, immune, and

genetic profiles, which can inform the development of precision

therapeutic strategies (255, 256). Based on the specific biomarker

levels of individual patients, clinicians can tailor interventions, such

as pharmacological treatments or lifestyle modifications, to

optimize outcomes. With advancements in machine learning and

artificial intelligence, the integration of multi-omics data could
TABLE 8 Biomarkers derived from multi-omics integration.

Omics
types

Source Species Biomarkers Potential
pathogenesis

Ref.

Proteomics,
transcriptomics

Plasma Human ADPN↓, a1-AT↓, ESM-1↓, CTSD↓, NCAM.L1↓
miR-181a↓, miR-342-3p↓, miR-323-3p↓

Epithelial-
mesenchymal
transition, b
cells dysfunction

(240)

Microbiomics,
metabolomics

Gut
microbiota,
serum

Human Eggerthella unclassified↑, Coprobacillus unclassified↑, Clostridium ramosum↑,
Eubacterium eligens↓, Bacteroides faecis↓, Lachnospiraceae bacterium 3_1_46FAA↓,
Alistipes senegalensis↓, Megaspaera elsdenii↓, Clostridium perfringens↓, L-valine↑, L-
norleucine↑, L-isoleucine↑, a-linolenic acid↓, 10E↓,12Z-octadecadienoic acid↓,
dodecanoic acid↓

– (241)

Radiomics,
transcriptomics

Adipose
tissues

C57BL/
6 mice

Alterations in adipocyte metabolic fluorescence, PGC-1a↓, ETC↓ IR, mitochondrial
dysfunction,
alteration in
metabolic
pathways

(242)
frontier
ESM-1, endocan; a1-AT, alpha-1-antitrypsin; CTSD, cathepsin D; NCAM.L1, neural cell adhesion molecule ligand 1; PGC-1a, peroxisome proliferator-activated receptor gamma coactivator 1-
alpha; ETC, electron transport chain; “–” The information has not been obtained from the primary publication or has not been found yet.
“↑” The symbol indicates upregulation of the marker in prediabetes. “↓” The symbol indicates downregulation of the marker in prediabetes.
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facilitate the creation of personalized treatment models, allowing for

more customized therapeutic approaches and enhancing the

application of precision medicine in prediabetes management (257).
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Markuszewski MJ, et al. Metabolomics in atrial fibrillation: unlocking novel
biomarkers and pathways for diagnosis, prognosis, and personalized treatment. J
Clin Med. (2024) 14:34. doi: 10.3390/jcm14010034

256. Schena FP. Biomarkers and personalized therapy in chronic kidney diseases.
Expert Opin Investig Drugs. (2014) 23:1051–4. doi: 10.1517/13543784.2014.922953

257. Wang J, Zhang Z, Wang Y. Utilizing feature selection techniques for AI-driven
tumor subtype classification: enhancing precision in cancer diagnostics. Biomolecules.
(2025) 15:81. doi: 10.3390/biom15010081
frontiersin.org

https://doi.org/10.1016/j.ejmp.2017.05.071
https://doi.org/10.1177/08465371241234545
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.2967/jnumed.118.222893
https://doi.org/10.1259/bjr.20190948
https://doi.org/10.3177/jnsv.56.109
https://doi.org/10.3177/jnsv.56.109
https://doi.org/10.3390/nu16071015
https://doi.org/10.1038/s41598-021-92681-3
https://doi.org/10.1016/j.metabol.2017.04.011
https://doi.org/10.2337/db16-0630
https://doi.org/10.1038/ijo.2014.163
https://doi.org/10.1038/s41598-023-45100-8
https://doi.org/10.2337/dc09-S302
https://doi.org/10.2337/dc09-S302
https://doi.org/10.1111/dom.14413
https://doi.org/10.1371/journal.pone.0062561
https://doi.org/10.14366/usg.20122
https://doi.org/10.14366/usg.21099
https://doi.org/10.1016/S2468-1253(16)30106-6
https://doi.org/10.1016/S2468-1253(16)30106-6
https://doi.org/10.1177/1535370214527890
https://doi.org/10.1016/j.bbrc.2017.02.082
https://doi.org/10.1007/s11604-024-01531-5
https://doi.org/10.1002/dmrr.3528
https://doi.org/10.1007/s00261-022-03763-3
https://doi.org/10.1002/jum.15110
https://doi.org/10.1002/jum.15110
https://doi.org/10.3390/proteomes11040034
https://doi.org/10.1016/j.nbt.2012.03.004
https://doi.org/10.1016/j.csbj.2024.06.026
https://doi.org/10.1016/j.phymed.2023.154892
https://doi.org/10.4196/kjpp.2024.28.4.361
https://doi.org/10.3389/fimmu.2024.1309447
https://doi.org/10.1371/journal.pone.0182932
https://doi.org/10.1371/journal.pone.0182932
https://doi.org/10.1016/j.jgg.2023.08.005
https://doi.org/10.1016/j.jgg.2023.08.005
https://doi.org/10.7150/thno.82697
https://doi.org/10.3390/jpm13101522
https://doi.org/10.3390/biomedicines12071496
https://doi.org/10.3389/fcvm.2023.1250340
https://doi.org/10.1016/j.arr.2024.102245
https://doi.org/10.1016/j.arr.2024.102245
https://doi.org/10.1080/24754269.2018.1466098
https://doi.org/10.1080/24754269.2018.1466098
https://doi.org/10.2217/bmm-2023-0416
https://doi.org/10.1007/s13402-016-0268-6
https://doi.org/10.1093/bfgp/elae013
https://doi.org/10.1039/d1mo00411e
https://doi.org/10.1089/omi.2016.0142
https://doi.org/10.3389/fnut.2023.1256427
https://doi.org/10.1186/s12967-024-05061-6
https://doi.org/10.3390/jcm14010034
https://doi.org/10.1517/13543784.2014.922953
https://doi.org/10.3390/biom15010081
https://doi.org/10.3389/fendo.2025.1520436
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org

	Multi-omics approaches for biomarker discovery and precision diagnosis of prediabetes
	1 Introduction
	2 Pathophysiological mechanisms underlying prediabetes
	3 The current status of prediabetes diagnosis
	4 Biomarkers discovery utilizing multi-omics techniques
	4.1 Proteomics
	4.1.1 Proteomics-based biomarkers
	4.1.2 Limitations and future directions

	4.2 Metabolomics
	4.2.1 Metabolomics-based biomarkers
	4.2.2 Limitations and future directions

	4.3 Transcriptomics
	4.3.1 Transcriptomics-based biomarkers
	4.3.2 Limitations and future directions

	4.4 Genomics
	4.4.1 Genomics-based biomarkers
	4.4.2 Limitations and future directions

	4.5 Epigenomics
	4.5.1 Epigenomics-based biomarkers
	4.5.2 Limitations and future directions

	4.6 Microbiomics
	4.6.1 Gut microbiome-based biomarkers
	4.6.2 Oral microbiome-based biomarkers
	4.6.3 Limitations and future directions

	4.7 Radiomics
	4.7.1 Radiomics-based biomarkers
	4.7.2 Limitations and future directions


	5 Multi-omics integration in prediabetes
	5.1 Biomarkers derived from multi-omics integration
	5.2 The challenges and future directions of multi-omics technology

	6 Conclusion and perspective
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


