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Identification of mitochondria-
related feature genes for
predicting type 2 diabetes
mellitus using machine
learning methods
Xiuping Xuan1†, Mingjin Sun2†, Donghui Hu3 and Chunli Lu2*

1Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi, China, 2Department of Endocrinology, Suizhou Hospital, Hubei University of Medicine,
Suizhou, Hubei, China, 3Department of Reproduction and Infertility, Suizhou Hospital, Hubei
University of Medicine, Suizhou, Hubei, China
Purpose: We aimed to identify the mitochondria-related feature genes

associated with type 2 diabetes mellitus and explore their potential roles in

immune cell infiltration.

Methods: Datasets from GSE41762, GSE38642, GSE25724, and GSE20966 were

obtained from the Gene Expression Omnibus database. Weighted Gene Co-

expression Network Analysis was performed to achieve mitochondria-related hub

genes. Random Forest, Least Absolute Shrinkage and Selection Operator, and

Support Vector Machines-Recursive Feature Elimination algorithms were used to

screen mitochondria-related feature genes. Receiver Operating Characteristic

analysis was applied to evaluate the accuracy of the feature genes. Pearson’s

correlation analysis was used to calculate the correlations between feature genes

and immune cell infiltration. The prediction of candidate drugs targeting the feature

geneswere predicted using the DGIdb database. qRT-PCRwas performed to access

the mRNA expressions of the feature genes.

Results: Five mitochondria-related feature genes (SLC2A2, ENTPD3, ARG2, CHL1,

and RASGRP1) were identified for type 2 diabetes mellitus prediction. They

possessed high predictive accuracies with the area under the Receiver Operating

Characteristic curve values >0.8. All five genes showed the strongest positive

correlation with regulatory T cells and negative correlation with neutrophils.

Additionally, drugs prediction analysis revealed 2(S)-amino-6-boronohexanoic

acid, difluoromethylornithine, and compound 9 could target ARG2, while

metformin was a candidate drug for SCL2A2. Finally, all five genes were confirmed

to be decreased in MIN6 cells treated with high glucose and palmitic acid.

Conclusion: SLC2A2, ENTPD3, ARG2, CHL1, and RASGRP1 could be used as the

mitochondria-related feature genes to predict type 2 diabetes mellitus and the

therapeutic targets.
KEYWORDS

type 2 diabetes mellitus, mitochondria, immune cells, machine learning, MR
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fendo.2025.1501159/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1501159/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1501159/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1501159/full
https://www.frontiersin.org/articles/10.3389/fendo.2025.1501159/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2025.1501159&domain=pdf&date_stamp=2025-03-27
mailto:luchunlihui@163.com
https://doi.org/10.3389/fendo.2025.1501159
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2025.1501159
https://www.frontiersin.org/journals/endocrinology


Xuan et al. 10.3389/fendo.2025.1501159
1 Introduction

Type 2 diabetes mellitus (T2DM) is a metabolic disease, which

is prevalent worldwide and characterized by upregulated blood

glucose concentration (1). In 2021, 536.6 million individuals are

estimated to live with T2DM, and the number is still rising (2).

T2DM will lead to hyperglycemia and other life-threatening

complications, including diabetic retinopathy and diabetic

nephropathy (3). It accounts for approximately 90%–95% of all

diabetes cases and is associated with significant morbidity and

mortality due to these complications (4). Currently, lifestyle

management and hypoglycemic drugs such as metformin and

glucagon-like peptide-1 (GLP1) receptor agonists are effective

therapeutic approaches for T2DM. However, long-term use of

these drugs will result in side effects (5). Hence, there is an still

urgent need to unveil the potential therapeutic targets for T2DM.

Mitochondria , the cri t ical organel le for oxidative

phosphorylation, fatty acid oxidation, cellular energy metabolism,

and reactive oxygen species (ROS) production, is closely related to

T2DM development (6, 7). High glucose, the primary feature of

T2DM, can trigger elevated production of ROS. ROS will further

damage the function of mitochondria, which finally causes

decreased insulin secretion and the apoptosis of pancreatic b-cells
(8). Eliminating ROS can attenuate insulin resistance, which is the

primary cause of T2DM (9). Furthermore, deficiency in fatty acid

metabolism of mitochondria results in insulin resistance (10). In

addition to ROS production, the dysfunction of mitochondria will

cause inflammatory response and promote the secretion of

inflammatory factors, which will eventually lead to immune cell

infiltration into the injured tissue, such as lymphocyte (11),

macrophage (12), and neutrophil (13). The infiltration of immune

cells will further aggravate the development of T2DM resulting in

insulin resistance and b-cells dysfunction (14). However, whether

any mitochondria-related genes can serve as candidate predictive

genes for T2DM and whether they are associated with immune cell

infiltration is unclear.

With the development of bioinformatics technology, the

researchers can explore the critical risks or genes for disease

prediction. A previous study revealed that three miRNAs could

act as diagnostic targets for T2DM-related periodontitis via

machine learning (15). In addition, machine learning indicated

that bile acid, ceramide, amino acid, and hexose were risk factors for

T2DM development (16). Eight ferroptosis-related genes in T2DM

were also identified by machine learning (17). Several machine

learning algorithms, including Support Vector Machines-Recursive
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Feature Elimination (SVM-RFE), Least Absolute Shrinkage and

Selection Operator (LASSO) regression, Random Forest (RF) (18),

Artificial Neural Network (19), and extended odd Weibull Rayleigh

(20) were used to identify the feature genes or establish the

predictive model for different diseases. In this study, we aimed to

investigate the mitochondria-related feature genes for T2DM

prediction and therapy by machine learning. Meanwhile, we

further explored the relationships of the mitochondria-related

genes and immune cells infiltration. Our study uncovered novel

biomarkers and therapeutic targets related to mitochondria for

T2DM. While mitochondrial dysfunction has been implicated in

T2DM pathogenesis, the specific mitochondrial-related genes

driving disease progression and their potential as predictive

biomarkers remained poorly understood. Furthermore, the

interplay between mitochondrial genes and immune cell

infiltration in T2DM has not been systematically explored. This

study aimed to fill these critical gaps in the literature by identifying

key mitochondria-related genes predictive of T2DM and

uncovering their relationships with immune cell dynamics,

thereby providing new insights for personalized prediction and

targeted therapy.
2 Methods and materials

2.1 Data collection and processing

The transcriptional profiles of pancreatic islets from patients

with or without T2DM were obtained from the Gene Expression

Omnibus (GEO) datasets (GSE41762, GSE38642, GSE25724, and

GSE20966) (Table 1). Among them, the datasets of GSE41762,

GSE38642, and GSE25724 were used as the training sets. The

dataset of GSE20966 was employed as the validation set. When

processing the data, we first matched the probes in each dataset to

the corresponding gene name and deleted the empty probes. For

those multiple probes that corresponded to the same gene, the mid-

value of the probe-levels was used as the gene expression. Datasets

were normalized using normalizeBetweenArrays in R language.

After data integration of GSE41762, GSE38642, and GSE25724,

ComBat of sva package was conducted to remove the batch effect. In

addition, the 1,136 mitochondrial genes were downloaded from

MitoCarta3.0 (https://www.broadinstitute.org/mitocarta/

mitocarta30-inventory-mammalian-mitochondrial-proteins-

and-pathways).
TABLE 1 Sample information in each dataset.

ID Platform Sample Sample size Data type

GSE41762 GPL6244 Pancreatic islets from patients with or without T2DM 77(20:57) mRNA array

GSE38642 GPL6244 Pancreatic islets from patients with or without T2DM 63(9:54) mRNA array

GSE25724 GPL96 Pancreatic islets from patients with or without T2DM 13(6:7) mRNA array

GSE20966 GPL1352
Beta-cells from pancreases of patients with or
without T2DM

20(10:10) mRNA array
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2.2 Different expression genes

The “limma” package in R language was employed to obtain

DEGs between disease and control samples in the merged dataset by

setting the criteria as |logFC| > 0.3 and p value < 0.05.
2.3 Functional enrichment analyses
of DEGs

The “clusterProfiler” package in R language was used to carry

out the gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis. The p-value was adjusted

by Benjamini–Hochberg; then, the adjusted p value was used to

display the results of the functional enrichment analyses of DEGs.
2.4 Enrichment scores of mitochondrial
related DEGs

The mitochondrial-related DEGs in pancreatic islets from

patients with or without T2DM were obtained by intersecting the

DEGs and the 1,136 mitochondrial genes. Subsequently, the single-

sample gene set enrichment analysis (ssGSEA) enrichment scores of

mitochondrial-related DEGs were analyzed using the “gene set

variation analysis (GSVA)” package of R language.
2.5 Weighted Gene Co-expression
Network Analysis analysis

“WGCNA” package of R language was used to establish the gene

expression modules specific to mitochondria according to the

enrichment scores of the mitochondrial-related DEGs. We selected

the DEGs in the top 50% of variance in the merged dataset as the input

data. The optimal soft threshold was determined based on the scale-free

topology criterion. Then, the weighted adjacency matrix was

transformed to topological overlap matrix. The modules with more

than 30 genes were screened by hierarchical clustering. The consensus

modules were combined by setting the distance to 0.25. Each module

was displayed in a random color. Then, the modules were screened

based on phenotypic correlation. Mitochondria-related hub genes were

identified based on module membership (MM, |MM| > 0.6) and gene

significance (GS, |GS| > 0.5). The intersection of DEGs and the

mitochondria-related hub genes was employed for further analysis.
2.6 Feature genes identification

To identify the feature genes associated with mitochondria in

T2DM, we first utilized SVM-RFE to remove the redundant factors

via the SVM function in “caret” package of R language. Then,

functions = caretFuncs was specified in rfeControl, and method =

“svmRadial” in rfe to predict the optimal features. LASSO

regression was conducted using the “glmnet” package in R
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language to calculate and select linear models and retain valuable

variables. Then, binomial distribution variables were used for

LASSO classification, and the optimal variables were selected by

choosing lambda 1se as the criterion. Subsequently, RF was

employed to sequence genes, and the genes with Gini coefficient

>1 were considered as important feature genes. The intersection of

genes obtained by the three algorithms was defined as the final

feature genes. The R package “pROC” was used to display the

diagnostic performance of feature genes in different datasets.
2.7 Nomogram construction
and evaluation

“rms” package in R language was used to construct the nomogram

predicted model according to the risk factors, and the nomogram was

visualized by using the “regplot” package in R language. Then, the

clinical applicability of the nomogram was evaluated using calibration

curves via calibrate function in “rms” package and decision curve

analysis (DCA) via “ggDCA” package in R language.
2.8 Protein–protein interaction network

The candidate genes that would bind to the feature genes were

analyzed by GeneMANIA (http://www.genemania.org).
2.9 Immune cell infiltration analysis

The ssGSEA enrichment scores of 28 immune cell subtypes were

analyzed using the “GSVA” package of R language. The enrichment of

different immune cell subtypes in different samples was obtained by

transforming the expression matrix of genes between different samples

into the expression matrix of gene sets between samples. Wilcox.test

was applied to assess the difference in immune cell abundance between

groups. Pearson’s correlation analysis was used to calculate the

correlations between feature genes and immune cells.
2.10 Identification of candidate drugs

The Drug–Gene Interaction Database (DGIdb, www.dgidb.org)

was used to explore the candidate drugs that would target the

feature genes. The interaction network was visualized by

Cytoscape software.
2.11 Cell culture

MIN6 cells were purchased from ATCC and cultured in

Dulbecco’s modified Eagle’s medium (DMEM) medium with 12%

FBS in an incubator with 5% CO2 at 37°C. The cells were divided into

two groups: CON group [5 mmol/L glucose + bovine serum albumin

(BSA)] and T2DM group [25 mmol/L glucose + 0.5 mmol/L palmitic
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acid (PA) + BSA]. Then, the cells were harvested at 48 h

post-treatment.
2.12 Quantitative reverse transcription
polymerase chain reaction

Total RNA was extracted by TRIpure (EP013, ELK Biotechnology,

Wuhan, China). An equal amount of RNAwas reverse transcribed into

cDNA using the EntiLink™ 1st Strand cDNA Synthesis Super Mix

(EQ031, ELK Biotechnology, Wuhan, China). The qRT-PCR

amplification was performed in the QuantStudio 6 Flex System PCR

instrument (Life technologies, San Diego, CA) by using the EnTurbo™

SYBR Green PCR SuperMix kit (EQ001, ELK Biotechnology, Wuhan,

China). GAPDH was used as internal reference. The primer sequences

used for qRT-PCR are listed in Table 2.
2.13 Statistical analysis

All statistical analyses were performed using R language (v4.3.0).

“FactoMineR” and “factoextra” packages were used for principal

component analysis (PCA) and its visualization. Heatmap was

visualized using the “pheatmap” package. The “ggvenn” package and

“pROC” package were applied for Venn diagram and ROC curve

visualization, respectively. “Corrplot” package was used for feature gene

correlation analysis and its visualization. The “RCircos” package was

employed to show the locations of genes on chromosomes. “Ggplot2”

or “plot” was used to plot other results. The correlations between

feature genes and immune cells were conducted by Pearson’s

correlation analysis. Wilcox.test was used to test the difference in

immune cell abundance between groups. p < 0.05 indicated a

statistical difference. *p < 0.05, **p < 0.01, ***p < 0.001, ns meant no

statistical difference.

3 Results

3.1 Identification of the DEGs in pancreatic
islets from patients with or without T2DM

In order to obtain the DEGs in pancreatic islets from patients

with or without T2DM, we first merged the datasets of GSE41762,

GSE38642, and GSE25724. A total of 35 samples with T2DM and
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118 control samples were included. After removing the batch effect,

the samples of different datasets that showed different clustering

patterns (Figures 1A, C) would display the same clustering patterns

(Figures 1B, D). A total of 458 DEGs were obtained using the

“limma” package of R with the threshold values of |logFC| >0.3 and

p < 0.05; among them, 255 DEGs were upregulated and 203 DEGs

were downregulated (Figure 1E, Supplementary Table S1). The top

40 DEGs are shown in Figure 1F. Subsequently, GO and KEGG

enrichment analyses were used to explore the function of DEGs. As

shown in Figure 1G and Supplementary Table S2, signal release,

protein localization to extracellular region, and protein secretion

were enriched in the biological process. Collagen-containing

extracellular matrix, neuronal cell body, and transport vesicle

were enriched in cellular component. The results of molecular

function analysis showed that receptor ligand activity, serine

hydrolase activity, and serine-type peptidase activity were

enriched. Furthermore, KEGG analysis revealed the DEGs were

mainly associated with PI3K-Akt signaling pathway, cytokine–

cytokine receptor interaction, and MAPK signaling pathway

(Figure 1H, Supplementary Table S3).
3.2 Identification of the hub DEGs related
to mitochondria in pancreatic islets from
patients with or without T2DM

To explore the hub DEGs related to mitochondria in pancreatic

islets from patients with or without T2DM, we picked out the

mitochondrial genes from DEGs and nine mitochondria-related

DEGs were obtained, including ATP citrate lyase (ACLY), 4-

aminobutyrate aminotransferase (ABAT), interferon alpha

inducible protein 27 (IFI27), arginase 2 (ARG2), dehydrogenase/

reductase 2 (DHRS2), epoxide hydrolase 2 (EPHX2), alpha-

methylacyl-CoA racemase (AMACR), hydroxyacyl-CoA

dehydrogenase (HADH), and abhydrolase domain containing 10,

depalmitoylase (ABHD10) (Supplementary Figure S1A). Their

locations on chromosomes are shown in Supplementary Figure

S1B. Then, the ssGSEA enrichment scores of mitochondria-related

DEGs were analyzed using the “GSVA” package of R language. The

results revealed that the ssGSEA enrichment scores of

mitochondria-related DEGs were obviously lower in the samples

with T2DM than those in the control samples (Supplementary

Figure S1C).
TABLE 2 The primer sequences.

Name Forward (5′–3′) Reverse (3′–5′)

GAPDH TGAAGGGTGGAGCCAAAAG AGTCTTCTGGGTGGCAGTGAT

SLC2A2 TGTCAGAAGACAAGATCACCGG CTCTTGAGGTGCATTGATCACAC

ENTPD3 GACTTCTGCAGACACACTTGGAG GTATCCATTTACGAGCAAGTGGT

ARG2 TCTGGTTGTGTATCCTCGTTCAG GTATTAATGTCCGCATGAGCATC

CHL1 AGAATATGCTGGCTTATATGATGAC CCTCTTCACAAAGCAAATAGTTAAC

RASGRP1 CGACACGACCCAAATTAATTC GACAGTTCTTCAGGTTCCAGATG
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Subsequently, the gene expression modules specific to

mitochondria in the merged dataset were established using

“WGCNA” package based on the ssGSEA enrichment scores of

the nine mitochondria-related DEGs. No outliers were found in the

samples after clustering analysis (Figure 2A). Scale-free topological

networks and connectivity were optimal when the soft threshold b
was set to 6 in the PickSoftThreshold function (Figure 2B). A total

of 26 gene modules with different color were obtained by

hierarchical clustering (Figure 2C). Among these modules,

turquoise module with R = 0.85 and black module with R = −0.8

had the strongest correlations with the nine mitochondria-related

DEGs (Figure 2D). In addition, 667 hub genes and 110 hub genes

were obtained in the turquoise module (Figure 2E, Supplementary

Table S4) and black module (Figure 2F, Supplementary Table S5),

respectively, by setting the |GS| > 0.5 and |MM |> 0.6. After

intersecting the hub genes identified in the turquoise module and
Frontiers in Endocrinology 05
black module with the DEGs in the merged dataset, we finally

obtained 180 hub DEGs in the turquoise module (Figure 2G) and 18

hub DEGs in the black module (Figure 2H). These 198 hub DEGs

were combined for further analysis.
3.3 Identification of the mitochondria-
related feature genes in T2DM

Next, we employed three machine learning algorithms,

including SVM-RFE, LASSO, and RF to explore the

mitochondria-related feature genes in the 198 hub DEGs. Based

on the minimum lambda value, LASSO regression obtained 16

mitochondria-related feature genes with non-zero coefficients

(Figures 3A, B). SVM-RFE model had the highest accuracy when

the number of mitochondria-related feature genes was 6
FIGURE 1

Identification of the DEGs in pancreatic islets from patients with or without T2DM. (A, B) The expressions of samples before (A) and after (B) batch
effect removing. (C, D) PCA analysis of gene expression profiles in the merged dataset before (C) and after (D) batch effect removing. (E) Volcano
plot of the DEGs in the merger dataset. Red meant upregulated, blue meant downregulated, and gray meant no significant difference. (F) Heatmap
of the DEGs on the top 40 in the merger dataset. (G, H) GO (G) and KEGG (H) enrichment analysis of the DEGs.
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(Figure 3C). The error rate of the RF model tended to be stable

when the ntree value was >1,100 (Figure 3D), it would be the lowest

when the mtry value was 116 (Figure 3E). Finally, seven genes with a

Gini coefficient >1 were considered as mitochondria-related feature

genes screened by RF. After intersecting the mitochondria-related

feature genes identified by the three algorithms, five mitochondria-

related feature genes were obtained, including solute carrier

family 2 member 2 (SLC2A2), ectonucleoside triphosphate

diphosphohydrolase 3 (ENTPD3), ARG2, cell adhesion molecule

L1 like (CHL1), and RAS guanyl releasing protein 1 (RASGRP1)

(Figure 3F). We further explored the expressions of these five

mitochondria-related feature genes in individual dataset.

The results showed all of the feature genes were lower in

disease samples with T2DM than those in the control samples

(Figure 3G). Their expressions were further validated by another

dataset GSE20966, which contained the mRNA expression

of beta-cells from pancreases of patients with or without

T2DM (Figure 3H).
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3.4 Assessment of the accuracies of the
mitochondria-related feature genes in
different datasets

To assess the accuracies of the five mitochondria-related feature

genes, ROC analysis was used to calculate the value of the area

under the ROC curve (AUC). As shown in Figure 4A, the AUC

values were 0.838 for SLC2A2, 0.830 for ENTPD3, 0.826 for ARG2,

0.825 for CHL1, and 0.817 for RASGRP1 in the merged dataset,

demonstrating superior performance compared to the traditional

Finnish Diabetes Risk Score (FINDRISC), which typically achieves

AUROC values in the range of 0.70 to 0.78 (21, 22). Then, we

further evaluated the accuracies of the five mitochondria-related

feature genes in another dataset GSE20966. Their AUC values were

0.970 for SLC2A2, 0.860 for ENTPD3, 0.760 for ARG2, 1.000 for

CHL1, and 0.860 for RASGRP1 (Figure 4B). In addition, the AUC

values of the five mitochondria-related feature genes were also

analyzed in datasets of GSE41762, GSE38642, and GSE25724.
FIGURE 2

Identification of the hub DEGs related to mitochondria in pancreatic islets from patients with or without T2DM. (A) Clustering analysis of the samples
specific to mitochondria in the merged dataset. (B) Analysis of scale-free topological networks and connectivity in different soft-threshold powers.
(C) Cluster dendrogram of the gene expression modules specific to mitochondria. (D) The module–trait relationships with the nine mitochondria-
related DEGs. (E, F) Correlation of the module membership in the turquoise module (E) and the black module (F) with the gene significance of the
nine mitochondria-related DEGs. (G, H) The Venn diagrams of DEGs with genes in the turquoise module (G) or the black module (H).
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Their AUC values were 0.976 for SLC2A2, 0.929 for ENTPD3, 0.857

for ARG2, 0.833 for CHL1, and 0.548 for RASGRP1 in dataset

GSE25724 (Figure 4C). AUC values were 0.766 for SLC2A2, 0.856

for ENTPD3, 0.885 for ARG2, 0.866 for CHL1, and 0.912 for

RASGRP1 in dataset GSE38642 (Figure 4D). AUC values were

0.868 for SLC2A2, 0.795 for ENTPD3, 0.776 for ARG2, 0.829 for

CHL1, and 0.832 for RASGRP1 in dataset GSE41762 (Figure 4E).

The results revealed that the five mitochondria-related feature genes

had high accuracies.
3.5 Clinical diagnostic performance of the
mitochondria-related feature genes for
type 2 diabetes mellitus

To further evaluate the clinical diagnostic performance of the

mitochondria-related feature genes for type 2 diabetes mellitus, the

diagnostic nomogram was established by performing the “rms”

package of R language based on the mitochondria-related feature

genes (Figure 5A). The calibration curves indicated that the

probability of T2DM had good agreement between prediction by
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the nomogram and actual observation in T2DM (Figure 5B).

Furthermore, the DCA curves showed patients could achieve

more net benefit for T2DM diagnosis by using the nomogram,

which was established based on the mitochondria-related feature

genes (Figure 5C).
3.6 Identification of the differentially
infiltrated immune cells in pancreatic islets
from patients with or without T2DM

The infiltration of immune cells plays an important role in the

development of T2DM, we wondered whether the mitochondria-

related feature genes would be related to the infiltration of immune

cells. First, we analyzed the ssGSEA enrichment scores of 28

immune cell subtypes in the merged dataset. The results showed

that 14 immune cell subtypes were differentially infiltrated into the

pancreatic islets of patients with T2DM compared with those in

control individuals, including activated B cell, activated dendritic

cell, central memory CD4 T cell, central memory CD8 T cell,

effector memory CD4 T cell, effector memory CD8 T cell,
FIGURE 3

Identification of the mitochondria-related feature genes in T2DM. (A, B) The lambda (A) and g (B) values screened by LASSO algorithm. (C) The
accuracy of SVM-RFE model in different variables. (D, E) The error rate of RF model in different ntree (D) and mtry (E) values. (F) The Venn diagrams
of feature genes obtained from LASSO, SVM-RFE, and RF models. (G, H) The expressions of SLC2A2, ENTPD3, ARG2, CHL1, and RASGRP1 in the
datasets of GSE41762, GSE38642, GSE25724, and GSE20966. * represents P<0.05, ** represents P<0.01, *** represents P<0.001, and ****
represents P<0.0001.
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FIGURE 4

Assessment of the accuracies of the mitochondria-related feature genes in different datasets. (A) ROC curves of SLC2A2, ENTPD3, ARG2, CHL1, and
RASGRP1 in the merged dataset. (B) ROC curves of SLC2A2, ENTPD3, ARG2, CHL1, and RASGRP1 in the validation set GSE20966. (C–E) ROC curves
of SLC2A2, ENTPD3, ARG2, CHL1, and RASGRP1 in datasets of GSE41762, GSE38642, and GSE25724.
FIGURE 5

Clinical diagnostic performance of the mitochondria-related feature genes for type 2 diabetes mellitus. (A) The diagnostic nomogram established based
on the mitochondria-related feature genes. (B) The calibration curves of the diagnostic nomogram. (C) The decision curves of the diagnostic
nomogram. (D) The infiltrations of immune cells in the pancreatic islets of patients with T2DM compared with those in control individuals. (E) Heatmap
of the distributions of immune cell subtypes in the datasets of GSE41762, GSE38642, and GSE25724. * represents P<0.05, ** represents P<0.01, and ***
represents P<0.001.
Frontiers in Endocrinology frontiersin.org08

https://doi.org/10.3389/fendo.2025.1501159
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Xuan et al. 10.3389/fendo.2025.1501159
macrophage, mast cell, myeloid-derived suppressor cells (MDSC),

neutrophil, plasmacytoid dendritic cell, regulatory T cell, type 1 T

helper cell, and type 2 T helper cell (Figure 5D). The distributions of

the immune cell subtypes in the datasets of GSE41762, GSE38642,

and GSE25724 are shown in Figure 5E. Subsequently, we further

explored the potential genes that might interact with the five

mitochondria-related feature genes in the GeneMANIA database.

A total of 20 candidate genes were found, such as contactin 6

(CNTN6), arginase 1 (ARG1), and ankyrin 1 (ANK1)

(Supplementary Figure S2A). Pearson’s correlation analysis

showed the five mitochondria-related feature genes were positive

correlated with each other in the merged dataset (Supplementary

Figure S2B). In addition, Pearson’s correlation analysis was used to

calculate the correlations between feature genes and immune cells.

The results showed that the five mitochondria-related feature genes

had positive or negative correlations with most immune cells.

Specifically, all of these genes had positive correlations with

memory B cells, regulatory T cell, immature dendritic cell, and

monocytes. They were negatively correlated with central memory

CD4 T cell, effector memory CD8 T cell, and neutrophils

(Supplementary Figure S2C). The correlations between RASGRP1

and activated B cell or regulatory T cell are displayed in

Supplementary Figures S2D, E. These results indicated that the

five mitochondria-related feature genes were involved in the

infiltration of immune cells in T2DM.
3.7 Identification of candidate drugs that
would target the mitochondria-related
feature genes

To investigate the therapeutic potential of the five

mitochondria-related feature genes, we further identified the

candidate drugs that would target these genes by using the DGIdb

database. We found that 2(S)-amino-6-boronohexanoic acid,

difluoromethylornithine, and compound 9 could targeted ARG2.

Metformin was the candidate drug for SCL2A2 (Supplementary

Figure S3, Supplementary Table S6).
3.8 The expressions of the mitochondria-
related feature genes in MIN6 cells treated
with high glucose and PA

To further explore the expressions of the mitochondria-related

feature genes in T2DM, we performed a glucose-lipid toxicity

(GLT)-induced cellular T2DM model in MIN6 cells. The RT-PCR

results showed that the mRNA levels of SLC2A2, ENTPD3, ARG2,

CHL1, and RASGRP1 were significantly lower in MIN6 cells in the

T2DM group than those in the control group (Figures 6A–E). These

results revealed that the mitochondria-related feature genes

identified by the bioinformatics method were changed in the

cellular T2DM model, indicating that SLC2A2, ENTPD3, ARG2,

CHL1, and RASGRP1 would important roles in the development

of T2DM.
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4 Discussion

T2DM is a metabolic disease with high blood glucose level and

insulin resistance. An increasing number of individuals are living

with T2DM (23). Mitochondria dysfunction plays critical role in the

development of T2DM and immune cells infiltration (24, 25).

However, whether there are any mitochondria-related genes that

can predict the development of T2DM is unknown. In this study, we

employed the machine learning methods to identify the

mitochondria-related feature genes for T2DM prediction. A total

of five mitochondria-related feature genes (SLC2A2, ENTPD3,

ARG2, CHL1, and RASGRP1) were identified and confirmed to

be decreased in the cell T2DM model. These genes were closely

associated with immune cell infiltration. Overall, our study

provided novel therapeutic targets for T2DM.

By using the machine learning methods, we identified five

mitochondria-related feature genes for T2DM prediction, including

SLC2A2, ENTPD3, ARG2, CHL1, and RASGRP1. SLC2A2, encoding

the glucose transporter GLUT2, is critical for glucose sensing in

pancreatic b cells and glucose uptake in the liver. GLUT2 deficiency

in intestine attenuated glucose absorption and improved glucose

tolerance (26). In addition, liver specific loss of GLUT2 also inhibited

glucose uptake and impaired glucose-induced insulin secretion (27).

Recent studies revealed that the SLC2A2 variation was related to

T2DM treatment by influencing the effect of metformin on

hemoglobin A1c reduction (28, 29). A bulk RNA-seq and single-

cell RNA-seq analysis identified that ENTPD3 was a candidate target

gene for T2DM (30). ARG2 was also considered as the feature gene of

T2DM and related to immune response (31). In terms of mechanism,

ARG2 activation was associated with ROS production and insulin

resistance (32). Furthermore, CHL1 was reported to be decreased in

islets of mice with T2DM. Deficiency of CHL1 would reduce insulin

secretion via activating ERK/MAPK signaling pathway (33). In line

with the previous studies, we revealed that SLC2A2, ENTPD3, ARG2,

CHL1, and RASGRP1 could serve as the feature genes for T2DM

prediction. Even though the underlying mechanisms were not fully

understood, we hypothesized that these genes would influence the

mitochondrial functions in T2DM because the five feature genes were

obtained in the DEGs of T2DM based on the ssGSEA enrichment

scores of mitochondria-related DEGs in T2DM.

The KEGG enrichment assay revealed that the DEGs of T2DM

were primarily related to PI3K-Akt and MAPK signaling pathways.

PI3K-Akt pathway was important for the signal transduction of

insulin (34). However, the dysregulation of PI3K-Akt pathway

would result in insulin resistance and the complications of T2DM

(35). PI3K-AKT pathway could use as the target pathway for T2DM

therapy. Resolvin D1 could improve the insulin response via

activating PI3K-Akt pathway, then preventing the development of

T2DM in mice (36). In addition, Irisin increased the secretion of

insulin and alleviated insulin resistance by the activation of PI3K-

AKT pathway (37). Phlorizin could activate PI3K-AKT signaling

and attenuate the insulin resistance (38). Interestingly, our study

found that one of the enriched pathways of DEGs in T2DM was

PI3K-AKT signaling, indicating the DEGs identified in our study

would partially work through PI3K-AKT signaling.
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Immune cells played important role in the development of

T2DM. Dendritic cells and Th17 cells were increased in the blood of

patients with T2DM (39). Another study also found that the

number of plasmacytoid dendritic cells were upregulated in the

adipose tissue of patients with T2DM (40). Depletion of dendritic

cells could attenuate the production of pro-inflammatory cytokines

and improve the progression of T2DM (41). Furthermore, when the

immune cells infiltrated into the injured tissue, they would secret

the pro-inflammatory cytokines and induce ROS production, which

ultimately led to insulin resistance (42–44). Consistent with these

studies, our study revealed that all of the five mitochondria-related

feature genes were negatively correlated with active dendritic cells

and plasmacytoid dendritic cells. We also confirmed that the five

mitochondria-related feature genes were downregulated in cellular

T2DM model, so the increase in dendritic cells in T2DM might be

associated with the decrease in the five mitochondria-related feature

genes. However, the directly correlation and underlying

mechanisms of the feature genes and dendritic cells infiltration

need further investigation. In addition, even though the associations

between the five mitochondria-related feature genes and immune

cell infiltration in T2DM were not clear, their relationships in other

diseases were reported. A negative association was observed

between SLC2A2 expression and the extent of immune cell

infiltration in hepatocellular carcinoma (45). ENTPD3 was

negatively related to the infiltration of M1 macrophages, NK cells,

and T cells in recurrent implantation failure patients (46). Hence, it

was possible that the five mitochondria-related feature genes might

affect the progression of T2DM disease by regulating immune

cell infiltration.

Even though we explored the mitochondria-related feature

genes of T2DM in three datasets and further validated them in
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another validation dataset, the sample size was still small; a larger

sample size would make the conclusion more solid. In addition, we

only confirmed the mRNA expressions of the five feature genes in

the MIN6 cells treated with high glucose and PA; more experiments

are necessary to further validate the functions of these genes in the

development of T2DM. While our current study was primarily

exploratory and focused on mechanistic insights, we recognized the

need for future research to address scalability and industrial

implementation. This could include collaborations with industry

stakeholders to develop practical applications, develop diagnostic

kits or assays targeting these genes, or explore small molecules or

biologics that modulated the expression or activity of these genes.
5 Conclusion

In this study, we identified five mitochondria-related feature

genes (SLC2A2, ENTPD3, ARG2, CHL1, and RASGRP1) that were

significantly associated with the development of T2DM. Utilizing

these genes, we developed a predictive model that demonstrated high

diagnostic accuracy for T2DM, highlighting their potential as

biomarkers for early detection and diagnosis. Furthermore, our

analysis revealed a strong correlation between these genes and

immune cell infiltration, suggesting their involvement in the

immune-related pathogenesis of T2DM. Experimental validation in

MIN6 cells exposed to high glucose and PA confirmed the altered

expression of these genes under diabetic conditions. Collectively,

these findings underscore the potential of SLC2A2, ENTPD3, ARG2,

CHL1, and RASGRP1 as novel therapeutic targets for T2DM, offering

new insights into the molecular mechanisms underlying the disease

and paving the way for targeted interventions.
FIGURE 6

The expressions of the mitochondria-related feature genes in MIN6 cells treated with high glucose and PA. (A–E) The relative mRNA expressions of
ARG2 (A), CHL1 (B), ENTPD3 (C), RASGRP1 (D), and SLC2A2 (E) in MIN6 cells treated with high glucose and PA or low glucose for 48 h GAPDH was
used as internal reference. N=3, *p<0.05.
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SUPPLEMENTARY FIGURE 1

Identification of the mitochondria-related DEGs. (A), The Venn diagram of
DEGs obtained from merged dataset and the mitochondria-related genes.

(B), The locations of the 9 mitochondria-related DEGs on chromosomes. (C),
ssGSEA enrichment scores of mitochondria-related DEGs.

SUPPLEMENTARY FIGURE 2

The correlation of the feature genes and the infiltration of immune cells. (A),
The PPI network between feature genes and their potential targeted genes.
(B), The correlation between the feature genes. (C), The correlation of the

feature genes and the infiltration of immune cells. (D, E), The correlations
between RASGRP1 and activated B cell (D) or regulatory T cell (E).

SUPPLEMENTARY FIGURE 3

Identification of candidate drugs which would target the mitochondria-

related feature genes. The network of feature genes and the candidate
targeted drugs. Rose red color represented feature genes. Green color

represented targeted drugs.
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