![Man ultramarathon runner in the mountains he trains at sunset](https://d2csxpduxe849s.cloudfront.net/media/E32629C6-9347-4F84-81FEAEF7BFA342B3/0B4B1380-42EB-4FD5-9D7E2DBC603E79F8/webimage-C4875379-1478-416F-B03DF68FE3D8DBB5.png)
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Endocrinol.
Sec. Reproduction
Volume 16 - 2025 | doi: 10.3389/fendo.2025.1516849
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Mro-IR is an insulin-like receptor and is uniquely expressed in the ovary of the freshwater giant prawn Macrobrachium rosenbergii. However, the understanding of this conserved receptor involved in the molecular mechanism underpinning ovarian development and female reproduction of M. rosenbergii is still fragmentary. In the present study, in vivo knockdown of Mro-IR in the proliferative stage and premature stage of ovarian development in female prawn induced abnormal oogonia differentiation and disordered oocyte development. The histological analysis showed that Mro-IR-silencing caused abnormal cellular morphology of some early vitellogenic oocytes (Oc2) and significantly delayed the proliferation of late vitellogenic oocytes (Oc3) in the proliferative stage of the ovary. Meanwhile, the Mro-IR silence led to the abnormal Oc3 with indistinct boundary and destructive structure of yolk accumulation in Oc3 in the premature stage of the ovary. Furthermore, to expound the potential roles of Mro-IR in ovarian development, a large amount of new data on significantly differentially upregulated and downregulated transcriptions was enriched, and the response of the primary Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways was investigated. Their possible molecular regulatory relationships in gonad development and reproduction were briefly illustrated in the putative intuitive cascade regulation axis or networks. This finding offered new insight regarding the mechanism of the IR gene family in ovarian development and reproduction of crustaceans.
Keywords: Mro-IR, gene knockdown, Oocyte proliferation, ovarian development, Insulin-like receptor
Received: 25 Oct 2024; Accepted: 13 Feb 2025.
Copyright: © 2025 Ma and Xu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Wenming Ma, College of Advanced Agricultural Sciences, Zhejiang Wanli University, Ningbo, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.