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Introduction: Early life stress (ELS) impacts neurotransmitters and cell

communication, potentially disrupting neurological and physiological

processes. Recently, ELS has been implicated in impaired bone metabolism,

with extracellular vesicles (EVs) and their cargo, microRNAs (miRNAs), might

affecting this process. This research aimed to elucidate the association between

childhood trauma, a specific form of ELS, and bonemetabolism through studying

miRNA in EVs within three steps: firstly, examining alterations of EV miRNAs

between ELS and controls, secondly analyzing associations between altered EV

miRNAs and bone markers, and thirdly exploring the target gene prediction and

enrichment pathways of altered EV miRNAs.

Methods: This study included a subgroup of the DEPREHA project (total n=208)

from a psychosomatic clinic. Firstly, real-time quantitative PCR was performed

on plasma EVs isolated from childhood trauma participants with depression (n=6)

and matched healthy controls (n=9) to detect the differentially expressed EV

miRNAs. Secondly, general linear regression models were employed to

investigate the associations between specific EV miRNAs and circulating bone

turnover markers (procollagen type 1 amino-terminal propeptide (P1NP),

osteocalcin, and b-CrossLaps (CTx)), adjusting for depression as a potential

confounder. Thirdly, the miRNA target gene networks and enriched pathways

were explored based on altered EV miRNAs.

Results: These analyses could be conducted on n=19 participants from the entire

group (11 [57.9%] female; median [IQR] age, 35.00 [26.00] years), but finally n=15
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participants were included for analyses. 22 out 380 EV miRNAs were differentially

expressed between childhood trauma participants (6 up-regulated and 16 down-

regulated) and healthy controls. Among these, miR-25-3p, miR-26b-5p, miR-

451a, and miR-421 were associated with P1NP (bone formation marker) and CTx

(bone resorption marker). MiR-26b-5p, miR-330-3p, and miR-542-5p were

associated with osteocalcin (bone turnover marker). MiRNA target gene

network prediction revealed highly associated target genes of dysregulated

miRNAs, such as Trinucleotide Repeat Containing Adaptor 6B (TNRC6B), and

enrichment analysis highlighted pathways including the forkhead box protein O

(FoxO) signaling pathway.

Discussions: This study explored the potential associations between childhood

trauma and bone metabolism, due to the sample size and experimental group

limitations, these associations should be validated in future experiments with

larger sample sizes and different control group settings.
KEYWORDS

mental disorder, epigenetics, bone remodeling, osteoporosis, bone turnover markers
Introduction

Stress is a state in which the homeodynamic balance of an

organism is threatened (1), and chronic or excessive stress reactions

may cause a series of pathological reactions that affect the

organism’s health. The term early life stress (ELS) refers to a

single or a series of adverse events and stressful experiences

during childhood, including childhood abuse, neglect, parental

illness, separation, and poverty (2). As brain development largely

occurs during this early stage of life, stressor exposure can have

enduring effects, leading to the development of mental illness later

in life (3, 4). Among adult patients suffering from mental illnesses,

53% report having experienced at least one childhood adversity (5),

highlighting the high impact of ELS on public health.

ELS involves different moderating factors, including

neuroendocrine stress responsiveness, the immune system,

epigenetic programming, metabolism, and the transcriptome (6),

which can induce biopsychological effects in later life. In this article,

childhood trauma will be addressed, which represents a specific form
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of ELS and is defined as “a traumatic event is one that threatens

injury, death, or the physical integrity of self or others and also causes

horror, terror, or helplessness at the time it occurs.” (7). Accumulating

evidence showed that childhood trauma is associated with various

mental disorders in a lifetime, for example, posttraumatic stress

disorder (8), anxiety (9), and depression (10). It has also been

demonstrated that individuals with childhood trauma and during a

depressive episode showed deteriorating effects on bone health, such

as reduced bone mineral density, regardless of age (11). Previous

studies have shown that depression is associated with increased bone

loss (12) and fracture risk (13), and is considered a risk factor for

osteoporosis (14–16). Bone metabolism consists of a balance between

bone-forming osteoblasts and bone-resorbing osteoclasts which helps

maintain balanced calcium homeostasis while at the same time

ensuring that the skeleton is able to deliver stable mechanical

support. Disruptions in this delicate equilibrium, particularly when

bone resorption outpaces formation, culminate in pathology, which

includes diminished bone mass and structural deterioration, a

condition recognized as osteoporosis (17). However, the molecular

link between childhood trauma and osteoporosis/bone damage has

not been studied so far. Of note, considering that the association

between circulating miRNAs and static bone microstructure is weak,

and the dynamic changes in bone turnover are better reflected at the

level of circulating miRNAs (18), the bone turnover markers were

used in the present research to understand the bone metabolism.

These markers were selected for the following reasons: procollagen

type 1 amino-terminal propeptide (P1NP) is released during the

synthesis of type I collagen and is regarded as an indicator of bone

formation (19); elevated P1NP levels suggest increased bone

formation. Osteocalcin is expressed in the mature stage of

osteoblasts and released from the bone matrix during resorption

(20); hence, increased osteocalcin levels refer to high bone turnover
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status with both increased bone formation and resorption (21). The

collagen fragment b-CrossLaps (CTx) is generated during the bone

resorption process (22). Increased CTx levels are indicative of

enhanced bone resorption.

It has become increasingly apparent that extracellular vesicles

(EVs) are important in cellular communication, leading to a crucial

role in many physiological and pathological processes. These

vesicles, released by cells into the extracellular environment, are

involved in intercellular communication either by acting on cells

surrounding the secreting cells or distant cells through the

circulation of biofluids (23). Analyzing the cargo of EVs, such as

microRNAs (miRNAs), can provide insights into paracrine and

endocrine cell regulation and may highlight a link between

childhood trauma and the impairment of bone health (24).

MiRNAs regulate subsets of targeted messenger RNAs (mRNAs)

(25), and are considered as part of epigenetics. There is increasing

evidence that dysregulated miRNAs (in biofluids/tissues as well as

in EVs) play an essential role in the pathological process of various

mental disorders (26–28). In terms of childhood trauma, studies

found altered expression levels of miRNAs in different tissues from

childhood trauma participants (29, 30). The association between

circulating miRNAs and childhood trauma was also identified; for

example, a significant association was found between the altered

expression of plasma miR-19b-3p and childhood traumatic

experiences (31). Moreover, EV miR-450a-2-3p levels are

associated with scores of total childhood trauma, emotional

abuse, and physical neglect (32). The diverse properties of

miRNAs and the fact that their expression in EVs is altered by

physiological changes such as disease states make miRNA cargo in

EVs a subject of interest to research the association between

childhood trauma and bone health. Many miRNA functional

annotation tools today can provide more information on

potential biological processes and pathways regarding miRNAs,

such as DNA Intelligent Analysis (DIANA)-miRPath v4.0 (33).

Thus, miRNA informatics tools were used in this study to gain a

deeper understanding of the possible roles of miRNA cargo between

childhood trauma and bone health.

The present research aimed to explore the association between

childhood trauma and bone metabolism by studying the cargo of

EVs within three steps. Firstly, it should be analyzed, whether there

are differences in miRNA expression in plasma EV between

childhood trauma participants and healthy controls. Secondly, the

possible associations between the EV miRNAs expression and levels

of circulating bone turnover markers should be examined in the

same blood samples. Thirdly, altered miRNAs expression in EVs

should be used to explore enriched targeted genes and pathways.
Methods

Participants

For this study, data from an interventional study with

depressive patients (DEPREHA (34), n=208) were used, some of

whom had experienced childhood trauma. The inclusion criteria
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were strictly defined, resulting in a homogeneous cohort with

minimal confounding variables and were as follows: individuals

aged 18-65 years with a diagnosis of depressive episode (ICD-10

F32.x or F33.x), dysthymia (F34.1), or adjustment disorder with

prolonged depressive reaction (F43.21); Inability to work for more

than 21 days in the last 12 months due to the above diagnosis.

Exclusion criteria were: Pregnancy; Hormone therapy (excluding

hormonal contraception); Intellectual disability (ICD-10 F70-89);

Compliance with other primary diagnoses, e.g., Hormonal/

endocrine metabolic disorders (diabetes mellitus, thyroid

dysfunction, renal, hepatic disorders, etc.); Neurological disorders;

Dementia (ICD-10 F00-F03); Psychotropic drug dependence

syndrome (ICD-10 F1x.2); Schizophrenia (ICD-10 F20);

Psychotic, stress, and somatoform disorders (F40-49, unless they

fall within the inclusion criteria); Emotionally unstable personality

disorder (ICD-10 F60.3x) and other personality and behavioral

disorders (F61-F69); Acute infections; Immune system disorders;

Unstable remitting addictions other than nicotine; Acute drug

abuse other than nicotine. The control group consisted of healthy

volunteer participants, all of them were without the diagnosis of a

depressive episode or early childhood trauma. Furthermore, the

same exclusion criteria as mentioned above were applied to the

control group. This enabled a comparison between depressed

individuals with and without childhood trauma, alongside a

control group without childhood trauma.
Ethical statement

All participants in this study were informed of the purpose and

content of the study verbally and in written form, and their

permission was requested to complete the questionnaire and sign

the consent form to participate. The clinical investigations were

conducted according to the principles of the Declaration of

Helsinki. Final ethical approval was provided on (11.05.2021)

from the Ethics Review Board of the University of Potsdam,

Germany (number 19/2021).
Psychometric measures

For the assessment of depressive symptoms and severity, the

Beck Depression Inventory-II (BDI-II) questionnaire (35, 36) was

used. The BDI is a questionnaire consisting of a 21-item self-report

questionnaire that addresses current affective, cognitive,

motivational, and physiological symptoms of depression. Internal

consistency in the sample was Cronbach’s Alpha 0.948. The

assessment of the experience, severity, and different types of

childhood trauma was driven by the Childhood Trauma Screener

(CTS) (37), a 5-item screening tool derived from the Childhood

Trauma Questionnaire, a retrospective 28-item self-report

inventory tool (38, 39). All items from CTS were referred to as

“When I was growing up (age<16 years old).” These 5 items were

answered, including “never true” (1), “rarely true” (2), “sometimes

true” (3), “often true” (4), and “very often true” (5). These 5-items
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from CTS were used to assess five types of childhood maltreatment,

including emotional, physical, sexual abuse, emotional, and physical

neglect. In accordance with Glaesmer et al. (37), we classified

participants at risk if they rated at least mild forms of childhood

abuse or neglect. We additionally controlled for response bias by the

3-item Minimization-Denial subscale from the Childhood Trauma

Questionnaire, and excluded participants when indicated.

Cronbach’s Alpha was previously specified with 0.76 (40).
Plasma sample collection

Participants were instructed to stay abstinent and only drink

water during the last 12 hours before assessment. Participants were

also instructed to avoid high amounts of coffee, tea, and certain

foods (e.g., bananas, cheese, almonds, nuts, vanilla, and citrus fruits)

as well as intense exercise and unscheduled medication the previous

day. About 10 ml blood was drawn into the EDTA blood tubes

(Sarstedt, Germany). The blood was stored at 4°C for 30 minutes

and centrifuged at 1500 g for 20 minutes to isolate the platelet-poor

plasma (41). After being divided into 500 µl aliquots, EDTA-plasma

samples were stored at -80°C for subsequent analyses. The

hemolytic blood samples were excluded from the analysis.
EV harvest

EVs from human plasma were isolated using Systems

Bioscience’s thrombin and ExoQuick solutions (SBI, USA).

Plasma samples were thawed, centrifuged at 3,000 g for 15

minutes to remove cells and cell debris, incubated with 5 µl

(611U/ml) Thrombin (SBI, USA) (5 µl per 500 µl of plasma, RT,

5 minutes), and then centrifuged at 10,000 rpm for 5 minutes in

order to remove the fibrin pellet. The supernatants (i.e., de-

fibrinated plasma) were treated with 120 µl ExoQuick (SBI, USA)

for 30 min at 4°C and centrifuged at 13,000 rpm for 2 minutes to

pellet the EVs.
EV RNA isolation

The SeraMir RNA Columns (SBI, USA) were used according to

the manufacturer’s instruction for EV RNA isolation. Briefly, the

EV pellet was resuspended in 350 µl Lysis Buffer, mixed with 200 µl

100% Ethanol (PanReac AppliChem, Germany), transferred to the

spin column and centrifuged at 13,000 rpm for 1 minute. Then, 400

µl Wash Buffer was added and the samples were centrifuged at

13,000 rpm for 1 minute. This washing step was repeated twice.

Finally, the 30 µl Elution Buffer was added in the spin column and

first centrifuged at 2,000 rpm for 2 minutes to load the buffer. The

spin columns were centrifuged at 13,000 rpm for 1 minute to elute

the EV RNA finally.

The Agilent 2100 Bioanalyzer and RNA 6000 Pico chip Kits

(Agilent Technologies, USA) were used to assess the quantity and

quality of isolated EV RNA. Plasma samples with insufficient EV

RNA quantity (<2 ng/ml) were discarded.
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EV RNA reverse transcription and miRNA
real-time quantitative PCR

5 µl total exoRNA eluted from spin column was reverse transcribed

(cDNA synthesis) using SeraMir Kits (SBI, USA) according to the

manufacturer’s instructions. Real-time quantitative PCR was

conducted on the CFX384 Touch Real-Time PCR Detection System

(Bio-Rad Laboratories, USA) using 384-well SeraMir Profiler

(SBI, USA) with and 2X Maxima SYBR Green/ROX qPCR

Master Mix (Thermo Scientific, USA). The protocol was as follows:

50°C/2min, 95°C/10min, 40 cycles; 95°C/15 s, 60°C/1min; data read at

60°C/1min. The global mean normalization was applied for calculate

the miRNA expression levels to reduce the influence of batch effects.
Bone markers measurement

Measurements of P1NP, osteocalcin, and CTx were conducted

directly on plasma samples with electrochemiluminescence

immunoassays “ECLIA” from Roche COBAS Elecsys 2010

MODULARANALYTICS E170 according to the manufacturer’s

protocol (REF 12149133 122 for osteocalcin, REF 03141071 190

for P1NP and REF 11972308122 for CTx, F. Hoffmann-La Roche,

Ltd., Basel, Switzerland).
Predicting the target genes of differently
expressed miRNAs

The target genes of differently expressed miRNAs were predicted

based on databases Targetscan (42), miRtarbase (43), and miRDB

(44). Tominimize the false positive rate and enhance result reliability,

only the overlap of the predicted genes from the three databases was

selected by Venn plot. The results from three databases were then

imported into the Cytoscape software for constructing and visualizing

the miRNA-mRNA interaction network. In Cytoscape, miRNA and

mRNAs were represented as nodes, and the edges between nodes

illustrated the interactions between miRNAs or mRNAs. The key

mRNAs with the most interconnections, extracted using cytoHubba

(version 0.1) (45), tend to highly connected to multiple miRNAs and

virtual nodes in biological networks.
Enriched biological pathway analysis

To better understand the childhood trauma related biological

process, we performed enriched biological pathway analysis for

the altered EV miRNAs. DIANA-miRPath v4.0 (33) software was

used to identify the enriched pathways by both up-regulated and

down-regulated miRNAs between CTS and healthy controls. This

software identifies the targeted biological pathways via the “Kyoto

Encyclopedia of Genes and Genomes (KEGG)”, providing a

systematic analysis of miRNA functions, connecting genomic data

with functional annotations. KEGG PATHWAY database (https://

www.genome.jp/kegg/pathway.html) was applied to classify the

category of miRNA-related pathways. The “pathways union”
frontiersin.org
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option of the miRPath software was performed. Given the database

bias toward cancer/tumor-related pathways, these were excluded

from the analysis for providing a more balanced assessment

regarding mental health disorders.
Statistical analysis

Due to the non-normal distribution of continuous variables

such as age and body mass index (BMI) differences between groups

were assessed using the Mann-Whitney U test, with results

presented as median (interquartile range, IQR). Categorical

variables (sex, smoking, alcohol use) were analyzed using the Chi-

Square test, with results reported as frequencies.

For the first study objective, real-time PCR data on EV miRNA

expression levels were analyzed using qbase+ software. The

expression of miRNAs in plasma EVs from childhood trauma

patients was calculated relative to expression of miRNAs in plasma

EVs from healthy controls, using the 2−ΔΔCt method. And the global

mean normalization in qbase+ minimized technical variability,

allowing for more accurate comparisons of gene expression levels

across samples. The non-parametric Mann-Whitney U-test was used

for differential miRNA expression analysis. The adjusted p-values

were calculated using the FDR multiple comparison methods based

on Benjamini and Hochberg methods (46). Criteria thresholds for

significantly differential miRNA expression between the childhood

trauma participants and healthy controls were set as adjusted p-values

(FDR) < 0.05 and log2 fold change > 2 or < -2. As generated by the

qbase+, bar graphs display the mean and 95% confidence intervals for

comparing the miRNA expression levels in each group.

For the second objective, general linear regression models were

employed to investigate the associations between specific EV

miRNA and circulating bone markers and presented in three

different models: model 1 was unadjusted regarding possible

confounder variables. Given that age and sex impact circulating
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miRNAs (47, 48), and EV cargoes (49), model 2 was adjusted for age

and sex. As our CTS group was combined with depression

(depressive patients without CTS was excluded due to small

sample size for statistical analysis), we adjusted in model 3 for the

BDI-II score for controlling the influence of depression. The

analysis was conducted using the IBM SPSS Statistics program

(IBM SPSS 23.0).

For the third study objective regarding pathway exploration, P-

values were obtained by the Fisher’s exact test as an enrichment

analysis method, and the FDR was estimated.
Results

The miRNA analysis was conducted in a total of n= 45

participants, but finally data of n=19 persons could analyze and

are presented here due to a low detectable miRNA amount in EVs.

Depressive patients with CTS, n=6; depressive patients without

CTS, n=4; healthy individuals without CTS, n=9. Since the small

size of the subgroup of depressive patients without CTS, this group

was excluded from further analyses. And a descriptive overview is

provided in the Supplementary Table S1.
First step: analysis of differentially
expressed miRNA in plasma EVs

The expression of 380 miRNAs was analyzed in plasma samples

from n = 6 people with childhood trauma (age:Median = 50.00 (IQR

= 22.00), BDI: Median = 21.00 (IQR = 23.00), female: 66.7%) and

compared to n = 9 people without childhood trauma as controls (age:

Median = 28.00 (IQR = 15.00), BDI: Median = 5.00 (IQR = 10.00),

female: 55.6%). The two groups differ descriptively but not statically

significant in basic characteristics such as age, gender or BMI (P-value

> 0.05) (for further sample characteristics see Table 1).
TABLE 1 Demographic and clinical characteristic of childhood trauma subjects and healthy controls.

Variables N All (IQR) N CTS (IQR) N
Controls
(IQR)

Mann-
Whitney U Chi-Square p-value

Sex (M/F) 15 6/9 6 2/4 9 4/5 0.185 0.667

Age (years) 15 30.00 (25.00) 6 50.00 (22.00) 9 28.00 (15.00) 11.5 0.066

Weight (Kg) 15 67.00 (14.00) 6 70.30 (24.42) 9 66.00 (9.00) 16.5 0.224

Height (cm) 15 170.00 (16.00) 6 166.50 (18.00) 9 173.00 (10.50) 20.5 0.456

BMI (kg/m2) 15 22.60 (5.60) 6 25.88 (5.40) 9 20.70 (2.35) 13 0.113

Smoking (no/yes) 15 14/1 6 5/1 9 9/0 1.607 0.205

Alcohol (no/yes) 15 9/6 6 5/1 9 4/5 2.269 0.132

BDI 15 11.00 (15.00) 6 21.00 (23.00) 9 5.0 (10.00) 2.5 0.002

P1NP (mg/l) 14 54.90 (22.38) 6 46.10 (35.10) 8 57.75 (18.22) 35.5 0.142

Osteocalcin (ng/ml) 13 16.40 (7.40) 6 17.65 (8.75) 7 13.20 (5.40) 12 0.234

CTx (ng/ml) 14 0.57 (0.14) 6 0.48 (0.31) 8 0.58 (0.07) 36 0.142
Mann-Whitney U values are reported for comparisons of continuous variables. Chi-square values are reported for comparisons of categorical variables. BMI, Body mass index; CTS, Childhood
Trauma Screener; P1NP, Procollagen type I N-terminal propeptide; CTx, b-CrossLaps; IQR, Interquartile Range; BDI, Beck Depression Inventory-II questionnaire.
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We identified 22 miRNAs that showed a significant differential

expression between childhood trauma participants and healthy

controls. Of these, 6 were significantly up-regulated (miR-518e-

3p, miR-421, miR-520h, miR-330-3p, miR-105-5p, and miR-542-

5p) and 16 were significantly down-regulated (miR-26b-5p, miR-

19a-3p, miR-25-3p, miR-195-5p, miR-451a, miR-16-5p, miR-106a-

5p, miR-140-3p, miR-20b-5p, miR-24-3p, miR-126-3p, miR-223-

3p, miR-17-5p, miR-19b-3p, miR-18a-5p, and miR-23a-3p) in

childhood trauma participants (Figures 1A, B). Two miRNAs

(one up-regulated and one down-regulated) were showed based

on their association with bone marker after adjustments

(Figures 1C, D). The bar diagrams for all dysregulated miRNAs

see Supplementary Figures S1 and S2.
Second step: the association between EV
miRNAs with circulating bone markers

Results with a significant association are highlighted in Table 2

(full association results are shown in Supplementary Table S2). In

model 1 (unadjusted), miR-25-3p, miR-26b-5p, miR-451a, and miR-
Frontiers in Endocrinology 06
421 were associated with P1NP and CTx (all p-values < 0.05). Next, it

was checked if age, sex and depression affect the association. The

significant association of miR-25-3p and miR-451a with P1NP or

CTx no longer existed in both models 2 (adjusted age and sex) and 3

(adjusted BDI), all p-values > 0.05, suggesting that age, sex and

depression have influenced their observed association. Moreover, in

model 2, miR-26b-5p positively associated with P1NP (p=0.029) and

CTx (p=0.033). MiR-330-3p positively associated with osteocalcin

(p=0.044). MiR-421 negatively associated with P1NP (p=0.007), and

miR-542-5p positively associated with osteocalcin (p=0.038). In

model 3, miR-26b-5p positively associated with P1NP (p=0.039),

osteocalcin (p=0.037), and CTx (p=0.022). MiR-421 negatively

associated with P1NP (p=0.006) and CTx (p=0.03).
Third step: exploration of the predicted
target genes of differentially
expressed miRNAs

In order to predict the highly associated target mRNAs of those

altered miRNAs and further explore their potential role in bone
FIGURE 1

Real-time quantitative PCR analysis of differentially expressed EV miRNAs in childhood trauma participants compared to healthy controls (log2 fold
change > 2 or < -2, adjusted p-value threshold: 0.05). (A) Volcano plot of all dysregulated EV miRNAs between childhood trauma and healthy
controls. Blue: down-regulated expression; gray: no significant difference in the expression; red: up-regulated expression. (B) Heat map analysis
shows all the differentially expressed EV miRNAs. Blue: down-regulated expression; red: up-regulated expression. (C) Bar diagram shows one up-
regulated EV miRNA in childhood trauma. (hsa-miR-421, all miRNAs see Supplementary Figure S1). (D) Bar diagram shows one down-regulated EV
miRNA in childhood trauma. (hsa-miR-26b-5p, all miRNAs see Supplementary Figure S2).
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metabolism, the miRNA-mRNA interaction network was constructed

based on the target gene prediction of Targetscan, miRtarbase, and

miRDB by Cytoscape (Supplementary Figure S3). According to the

prediction, the most associated target mRNAs of these differentially

expressed miRNAs in childhood trauma group, in order, were

Trinucleotide Repeat Containing Adaptor 6B (TNRC6B), Nuclear

FMR1 Interacting Protein 2 (NUFIP2), Phospholipid Phosphatase 2

(PAP2C), Rho GTPase Activating Protein 12 (ARHGAP12), WEE1

G2 Checkpoint Kinase (WEE1), and Zinc Finger And BTB Domain

Containing 18 (ZBTB18), shown in Figure 2. Among, these TNRC6B

(50),NUFIP2 (51, 52), ARHGAP12 (53), and ZBTB18 (54) are known

to be involved in bone metabolism.
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Third step: enriched pathways identified by
DIANA-miRPath software

A total of 166 significantly enriched pathways of 22

dysregulated miRNAs with adjusted p-value <0.05 was explored

(Supplementary Figure S4), and the top 10 enriched pathways based

on miRNA numbers and adjusted p-value was showed in

Supplementary Table S3. According to the KEGG pathway

results, five pathways were Cellular Processes-related (three were

associated with Cell growth and death, one was associated with

Cellular community - eukaryotes, and one was associated with

Transport and catabolism). Two pathways were Environmental
TABLE 2 Association of EV miRNA expression levels with bone marker levels.

Model 1a Model 2b Model 3c

Linear regression
(Listwise) N

Regression
coefficient p-value

Adj. regression
coefficient p-value

Adj. regression
coefficient p-value

hsa-miR-25-3p

P1NP 13 12.261 0.025* 9.127 0.082 12.658 0.092

osteocalcin 12 0.481 0.815 -1.201 0.603 1.572 0.577

CTx 13 0.116 0.021* 0.088 0.075 0.118 0.086

hsa-miR-26b-5p

P1NP 12 13.838 0.009** 14.095 0.029* 13.348 0.039*

osteocalcin 11 2.051 0.146 1.332 0.449 3.651 0.037*

CTx 12 0.138 0.005** 0.143 0.033* 0.139 0.022*

hsa-miR-451a

P1NP 14 5.618 0.049* 3.395 0.234 5.107 0.217

osteocalcin 13 -0.246 0.795 -1.051 0.307 0.45 0.746

CTx 14 0.055 0.036* 0.038 0.166 0.068 0.078

hsa-miR-330-3p

P1NP 14 -2.817 0.45 -0.975 0.771 -0.344 0.933

osteocalcin 13 1.657 0.158 2.275 0.044* 1.574 0.239

CTx 14 -0.04 0.231 -0.026 0.42 -0.29 0.457

hsa-miR-421

P1NP 14 -0.069 0.001** -0.055 0.007** -0.67 0.006**

osteocalcin 13 -0.003 0.69 0.002 0.838 -0.003 0.69

CTx 14 -0.001 0.011* 0 0.057 -0.001 0.03*

hsa-miR-542-5p

P1NP 14 -1.569 0.621 -0.459 0.869 0.885 0.799

osteocalcin 13 1.594 0.101 1.925 0.038* 1.581 0.158

CTx 14 -0.027 0.35 -0.018 0.499 -0.015 0.661
fro
aModel 1 was not adjusted.
bModel 2 was adjusted for age and sex.
cModel 3 was adjusted for BDI.
Significant Regression coefficients are bold (p<0.01, p<0.05, two sided testing); significance level: **P<0.01, *P<0.05
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Information Processing-related (forkhead box protein O (FoxO)

and Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein

kinase B (Akt) signaling pathway, both were associated with signal

transduction), one pathway was Human Diseases-related

(Infectious disease: bacterial), one pathway was Organismal

Systems-related (Nervous system), and one pathway was Genetic

Information Processing-related (Folding, sorting and degradation).
Discussion

This study explored the association between childhood trauma

and bone metabolism through EVs, specifically their miRNA cargo.

In total, 22 differentially expressed EV miRNAs were identified

between childhood trauma participants and healthy controls.

Among them, Van der Auwera et al. (55) found that miR-26b-5p
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is negatively associated with CTS score, and a significant association

between altered miR-19b-3p expression and childhood traumatic

experiences in bipolar depression was found (31).

Regarding the associations between those altered EV miRNAs

and bone turnover markers, miR-26b-5p and miR-421 showed

associations with bone turnover markers in multiple models.

Therefore, a more detailed literature search was conducted to

determine the possible biological role of miR-26b-5p and miR-

421. Previous research showed that miR-26b-5p can alter neurite

growth and synaptogenesis by targeting methyl-CpG-binding

protein-2 in mouse neural stem cells (56). Therefore, miR-26b-5p

may also have the potential to influence structural and functional

deficits in the developing brain and thus may involve in childhood

trauma processes. In addition, miR-421 is involved in regulating

plasminogen activator inhibitor-1 (57), which is known to induce

neuronal apoptosis (58), suggesting a possible role of miR-421 in
FIGURE 2

The most associated target mRNAs of these differently expressed miRNAs in childhood trauma group. TNRC6B, Trinucleotide Repeat Containing
Adaptor 6B; NUFIP2, Nuclear FMR1 Interacting Protein 2; PAP2C, Phospholipid Phosphatase 2; ARHGAP12, Rho GTPase Activating Protein 12; WEE1,
WEE1 G2 Checkpoint Kinase; ZBTB18, Zinc Finger And BTB Domain Containing 18.
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the long-lasting process of brain development. As we aim to explore

whether EVs altered due to childhood trauma may impact bone

metabolism, the role of miR-26b-5p and miR-421 in bone tissue

homeostasis and remodeling is of specific relevance to us. MiR-26b-

5p was found up-regulated during osteogenic differentiation, and

functional analysis showed that miR-26b-5p positively regulates

osteogenic differentiation (59), which may explain the decrease in

miR-26b-5p level found in bone samples from osteoporosis patients

(60). Thus, the down-regulated miR-26b-5p can potentially affect

bone tissue by impacting osteogenic differentiation. MiR-421 was

found to have the ability to inhibit osteogenic differentiation of pre-

osteoblasts, and an up-regulated miR-421 expression in bone tissue

of osteoporosis patients was found (61). Considering these data in

the context of our findings, we assume that childhood trauma may

lead to reduced miR-26b-5p and increased miR-421 levels in

circulating EVs, which reach bone tissues via the circulation and

both lead to a weakened osteogenic differentiation, resulting in a

net-decrease of bone formation.

Our results also showed that miR-26b-5p, which was down-

regulated in childhood trauma participants, was positively

associated with P1NP and CTx. Furthermore, miR-421, which

was up-regulated in childhood trauma participants, was

negatively associated with P1NP and CTx. Both suggest a reduced

bone turnover (both bone formation and resorption) due to

childhood trauma. It should be noted that the association

between miR-26b-5p and osteocalcin became significant

(p = 0.037) after BDI-II score adjustment in model 3, which may

give notice that the direct relationship between miR-26b-5p and

osteocalcin was isolated by controlling for this confounding factor

(depression). This also suggests the repression of bone turnover in

the context of childhood trauma. All demonstrated that altered
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circulating EV miRNAs due to childhood trauma could deliver

specific, detrimental information on bone metabolism.

Regarding the exploration of target genes of those altered EV

miRNAs, TNRC6B has to be highlighted due to its possible

contribution to bone physiology. A single-nucleotide polymorphism

in the TNRC6B gene has been identified as being associated with a

lower spine bone mineral density and increased risk of fractures (50).

The TNRC6B gene is also involved in bone physiology-related

pathways (62), such as the Wnt signaling pathway (63).

Furthermore, previous research showed the role of other observed

target genes (NUFIP2, ARHGAP12, and ZBTB18) in bone metabolism

(51–54), which showed a prospective network in the pathophysiology

of childhood trauma leading to dysregulated bone metabolism

(summarized in Figure 3). Considered those enriched pathways of

miRNAs, FoxOs may be regulated by serotonin or norepinephrine

signaling and the HPA axis, both are associated with stress

development (64). FoxOs are also crucial in governing an array of

critical functions in bone cells; for example, FoxOs promote

osteogenesis and suppress osteoclastogenesis or adipogenesis by

reducing levels of reactive oxygen species (65). Numerous studies

have demonstrated the function of PI3K in synaptic plasticity,

memory consolidation, and major depression (66, 67). Moreover,

the various roles of the PI3K/Akt signaling pathway in bone

metabolism have also been recognized (68). In summary, both FoxO

and PI3K/Akt signaling pathways may involved in the process of

childhood trauma leading to dysregulated bone metabolism. Overall,

those bioinformatic analyses provided additional information for our

experimental conclusions. It’s important to note that the use of

miRNA informatics tools in our study is only for functional

annotation purposes, and they are employed to fill the gap in the

roles of miRNA, instead of conducting any form of data validation.
FIGURE 3

Exploring the association between childhood trauma and bone metabolism through EVs. (left green box: our research, right yellow box: combined
other research from literature review). TNRC6B, Trinucleotide Repeat Containing Adaptor 6B; NUFIP2, Nuclear FMR1 Interacting Protein 2; PAP2C,
Phospholipid Phosphatase 2; ARHGAP12, Rho GTPase Activating Protein 12; WEE1, WEE1 G2 Checkpoint Kinase; ZBTB18, Zinc Finger And BTB
Domain Containing 18; EV, Extracellular vesicle; micro RNA, miR.
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Nowadays, there has been a growing interest in the research of

EVs and their cargo, considering the ability of miRNAs to be

efficiently transfected in cells, and the epigenetic control

mechanism of miRNA-mediated silencing of mRNAs make

miRNAs a key research topic among EVs-carrying cargoes (69).

Some differentially expressed circulating EV miRNAs due to

childhood trauma have been reported (32), but the potential for

EV-based pathophysiological interaction between childhood

trauma and other diseases has not been elucidated. The present

study focused on differentially expressed EV miRNAs and their

association with bone markers in cases of childhood trauma, thus

exploring the potential relationship between childhood trauma and

bone metabolism via EVs.
Strengths and limitations of the
experimental study

Our sample size is relatively small because a highly controlled

patient inclusion was used. We have controlled multiple variables

that might affect the robustness of this research; for example,

demographic and clinical characteristic variables (e.g., age,

gender, BMI) were controlled between case and controls. Some

variables were adjusted (age, gender, BDI) in the linear regression to

control the effects on the association between miRNAs and bone

markers. In a future analysis of a larger sample set, other possible

influencing covariates, such as medication, smoking, alcohol, and

BMI, could be considered. And while the use of model 3 (BDI-II

score adjustment) helps isolate the role of depression in the

association between ELS and circulating biomarkers, it does not

directly address the question regarding the effects of depression on

miRNA expression. Further studies compare miRNA alterations in

depression, with and without ELS, would provide more insights into

these associations.

Despite our efforts to match the clinical characteristics between

the childhood trauma participants and healthy controls, control

group participants tended to be overall younger (n=0.066). To

investigate the potential impact of age differences on our results,

we conducted a sub-analysis comparing the three oldest and three

youngest participants in both groups, which showed no significant

differences in bone biomarkers between these age subgroups,

suggesting that age is unlikely to be a major confounding factor

in our study. Nevertheless, to account for any potential

confounding effects of age, we included age as a covariate in our

regression models (model 2).

Moreover, participants were asked to avoid specific beverages

and foods that are known to influence blood chemistry, and

depressed patients in clinic have followed the nutrition protocol,

thus reducing the influence of nutritional status. The rigorous

selection process was applied to collect a highly controlled cohort,

thus minimizing the impact of confounding variables and

enhancing the internal validity of our findings. Furthermore, as

bone mineral density test is an important indicator of bone health,

we performed this test on a subgroup of study participants
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throughout the DEPEHA project. However, due to a limited

quantity of EV RNA in some plasma samples (<2 ng/ml), the

sample size for comparing bone mineral density was reduced. Thus,

the direct comparison between childhood trauma participants and

controls was not included in this analysis. A subgroup of

participants with depression but without CTS was initially

included to better investigate the effects of childhood trauma on

bones; however, this group was excluded from the analysis due to its

limited size.

As the enriched target gene exploration was based on database

predictions, and supplementary bioinformatic analysis tool derived

from online software, additional functional and mechanistic studies

should be conducted in the future to substantiate this potential

molecular link between childhood trauma and bone metabolism.
Conclusion

As an exploratory study, the present study provides a

prospective investigation of the relationship between childhood

trauma and skeletal disorders, and hopefully provides guidance

for early preventive measures, such as stress management aimed at

alleviating the long-term impact of ELS on bone health. Our

experimental data showed the association between dysregulated

EV miRNAs and bone turnover markers, suggesting a possible role

of altered miRNAs due to childhood trauma in bone metabolism.

Aligned with our experimental data, this complementary

bioinformatic analysis noted the potential link between childhood

trauma and bone metabolism.
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