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Osteoporosis (OP) is a metabolic bone disease that affects more than 10 million

people in the USA and leads to over two million fractures every year. The disease

results in serious long-term disability and death in a large number of patients.

Bone mineral density (BMD) measurement is the current standard in assessing

fracture risk; however, the majority of fractures cannot be explained by BMD

alone. Bone is a composite material of mineral, organic matrix, and water. While

bone mineral provides stiffness and strength, collagen provides ductility and the

ability to absorb energy before fracturing, and water provides viscoelasticity and

poroelasticity. These bone components are arranged in a complex hierarchical

structure. Both material composition and physical structure contribute to the

unique strength of bone. The contribution of mineral to bone’s mechanical

properties has dominated scientific thinking for decades, partly because collagen

and water are inaccessible using X-ray based techniques. Accurate evaluation of

bone requires information about its components (mineral, collagen, water) and

structure (cortical porosity, trabecular microstructure), which are all important in

maintaining the mechanical integrity of bone. Magnetic resonance imaging (MRI)

is routinely used to diagnose soft tissue diseases, but bone is “invisible” with

clinical MRI due to its short transverse relaxation time. This review article

discusses using ultrashort echo time (UTE) sequences to evaluate bone

composition and structure. Both morphological and quantitative UTE MRI

techniques are introduced. Their applications in osteoporosis are also briefly

discussed. These UTE-MRI advancements hold great potential for improving the

diagnosis and management of osteoporosis and other metabolic bone diseases

by providing a more comprehensive assessment of bone quantity and quality.
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Introduction

Osteoporosis (OP) is a progressive bone disease that is characterized

by low bone mass and structural deterioration (1). Fractures are among

the most dramatic sequelae. OP affects more than 10 million people in

the USA and causes more than two million fractures, with an annual

cost estimated at about $19 billion (2). The need for focused preventive

strategies has become a major public health priority.

The current standard technique for assessing bone fracture is

dual-energy X-ray absorptiometry (DXA), which can only provide

information on bone mineral density (BMD) (3). However, the

majority of fractures cannot be explained by BMD alone. Bone is a

composite material consisting of, by volume, mineral (~43%),

organic matrix (~35%), and water (~22%) (4, 5). While bone

mineral provides stiffness and strength (6), collagen provides

ductility and the ability to absorb energy before fracturing (7),

and water contributes to viscoelasticity and poroelasticity (8). These

bone components are arranged in a complex hierarchical structure

(9). Both material composition and physical structure contribute to

the unique strength of bone. The contribution of mineral to bone’s

mechanical properties has dominated scientific thinking; however,

accurate evaluation of bone requires information about its

components (mineral, collagen, water) and structure (cortical

porosity, trabecular microstructure), which are all important in

maintaining the mechanical integrity of bone (10).

Unfortunately, no single modality can evaluate all bone

components and structures. DXA can only measure areal BMD

without information about bone collagen, water, and bone

microstructure. Computed tomography (CT) can measure

volumetric BMD and capture bone structure without information

about bone collagen and water (11). Conventional CT has a spatial

resolution that is too low to evaluate cortical porosity. High-

resolution peripheral quantitative CT (HR-pQCT) can assess

bone porosity but cannot resolve smaller pores (e.g., pores with

diameters less than 83 µm) (12, 13). Micro CT (µCT) is the

reference standard for evaluating cortical porosity but cannot be

used for in vivo applications (14). Magnetic resonance imaging

(MRI) is routinely used to diagnose soft tissue diseases, but bone is

“invisible” with clinical MRI due to its short transverse relaxation

time (15, 16). This review paper aims to summarize the recent

developments in ultrashort echo time (UTE) MRI techniques for

direct imaging of bone.
Materials and methods

This narrative review was conducted to synthesize the most

relevant advancements and applications of UTE MRI, particularly

focusing on the authors’ contributions and other key studies in the

field. The UTE-type sequences include two-dimensional (2D) and 3D

UTE (15–28) zero echo time (ZTE) (25–36), pointwise encoding time

reduction with radial acquisition (PETRA) (37–39), Cartesian

variable TE (vTE) (40), water- and fat-suppressed proton

projection MRI (WASPI) (41), sweep imaging with Fourier

transformation (SWIFT) (42), hybrid acquisition-weighted stack of

spirals (AWSOS) (43), ramped hybrid encoding (RHE) (44), and
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Looping Star (45). A simple search on Pubmed shows more than 600

papers on direct imaging of bone using the various UTE-type

sequences. It is difficult to summarize all the published articles in

this review. The selection of articles was primarily guided by the

authors’ expertise and their understanding of the pivotal

developments in UTE MRI research.

In conventional MRI, bone produces near zero signal, leading

most clinicians to rely on plain radiography or CT as the primary

modality for bone evaluation. The lack of detectable signals can be

mainly attributed to the bone’s short mean apparent transverse

relaxation time (T2) or apparent transverse relaxation time (T2*)

components. T2 or T2* relaxation time refers to the time constant

that describes the rate at which excited protons lose phase

coherence due to interactions with surrounding tissues in MRI,

with short T2* values indicating a rapid decay of transverse

magnetization. Long T2* tissues retain a detectable signal level at

the time of the measurement of the MR signal, allowing them to

remain visible in conventional pulse sequences. In contrast, short

T2* tissues such as bone, tendons, ligaments, and menisci lose most

of their signal before spatial encoding, resulting in undetectable

signals during signal acquisition, making these tissues appear dark

or “invisible” on conventional MRI scans.

For simplicity, T2* values can be categorized into five groups:

<0.01 ms (supershort), 0.01–1 ms (ultrashort), 1–10 ms (short), 10–

100 ms (intermediate), and 100–4000 ms (long) (16). Echo time (TE)

is the interval between the delivery of the RF pulse and the

measurement of the MR signal. It determines the time the system

waits before measuring the signal. A general rule is that the effective

TE should match the T2* of the tissue for optimal detectability. Recent

advances in hardware have enabled gradient-recalled echo (GRE)

sequences with much reduced TEs to capture signals from short T2

tissues. However, conventional sequences, such as fast spin echo (FSE)

and GRE, cannot produce echo times shorter than 1 ms on clinical

MRI systems. Therefore, tissues with ultrashort T2 values, such as

bone, require specialized techniques for effective signal detection.

Recently, a group of UTE-type sequences, including 2D and 3D

UTE, ZTE, PETRA, vTE, WASPI, SWIFT, AWSOS, RHE, and

Looping Star sequences, with nominal TEs of 0.1 ms or less have

been developed to directly image short-T2 tissues (15–45). While a

short TE is essential for imaging bone, it alone is insufficient due to

the low proton density in bone (i.e., ~22% water by volume in

normal bone). Effective suppression of long-T2 signals is crucial for

achieving high-contrast images of bone. Quantitative UTE imaging

can provide valuable insights into bone structure and components.

In the next section, we will review technical developments in

morphological and quantitative UTE imaging of bone. Their

applications in osteoporosis will also be briefly discussed.
Results

Part I: technical developments in
morphological UTE MRI

With the UTE technique, bone signal with an ultrashort

transverse relaxation time can be captured. However, UTE MRI is
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primarily T1-weighted with negative contrast between bone and

neighboring musculoskeletal tissues, such as muscle and marrow

fat, which have far higher proton densities than that of bone. A key

issue for high contrast morphological imaging of bone is the

efficient suppression of long T2 signals from surrounding muscle

and marrow fat (46). Different contrast mechanisms have been

developed for this purpose.
UTE with echo subtraction
One basic approach to enhancing contrast in UTE imaging is

subtracting two images acquired at distinct echo times (TEs). In the

dual-echo UTE imaging technique with echo subtraction, bone

contrast is acquired by subtracting a second echo image from a first

echo image which is equivalent to T2 bandpass filtering (19). Signals

from long T2 tissues experience minimal decay by the time of the

second echo, while the signal from bone undergoes significant decay

by the time of the second echo. As a result, long T2 tissues show a

high signal in the second echo, while bone shows a signal void.

Subtraction of the second echo image from the first echo image

leads to suppression of long T2 signals, leaving bone signal

minimally unaffected, creating high contrast for cortical bone.

Rescaled subtraction (46), where the first UTE free induction

decay (FID) image is scaled down prior to subtraction to lower

signal from long-T2 tissues in the first compared to the second echo,

works more efficiently in creating high positive contrast for short-

T2 species, especially cortical bone, which has a much lower mobile

proton density than surrounding muscle or fat. Figure 1 shows an

example of 3D dual-echo UTE imaging with rescaled subtraction

applied to the tibia of a healthy volunteer. Conventional 3D UTE

imaging provides a relatively high signal but negative contrast for

the tibia (Figure 1A). Regular echo subtraction presents a positive

contrast between bone and muscle, but a negative contrast between

cortical bone and fat, as fat also has a short T2* (Figure 1C). The

contrast between bone and fat/muscle increases using the rescaled

subtraction technique (Figures 1D–F). However, subtraction

techniques are sensitive to patient motion, which can cause

misalignment between the source images and result in artifacts.
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UTE with long T2 saturation
Preparation pulses can be employed to selectively suppress

signals from long T2 components, improving contrast by allowing

better visualization of short T2 tissues (47–49). In UTE imaging

with long T2 saturation, saturation pulses are used to suppress the

signals from long T2 tissues, such as muscle and bone marrow fat,

which typically produce higher signals than bone. For example, a

90° pulse with a relatively long duration and a low amplitude can

flip the longitudinal magnetization of long T2 tissues into the

transverse plane, where a large spoiling gradient can subsequently

dephase the transverse magnetization (48). In comparison, bone

magnetization is barely excited by this long saturation pulse as the

decay rate of bone exceeds the excitation rate. Therefore, a long 90°

pulse can be used with a large spoiling gradient to suppress long T2

tissues, leaving bone to be subsequently detected by UTE data

acquisition. T2 selective RF excitation (TELEX) can be used to

increase bone contrast (47). Dual-band long-T2 suppression pulses

further improve the suppression of signals frommuscle and fat (49).

However, residual signals from muscle and marrow fat due to B1

and B0 inhomogeneities may still compromise bone contrast.

UTE with off-resonance saturation
Off-resonance saturation with subtraction can generate contrast

for short T2 components by utilizing the broader absorption line

shape of short T2 tissues, such as bone, compared to long T2 tissues

like muscle or fat, making them more sensitive to off-resonance RF

radiation (50). UTE imaging with off-resonance saturation contrast

(UTE-OSC) employs a high-power saturation pulse placed a few

kHz off the water peak to preferentially saturate signals from bone,

leaving long T2 muscle and fat signals largely unaffected (50).

Subtraction of UTE images with off-resonance saturation from

basic UTE images can effectively suppress signals from muscle

and fat, creating high bone contrast.

UTE with adiabatic inversion
One limitation of saturation techniques that utilize hard RF

pulses is their sensitivity to B0 and B1 inhomogeneities, making
FIGURE 1

3D UTE imaging of the tibia of a volunteer with dual TEs of 8 µs (A) and 2.2 ms (B). Subtraction of the second echo (TE = 2.2 ms) from the first one
(TE = 8 µs) shows limited contrast for cortical bone due to a high signal from marrow fat (C). Higher bone contrast is achieved by scaling down the
first echo UTE image by a factor of 0.8 and using absolute pixel intensity in the subtraction image (D). Bone contrast can be further enhanced by
allowing negative signal intensity in long-T2 tissues (E, F). From Ref. (46), with permission.
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them less robust compared to adiabatic inversion (18). The

adiabatic inversion recovery UTE (IR-UTE) contrast mechanism

employs a long adiabatic inversion pulse to invert the longitudinal

magnetizations of long-T2 water (e.g., muscle) and long-T2 fat

(18, 21, 24, 51). The duration of the adiabatic inversion pulse is

much longer than bone T2* (18). As a result, the longitudinal

magnetizations of muscle and marrow fat are fully inverted,

while the bone magnetization is not inverted but largely saturated

by the long adiabatic inversion pulse (51). The UTE data acquisition

starts at an inversion time (TI) adjusted so that the inverted

long T2 magnetizations approach the null points, leaving the

uninverted bone magnetization being selectively detected by

UTE data acquisition. The adiabatic inversion pulse has a

relatively broad spectral bandwidth, thereby insensitive to B1 and

B0 inhomogeneities. The IR-UTE technique allows uniform

inversion of long T2 magnetizations, providing robust high

contrast imaging of bone (18, 21). Figure 2 shows representative

IR-UTE images of cortical bone in the forearm, which is depicted

with excellent image contrast but invisible with conventional

clinical FSE sequences.

UTE with double adiabatic inversion
A single inversion pulse can reduce the signal from fat and long

T2* components (such as muscle) by up to 80% (21). However,

using dual inversion pulses allows for the complete nulling of both,

providing more effective signal suppression (52–54). The double
Frontiers in Endocrinology 04
adiabatic inversion recovery UTE sequence (double-IR-UTE)

employs two identical adiabatic inversion pulses (duration of ~6

ms) with the same center frequency to sequentially invert the

longitudinal magnetizations of long T2 species, followed by

multispoke UTE data acquisition (55). The two adiabatic

inversion pulses are applied with pre-defined inversion times TI1,

which is the time between the centers of the two adiabatic inversion

pulses, and TI2, which is the time from the center of the second

adiabatic inversion pulse to the center spoke of the multispoke

acquisition. Robust long T2 suppression can be achieved by timing

the center spoke at the null point. Long T2 transverse

magnetizations acquired before the null point are of opposite

polarity to those acquired after the nulling point, leading to

cancel lat ion in the regridding process during image

reconstruction and, therefore, efficient suppression of long T2

signals from muscle and marrow fat. Bone magnetization is not

inverted but saturated by the two long adiabatic inversion pulses,

recovers after the second TI2, and is subsequently detected by UTE

data acquisition. The advantage of double-IR-UTE is the robust

suppression of long T2 tissues with a broad range of T1s, such as fat

and muscle, which can be nulled simultaneously using specific

combinations of TI1 and TI2. The double-IR-UTE sequence is

insensitive to inhomogeneities in the B1 and B0 fields due to the use

of adiabatic inversion pulses with relatively broad spectral

bandwidths. Figure 3 shows double-IR-UTE imaging of the knee

joint in a healthy volunteer, which shows high signal from short-
FIGURE 2

The IR-UTE sequence inverts the longitudinal magnetizations of long T2 muscle and fat with a long adiabatic inversion pulse (duration = 8.64 ms) (A).
The longitudinal magnetization of bone is largely saturated, recovers during TI, and is subsequently detected by the UTE data acquisition (B). Clinical FSE
imaging of the forearm shows pure signal void for cortical bone (thick arrows), tendons, and aponeuroses (thin arrows) (C). The IR-UTE sequence shows
high signal and contrast for cortical bone (thick arrows) and other short T2 tissues (thin arrows) (D). From Ref. (21), with permission.
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and ultrashort-T2 species, such as the patellar tendon and

cortical bone.

UTE with relaxation-parameter contrast
UTE data acquisition can be combined with relaxation-

parameter contrast (56). UTE with relaxation parameter contrast

and subtraction exploits the sensitivity of bone proton

magnetization to both T2 and RF pulse duration. Excitation pulse

parameters are selected to determine the extent of concurrent

relaxation and excitation. The RF pulse duration and amplitude

can be changed to adjust the relaxation dependence of bone

contrast. To selectively detect signals from magnetization within a

specific range of T2 values, two RF pulse durations are chosen so

that the sensitivity transition between them brackets the range of

interest. Two UTE datasets with similar imaging parameters but

different RF excitation pulses are acquired. Bone contrast is created

by subtraction of the two UTE images, as shown in Figure 4.

UTE with dual-RF and dual-echo (DURANDE)
The 3D DURANDE UTE sequence and bone-selective image

reconstruction have been proposed for rapid bone imaging (57).

This technique acquires two dual-echo UTE datasets following

short and long RF pulses, with encoding gradients varying

continuously along the entire pulse train to halve the total

imaging time. The DURANDE UTE sequence employs two
Frontiers in Endocrinology 05
rectangular RF pulses (RF1 and RF2), differing in duration and

amplitude but having the same pulse area applied alternately in

successive TR periods along the entire pulse train. Two echoes at a

short TE and a long TE are collected from the beginning of the

gradient ramp-up within each TR. As a result, four echoes are

produced and combined via a view-sharing approach to generate

two independent k-space datasets during image reconstruction.

Accelerated UTE bone imaging can be achieved by using the

sparsity of bone voxels in the corresponding subtraction images.
Short TR adiabatic inversion recovery UTE MRI of
trabecular bone

In STAIR-UTE, 3D IR-UTE data are acquired with a short TR

and a high flip angle within specific absorption rate (SAR) limits for

clinical imaging (58–60). The short TR and TI combination is

selected to achieve robust suppression of long-T2 muscle and

marrow fat regardless of their different T1 values. Multiple spokes

are acquired for efficient volumetric imaging of cortical and

trabecular bone (60). The STAIR-UTE sequence is more efficient

than other UTE or ZTE techniques, such as the spectral

presaturation with IR UTE (SPIR-UTE), in selective imaging of

trabecular bone (61). Figure 5 shows STAIR-UTE images of the

spine and SPIR-UTE images of the fingers. The SPIR-UTE images

showed T2* values of 2.42 ± 0.56 for the capitate, which is much

longer than the T2* of 0.31 ± 0.01 ms for the trabecular bone of the
FIGURE 3

The double-IR-UTE sequence employs two identical adiabatic inversion pulses for simultaneous suppression of long T2 muscle and fat with different
T1s, followed by 3D UTE data acquisition to produce high contrast imaging of bone (A). The knee joint of a 31-year-old volunteer was subject to
clinical GRE (B), fat-saturated UTE (C), and double-IR-UTE (D) imaging. The double-IR-UTE sequence shows excellent suppression of muscle and
fat, providing high contrast for the patellar tendon and cortical bone (D). From Ref. (55), with permission.
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spine measured on STAIR-UTE images (60, 61), or the T2* value of

~0.3 ms for the cortical bone (62). The much longer T2* values

suggest that SPIR-UTE imaging of the trabecular bone is subject to

significant long-T2 signal contamination. In comparison, STAIR-
Frontiers in Endocrinology 06
UTE-measured T2* values for the trabecular bone are close to those

measured for cortical bone, suggesting that bone marrow fat is

completely suppressed and only signal from trabeculae is selectively

detected in STAIR-UTE imaging (60).
FIGURE 4

Bone imaging with the relaxation-parameter contrast mechanism, which is based on two hard RF pulses with different durations but equal pulse
areas to generate T2-selective excitation (A). The contrast mechanism can be combined with single or dual-echo UTE data acquisition using two RF
amplitudes (a1 and a2) and pulse durations (p1 and p2) with equal pulse areas. An example is shown on a volunteer’s skull, including UTE with a short
RF pulse of 24.47 mT and a TE of 34 µs (B), UTE with a long RF pulse of 1.53 mT and a TE of 2.0 ms (C), UTE with a short RF pulse and a longer TE of
2.0 ms (D), and UTE with a long RF pulse and a TE of 34 µs (E). The difference image (|b|-|c|) (F) depicts cortical bone more specifically than the
conventional UTE subtraction difference image (|b|-|d|) (G), and captures more bone signal than the pulse-only difference image (|b|–|e|) (H). From
Ref. (56), with permission.
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UTE on the fat peak for trabecular bone imaging
Past research has focused on high resolution imaging of marrow

to indirectly detect trabecular microstructure (5, 63, 64). Two major

challenges exist: the high susceptibility at the marrow/bone

interface and the multiple fat peaks, both of which significantly

reduce T2*, leading to lowmarrow signal (misclassified as bone) and

overestimation of trabecular volume. UTE is insensitive to T2*

shortening. However, UTE employs non-Cartesian radial sampling,

which is sensitive to chemical shift artifacts (65). UTE imaging on
Frontiers in Endocrinology 07
the fat peak resolves this issue (66). Bone is off-resonance in fat-

centered imaging, but it has a much lower signal than marrow, and

the off-resonance artifact is negligible. Figure 6 shows UTE and

clinical GRE imaging of a trabecular bone sample from a 65-year-

old male donor. UTE on the water peak shows strong chemical shift

artifacts, which are significantly reduced in UTE imaging on the fat

peak. Trabecular bone thickness is overestimated at longer TEs (e.g.,

TE = 1.1, 2.2, 3.3, or 4.4 ms) or with the clinical GRE sequence. UTE

imaging on the fat peak is expected to perform even better in older
FIGURE 6

A trabecular bone specimen imaged with 3D UTE on the water peak at TE of 0.03 ms (A) and on the fat peak at TEs of 0.03 ms (B), 1.1 ms (C), 2.2
ms (D), 3.3 ms (E), and 4.4 ms (F), and clinical 3D GRE at TE of 4.4 ms (G), with the zoomed regions indicated with the red dashed-line boxes shown
in the second row (H-N). UTE images on the water peak show significant chemical shift artifacts, manifesting as blurred trabecular bone structure
and ringing artifacts [arrows in (A)]. The more significant fat signal loss was observed at longer TEs (C-F, J-M) due to the strong susceptibility
between bone/marrow interface and at TEs of 1.1 ms (C, J) and 3.3 ms (E, L) due to fat/water signal cancellation, with both leading to overestimation
of trabecular thickness. From Ref. (66) with permission.
FIGURE 5

STAIR-UTE imaging of trabecular bone in the spine of a 36-year-old male volunteer with TEs of 0.032 ms (A), 0.2 ms (B), 0.4 ms (C), and 0.8 ms (D)
at 3T, and the single-component T2* fitting (E). µCT (F) and SPIR-UTE imaging of trabecular bone in the fingers at 1.5 T (G), 3.0 T (H), 7.0 T (I), and
the corresponding single component T2* fitting (J). STAIR-UTE imaging of trabecular bone in the spine shows a short-T2* of 0.31 ± 0.01 ms at 3.0 T,
while SPIR-UTE imaging of trabecular bone in the fingers shows short-T2* values of 1.16 ± 0.27 ms at 7.0 T, 2.23 ± 0.56 ms at 3.0 T, and 3.96 ± 1.26
ms at 1.5 T, respectively. From Refs. (60, 61), with permission.
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osteoporotic or diabetic patients who typically have a higher fat

fraction in the marrow.

ZTE MRI of cortical bone
ZTE employs a short rectangular pulse excitation followed by

readout gradient flat-top sampling to minimize the effective TE

(29). A small flip angle (1-2°) is typically used to minimize the dead-

time gap, which causes a spherical void in the center of k-space. A

variety of approaches have been developed to address this k-space

gap and associated low frequency artifacts in the reconstructed

images (33). The repetition time (TR) is minimized to speed up data

acquisition. Higher receiver bandwidths (62.5-83.3 kHz) are

recommended to mitigate chemical shift artifacts. Bias field

correction, contrast inversion, and background segmentation are

employed for CT-like bone contrast (34–36). The principal

difference between ZTE and UTE sequences is the temporal order

of setting the spatial encoding gradient and RF excitation (33). UTE

offers the freedom to adjust TE, a feature not possible in ZTE

imaging. UTE also allows high flip angles, a significant advantage in

direct bone imaging using the STAIR contrast mechanism (60). On

the other hand, the ZTE sequence acquires k-space data after the

readout gradients are fully ramped up, avoiding fidelity issues

introduced by gradient ramping (33). ZTE has a shorter effective

TE and can detect signal from shorter T2 species. ZTE can be

applied in many of the same applications and with many of the

same magnetization preparation methods as UTE.

Other UTE-type sequences for bone imaging
Many other UTE-type sequences have been developed for bone

imaging. These sequences can be combined with each of the above

contrast mechanisms for high-contrast imaging of bone. For

example, adiabatic inversion recovery-based preparations can be

combined with ZTE (29–36), vTE (40), AWSOS (43), RHE (44),

and PETRA (37–39) sequences for high contrast imaging of cortical

bone and other short-T2 tissues, respectively. On-resonance long-T2

suppression or off-resonance short-T2 saturation can be applied to

SWIFT, PETRA, WASPI, RHE, and ZTE sequences to create short-

T2 contrast. For example, SWIFT with off-resonance saturation has

been used to image the interface between cartilage and subchondral

bone (67). A systematic study of the above contrast mechanisms

combined with ZTE, vTE, WASPI, SWIFT, AWSOS, PETRA, RHE,

and Looping Star sequences remains to be investigated, and their

SNR and CNR efficiency remains to be compared.
Part II: technical development in
quantitative UTE imaging

Quantitative UTEMRI techniques have been developed to evaluate

bone MR relaxation properties such as T1 and T2* relaxation times,

and tissue properties such as total water proton density (TWPD),

bound water proton density (BWPD), pore water proton density

(PWPD), macromolecular proton density (MMPD), magnetization

transfer ratio (MTR), susceptibility, and perfusion (24–26).
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Bone T1 relaxation time
T1 relaxation is a fundamental MR tissue property and

describes how fast the longitudinal magnetization recovers to the

steady state. Many T1 measurement techniques have been

combined with UTE acquisitions to provide accurate T1

measurements of bone, such as saturation recovery UTE (18),

inversion recovery UTE (68), UTE with variable repetition time

(UTE-VTR) (69), and UTE with variable flip angle (UTE-VFA)

methods (70). The UTE-VTR method is sensitive to B1

inhomogeneity. The actual flip angle imaging (AFI) method has

been widely used for 3D B1 mapping (71). By combining UTE and

AFI techniques, it is possible to use a pair of interleaved UTE

acquisitions with a short TR (e.g., 20 ms) and a longer TR (e.g., 100

ms) to produce accurate B1 mapping for bone (69). Furthermore,

combining UTE-VTR and UTE-AFI (UTE-AFI-VTR) provides

accurate T1 mapping for bone with B1 correction. A short T1 of

~250 ms was reported for cortical bone (69).

Bone T2* relaxation time
Bone water exists as pore water residing in the macroscopic

pores and as loosely bound water attached to the organic matrix

(72). UTE sequences can detect pore water with a longer T2* of ~3

ms and loosely bound water with an ultrashort T2* of ~0.3 ms

(62, 73–76). IR-UTE or STAIR-UTE allows partial inversion and

nulling of pore water with longer T2*, leaving bound water with

ultrashort T2* to be selectively imaged (21, 60, 77). Figure 7 shows

single- and bi-component fitting of UTE and IR-UTE images of a

bovine cortical bone sample (77). Excellent bi-component fitting

was achieved to show the existence of two distinct water

components: bound water with a short T2* of 0.26 ms (72.4% by

volume) and pore water with a longer T2* of 1.56 ms (27.6%). The

IR-UTE images show a single component with T2* ~0.31 ms,

suggesting that pore water is efficiently suppressed and bound

water selectively imaged (77).

UTE-MT modeling of MMF and exchange rates
There is another group of protons, collagen backbone protons,

which have extremely short T2* relaxation times and are invisible with

UTE sequences. UTE magnetization transfer (UTE-MT) modeling can

measure collagen backbone proton fraction and exchange rates

between water and collagen protons (73–75, 78–83). Figure 8 shows

UTE-MT imaging of a bovine bone sample. Excellent two-pool MT

modeling and MT parameters mapping were achieved using a

Gaussian lineshape (79). The lower half of this bone sample shows

increased variations in UTE image signal intensity andMT parameters,

suggesting an abnormality that needs further investigation.

UTE mapping of water and collagen protons
UTE sequences can be used to map TWPD, BWPD, PWPD,

and MMPD (20–23, 25, 76, 84–91). TWPD can be estimated by

comparing the UTE MRI signal of bone with an external reference

with known proton density (20, 21, 76, 84–88). BWPD can be

measured with IR-UTE or STAIR-UTE, which efficiently suppresses

pore water (21, 23, 60). PWPD can be quantified by subtracting
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bound water from total water. MMPD can be quantified by

combining total water proton density with macromolecular

fraction (MMF) (91). Figure 9 shows 3D mapping of TWPD,

BWPD, PWPD, and MMPD for tibial midshaft of a 35-year-old

healthy female, a 76-year-old female with osteopenia, and a 57-year-

old female with OP, respectively (91). The OP patient has higher

PWPD but lower MMF and MMPD, consistent with increased

porosity and loss of mineral/collagen.

UTE quantitative susceptibility mapping
Susceptibility is an important material property. QSM

techniques can estimate calcium and iron accumulation in the

brain (92). Bone susceptibility is more challenging to measure due

to the lack of signal. UTE can detect phase evolution in cortical and

trabecular bone. The phase changes with increasing TEs can be used
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to evaluate bone susceptibility using various algorithms such as

Morphology Enabled Dipole Inversion (MEDI) (93). UTE with

QSM (UTE-QSM) provides information about bone susceptibility,

which is indirectly related to bone mineral (93–98). Figure 10 shows

UTE-QSM and µCT-measured volumetric BMD (vBMD) of a

human bone sample, with an excellent linear correlation between

QSM and vBMD (n=9). UTE-QSM can reliably evaluate vBMD in

cortical bone. Similar results are also observed for trabecular bone.

UTE perfusion
There is a close association between bone perfusion and bone

remodeling and fracture repair (99–102). Increased cortical bone

turnover and inflammation are also associated with increased blood

flow (99). There is a strong correlation between bone perfusion and

BMD (101, 102). However, the nature of bone makes it difficult to
FIGURE 8

UTE-MT imaging of cortical bone with an MT power of 300° and frequency offsets of 2 kHz (A), 5 kHz (B), 10 kHz (C), 20 kHz (D), 50 kHz (E), and
1100° and 2 kHz (F), 5 kHz (G), 10 kHz (H), 20 kHz (I), 50 kHz (J), and two-pool fitting (K) with maps of macromolecular fraction [MMF or f; (L)] and
exchange rate [RM0m; (M)]. From Ref. (79) with permission.
FIGURE 7

UTE imaging of a sectioned bovine cortical bone with TEs of 8 ms to 2 ms (A-F), IR-UTE with TEs of 8 ms to 2 ms (G-L). Single- (M) and bi-
component (N) fitting suggest two components: bound water with a short T2*~0.26 ms and pore water with a T2* ~1.56 ms. IR-UTE images show
one component with a T2* of ~0.31 ms (O), consistent with bound water imaging. From Ref. (77) with permission.
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investigate perfusion. The techniques applicable to many soft tissues

are difficult or impossible to apply to bone. For example, dynamic

contrast-enhanced MRI (DCE-MRI) can be used to study perfusion

in various tissues and organs. The technique employs fast T1-

weighted images to capture signal changes induced by exogenous

intravascular nondiffusible gadolinium-based contrast agents as a

function of time. Conventional DCE-MRI can study perfusion in

the marrow of trabecular bone (103), but cannot study perfusion in

cortical bone due to the lack of detectable signal. Dynamic UTE

imaging has been developed to evaluate perfusion in cortical bone

(104, 105). A recent study reported dynamic 2D UTE imaging of the

tibial midshaft of a 38-year-old healthy volunteer and found ~20%

signal enhancement after intravenous gadolinium contrast injection

(105). Kinetic analysis demonstrated a Ktran of 0.23 ± 0.09 min-1 and
Frontiers in Endocrinology 10
Kep of 0.58 ± 0.11 min-1 for the tibial midshaft of this volunteer.

DCE-UTE can potentially be used to evaluate bone remodeling and

fracture recovery.

Other UTE-type sequences for
bone quantification

Bone components (water , co l lagen , minera l ) and

microstructure (cortical porosity, trabecular structure) can be

qualified by many other UTE-type sequences such as ZTE (25–

36), PETRA (37–39), vTE (40), WASPI (41), and SWIFT (42). For

example, WASPI has been used to image bone water and the solid

matrix of bone (106). SWIFT has been shown to be able to identify

the presence and extent of dental caries and fine structures of the

teeth, including cracks and accessory canals (107). Furthermore,
FIGURE 10

UTE-QSM (A) and µCT volumetric BMD (vBMD) (B) maps of a human cortical bone sample. A negative correlation (R2 = 0.6724) was observed
between QSM and vBMD (n=9) (C). From Ref. (98) with permission.
FIGURE 9

UTE maps of TWPD (A, F, K), BWPD (B, G, L), PWPD (C, H, M), MMF (D, I, N), and MMPD (E, J, O) of a 35-year-old healthy (1st row), a 76-year-old
osteopenia (2nd row), and a 57-year-old OP (3rd row) females. The OP patient has the highest PWPD but the lowest MMF and MMPD. From Ref. (91)
with permission.
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solid-state 31P MRI can be achieved with UTE-type sequences by

focusing on the 31P peak (108). 31P UTEMRI can map phosphorus

content, assess bone mineral density, and differentiate between

mature and newly remodeled bone (108, 109).
Part III: applications in OP

UTE-measured pore water to assess
cortical porosity

UTE MRI can be used to measure pore water concentration in

cortical bone (23, 76, 84–88). A recent study showed a high
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correlation (R2 = 0.72; P < 0.0001) between mCT porosity and pore

water concentration in 32 cadaveric human cortical bone samples

(Figure 11) (77). Water residing in the microscopic pores of cortical

bone is expected to behave more like “free” water with much longer

T2* relaxation time than water bound to the organic matrix.

Therefore, separating pore water from bound water is easy,

allowing accurate pore water mapping without requiring ultrahigh

spatial resolution to resolve the small pores. This is confirmed by the

high correlation with an R2 of 0.72 between mCT porosity and pore

water concentration in cortical bone. mCT porosity is consistently

lower than pore water content assessed by UTE MRI. Pore water

content in cortical bone is also significantly correlated with its

mechanical properties (110–112). In another study, UTE MRI,

mCT, and histomorphometry were performed on tibial samples

from 11 donors. UTE-measured pore water content showed

significant correlations (R2>0.25) with histomorphometry-based

lacunae and small Haversian canals, which are below the detectable

range of mCT at 9 mm. The mCT-based porosity showed strong

correlations with histomorphometric porosity and pore size when

considering all pores or only large pores (R>0.70, P<0.01).

Correlations were poor when considering only small pores in

histomorphometric analyses (R<0.3) (88). Therefore, pore water in

smaller pores can be detected by UTE MRI but not by mCT imaging.

UTE measured bound water to assess bone
organic matrix density

UTE MRI can map bound water in cortical and trabecular bone

(21, 23, 60). Bound water is a surrogate of bone organic matrix

density and negatively correlates with bone mineral density, as

shown in Figure 12 (113). It is also reported that bound water in

human cortical bone decreases with age, although osteonal

remodeling throughout life with only modest changes in tissue

mineral density or ash fraction with age after skeletal maturation

(114). Bound water and bone density are directly correlated with

human cortical bone’s material strength (72, 84, 111, 112).
FIGURE 11

Correlation between UTE-measured pore water concentration and
mCT-measured porosity in cadaveric human cortical bone samples
(n = 32). A high correlation (R2 = 0.72; P < 0.0001) was observed
between UTE pore water concentration and mCT porosity,
suggesting that UTE sequences can reliably access pore water in
cortical bone using a clinical MR scanner. From Ref. (77)
with permission.
(A) (B)

FIGURE 12

Bound water decreases as mineralization increases in rodents throughout life, as evidenced in mice (A) and rats (B), where bound water was
calculated as the volume fraction of the bone tissue volume (%) or as the concentration of protons (mol/L) in the bone tissue volume in which mCT
determined the latter. Spearman’s rank correlation was performed to calculate the correlation coefficient (r). From Ref. (113) with permission.
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UTE-MT measures to assess bone
mechanical properties

UTE-MT can indirectly assess collagen backbone protons,

providing information about cortical porosity and mechanical

properties (73, 81–83). A recent study reported a moderate to

strong negative correlation between UTE magnetization transfer

ratio (MTR) and mCT porosity (R2 = 0.46–0.51), while a moderate

positive correlation was observed between MTR and yield stress (R2

= 0.25–0.30) and failure stress (R2 = 0.31–0.35).A weak positive

correlation (R2 = 0.09–0.12) between MTR and Young’s modulus at

all off-resonance saturation frequencies was also observed (115).

UTE-MT measured MTR provides quantitative information on

cortical bone and is sensitive to mCT porosity and biomechanical

function. MMF derived from UTE-MT imaging can assess

mechanical failures after bone stress injury, which is difficult to

evaluate using other techniques (83). In another study (73), fibular

samples (n=14) were subject to cyclic loading using a 4-point

bending setup (Figure 13). Loading was applied to reduce bone

stiffness by 20%. Then, bone samples were imaged with UTE MRI

and mCT before and after loading. MMF from two-pool UTE-MT

modeling decreased by 12% on average, while mCT porosity

measured at 6 mm voxel size showed no significant change. A

representative sample is shown in Figure 13, with averaged MMF

decreasing from 63% to 55% (p=0.0001), but no detectable changes

in mCT porosity (73).

UTE biomarkers for comprehensive assessment
of bone and fracture risk

In recent years, many studies have shown that UTE MRI can

provide markers of cortical bone porosity, morphologic structure,
Frontiers in Endocrinology 12
mineralization, and osteoid density, which are useful measures of

bone health (20–23, 76, 84–91, 116–120). In a recent study, Jones

et al. reported UTE MRI of 15 participants with OP and 19 without

OP (117). The OP group showed elevated pore water (11.6 mol/L vs.

9.5 mol/L; P = 0.007) and total water densities (21.2 mol/L vs. 19.7

mol/L; P = 0.03), and lower cortical bone thickness (4.8 mm vs.

5.6 mm; P < 0.001) and 31P density (6.4 mol/L vs. 7.5 mol/L; P =

0.01) than the non-OP group, respectively. Meanwhile, there was no

evidence of a difference in bone water (BW) or 31P-to-BW

concentration ratio. Furthermore, pore and total water densities

were inversely associated with DXA and HR-pQCTmeasured BMD

(P < 0.001) (117). In another study, Jerban et al. investigated the

differences in water and collagen contents in tibial cortical bone

between female osteopenia (OPe) patients, osteoporosis (OPo)

patients, and young participants (Young) using a clinical 3T

scanner (91). They found MMF, BWPD, and MMPD were

significantly lower in OPo patients than in the young group,

whereas T1, TWPD, and PWPD were significantly higher in OPo

patients. The largest OPo/Young average percentage differences

were found in MMF (41.9%), PWPD (103.5%), and MMPD

(64.0%), with PWPD significantly higher (50.7%), while BWPD

significantly lower (16.4%) in OPe than the Young group on

average. Meanwhile, MMF was significantly lower (27%) in OPo

patients compared with OPe group (91). As a result, UTE-MRI

measured TWPD, PWPD, and MMF were recommended to

evaluate individuals with OPe and OPo. Manhard et al. also

demonstrated the feasibility of quantitatively mapping bound and

pore water in vivo in human cortical bone with practical human MR

imaging constraints (84). Jacobson et al. reported a comprehensive

set of UTE MRI biomarkers to assess cortical bone. They found the
(A) (B) (C)

(D) (E) (F)
FIGURE 13

A representative 4-point bending setup and force-time diagram (A-C), as well as MMF maps before (D) and after (E) loading with marked changes
but little change in µCT image and porosity map (F). From Ref. (73) with permission.
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UTE MRI-derived porosity index and signal-intensity-based

estimated BMD correlated with the HR-pQCT variables (porosity:

r = 0.73, p = 0.006; BMD: r = 0.79, p = 0.002) (120).

UTE MRI has also been used to assess fracture risk. In a recent

study, Nyman et al. quantified bound water concentration (Cbw)

and pore water concentration (Cpw) in the radius and tibia as

predictors of bone fragility (121). Maps of Cbw and Cpw were

acquired from the uninjured distal third radius of 20 patients

who experienced a fragility fracture of the distal radius (Fx) and

20 healthy controls (Non-Fx), and from the tibia mid-diaphysis of

30 women with clinical OP (low T-scores) and 15 women without

OP (normal T-scores). They found Cbw was significantly lower

(p = 0.0018) and Cpw was higher (p = 0.0022) in the Fx group than

in the Non-Fx group. The area-under-the-receiver operator

characteristics curve (AUC with 95% confidence intervals) was

0.73 (0.56, 0.86) for hip BMD (best predictors without MRI) and

0.86 (0.70, 0.95) for the combination of Cbw and Cpw (best

predictors overall), as shown in Figure 14. Meanwhile, Cbw was

significantly lower (p = 0.0005) in women with OP (23.8 ± 4.3 1H

mol/L) than in women without OP (29.9 ± 6.4 1H mol/L). They also

found that it was Cbw, not Cpw, which was sensitive to bone-forming

osteoporosis medications over 12 months. Their results are largely

consistent with the study by Gallant et al. (122), who found the

hydroxyl groups on raloxifene provided a possible explanation for

the therapeutic effect of raloxifene, a Food and Drug Administration

(FDA)-approved agent that is designed to treat bone loss, decrease

fracture risk, and improve bone mechanical properties. The benefits

of raloxifene treatment are essentially independent of bone mass

changes and are mediated by an increase in matrix-bound water as

measured by UTE MRI. The study suggests a cell-independent
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mechanism that can be utilized for novel pharmacological

approaches to enhancing bone strength (122).

Contrast-enhanced UTE to monitor
fracture repair

Bone is highly vascularized. Perfusion plays an important role

in the growth and development of bone as well as in disease and

healing (99–102). Reduced perfusion is observed in the trabecular

bone of patients with OP (98). It is believed that decreased osseous

vascularity contributes to increased fracture risk (123). Reduced

perfusion occurs in synchrony with reduced BMD in vertebral

trabecular bone (124). UTE can be used to evaluate bone perfusion

(104, 105). There is an extensive enhancement in blood vessels due

to fracture of the tibial plateau two days after injury, with specific

enhancement of the periosteum distinguished from that of blood

vessels, as shown in Figure 15 (104). Even without contrast

enhancement, UTE can detect callus formation from a 22-year-

old male with a fractured tibia examined 3 weeks after injury (125).
Discussion

UTE-MRI techniques offer significant advancements in assessing

cortical and trabecular bone properties, providing valuable insights

beyond traditional imaging methods, such as DXA, CT, HR-pQCT,

ultrasound, andconventionalMRI(24–26).Highsignal andcontrast can

be created for cortical and trabecular bone through a series of contrast

mechanisms outlined in this review article. Techniques like ZTE MRI

offer a radiation-free alternative for generating CT-like bone contrast.

A series of quantitative UTE MRI techniques are also introduced. The

ability toquantify total, bound, andporewater contenthas shown strong

correlations with bone microstructure, mechanical properties, and age-

related changes, making them promising biomarkers for evaluating

fracture risk andosteoporosis.More advanced techniques, such asUTE-

QSM and UTE-MT (72, 73, 77–83, 92–98, 126–128), enable us to

evaluate bone mineral content and organic matrix density. Dynamic

UTE imaging provides information about bone perfusion andmodeling

and can be used to monitor fracture healing (104, 105).

The UTE MRI techniques may provide new opportunities in

assessing bone properties and fracture risk in not only osteoporosis

but also other metabolic diseases such as osteopenia, osteomalacia,

Paget’s disease, hypophosphatasia, chronic kidney disease–mineral

and bone disorder, diabetes, etc. For example, type 2 diabetes (T2D)

is characterized by normal or high BMD but impaired bone

strength (129–131). Animal and specimen studies indicate that

brittle behavior in T2D bone is primarily due to a substantial

reduction in collagen capacity for deformation (132–138). High

glucose levels lead to the creation of advanced glycation end-

products (AGEs), which cause non-enzymatic crosslinking,

thereby increasing brittleness of the otherwise elastic collagen

fibers and reducing bone toughness (132–138). Quantitative

magnetization transfer MRI has been extensively studied to probe

extracellular matrix (ECM) and measure the crosslinking of

collagen and other polymers (139–141). UTE-MT modeling can
FIGURE 14

Receiver operating characteristic (ROC) curves for discriminating
between non-fracture and distal radius fracture cases using two
logistic regression models. The model in orange uses only hip
BMD as a predictor which was the best model found without the
inclusion of UTE MRI data. The model in blue uses both Cpw and Cbw

as predictors, which was the best overall model. Although the 95% CIs
of the AUCs overlap, the data are trending toward the conclusion that
the UTE MRI better discriminates Fx from Non-Fx patients than does
DXA in the present study. From Ref. (121) with permission.
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measure collagen backbone proton fraction and exchange rates

between water and collagen protons (73, 78–83). The exchange rates

can be used to assess collagen crosslinking and potentially explain

the impaired bone strength in T2D (137, 142).

This review has several limitations. First, the review summarized

solid-state 1H UTE techniques. 31P UTE MRI techniques and their

applications were only briefly mentioned without systematic

discussion. Second, the review only discussed applications in OP.

The UTE MRI techniques can also be applied to other metabolic

bone diseases.
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Conclusion

With a decade of technical development, the advanced UTE-type

MRI sequences allow direct imaging of bone with high signal and

contrast. Quantitative UTE MRI techniques can assess all the major

components of bone, including water, collagen, and mineral.

Advanced UTE techniques can map different bone water

components (total water, bound water, and pore water) and

evaluate bone perfusion. UTE sequences can also assess bone

microstructure, including cortical porosity and trabecular structure.
FIGURE 15

Fracture of tibial plateau 2 days after injury is seen with coronal fat-suppressed UTE (TR/TE=500/0.08 ms) (A) and echo subtraction (TE=0.08 minus
TE=17.7 ms) (B) images before enhancement and the corresponding images (C, D) after enhancement, with extensive enhancement in blood vessels
in (C) and specific enhancement of the periosteum in (D). From Ref. (104) with permission.
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UTEMRI can map phosphorus content, assess bone mineral density,

and differentiate between mature and newly remodeled bone. In

summary, UTE MRI provides a comprehensive package to assess all

bone components (mineral, collagen, water) and microstructure

(cortical porosity, trabecular microstructure) using a single

modality for improved detection of bone deficits, with potential

advantages over conventional X-ray based techniques which can

only assess bone mineral. Further research is needed to establish

the clinical significance of these UTE-type MRI techniques.
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