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Cardiovascular-kidney-metabolic (CKM) syndrome is a systemic clinical

condition characterized by pathological and physiological interactions among

metabolic abnormalities, chronic kidney disease, and cardiovascular diseases,

leading to multi-organ dysfunction and a higher incidence of cardiovascular

endpoints. Traditional approaches to managing CKM syndrome risk are

inadequate in these patients, necessitating strategies targeting specific CKM

syndrome risk factors. Increasing evidence suggests that addressing uremic

toxins and/or pathways induced by uremic toxins may reduce CKM syndrome

risk and treat the disease. This review explores the interactions among heart,

kidney, and metabolic pathways in the context of uremic toxins and underscores

the significant role of uremic toxins as potential therapeutic targets in the

pathophysiology of these diseases. Strategies aimed at regulating these uremic

toxins offer potential avenues for reversing and managing CKM syndrome,

providing new insights for its clinical diagnosis and treatment.
KEYWORDS
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Background

In recent years, chronic kidney disease (CKD) has become a global epidemic, with a

prevalence rate as high as 14.3% (1). The incidence of CKD is increasing due to rising rates

of diabetes, hypertension, and obesity. In China, the adult prevalence of CKD is 10.6% (2).

Its complex pathogenesis and lack of effective interventions lead to multisystem

complications (3), making it a significant global public health concern. CKD-related

diseases caused approximately 1.2 million deaths worldwide in 2017, with this number

projected to increase to 2.2 million by 2040 (4). Cardiovascular disease (CVD) is the most

common complication and leading cause of death associated with CKD (5). Metabolic,
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cardiovascular, and kidney diseases significantly overlap, presenting

major health challenges with high morbidity and mortality rates.

These conditions often coexist and interact, underscoring the

interconnectedness of heart, kidney, and metabolic health. In

2023, the American Heart Association (AHA) proposed a new

disease concept—Cardiovascular-Kidney-Metabolic (CKM)

syndrome, emphasizing the pathophysiological interactions

among metabolic risk factors, CKD, and CVD. This syndrome is

characterized by systemic diseases leading to multi-organ

dysfunction and increased cardiovascular adverse events (6).

A long-term retrospective study in Sweden, involving over a

million patients with diabetes mellitus (DM) and control subjects,

with a median follow-up of 7.5 years, observed an increasing trend

in end-stage renal disease (ESRD) among DM patients compared to

controls. The incidence rate of ESRD (per 100,000 person-years)

was 116.1 in patients with DM versus 42.0 in the control group.

Further analysis revealed associations between cardiac metabolic

risk factors in patients with DM and increased risk of ESRD,

including elevated glycated hemoglobin, systolic blood pressure,

body mass index, advanced age, and low high-density lipoprotein

cholesterol levels (7).Studies have shown that 93.6% of patients with

type 2 diabetes mellitus (T2DM) have at least one concurrent

cardiovascular-kidney-metabolic disease, with 51% having three

or more (8). Epidemiological research and clinical trial data

indicate that successfully controlling multiple CVD risk factors

can reduce the risk of CVD events by ≥50% (9).

Increasing evidence suggests that the progression of metabolic,

cardiovascular, and kidney diseases is associated with the

accumulation of uremic toxins, particularly in CKM syndrome

stages II-IV (10). Elevated levels of indoxyl sulfate (IS), were

found in urine samples from patients with DM and correlated

with changes in proteinuria (11, 12). A 5-year follow-up study

involving 521 patients with CKD confirmed that impaired kidney

function and increased uremic toxins accelerate atherosclerosis.

Higher plasma levels of colonic uremic toxins such as

trimethylamine-N-oxide (TMAO) in CKD subjects were

associated with a 2.8-fold increased risk of CVD-related mortality,

and worsened overall survival with increasing TMAO levels (13). In

animal experiments, administering a TMAO inhibitor to mice on a

high-choline diet reduced plasma TMAO levels and foam cell

formation, thereby improving atherosclerotic plaque formation,

suggesting a potential therapeutic approach for treating cardiac

metabolic diseases (14, 15). Clinical management of CKM

syndrome currently focuses on stage-specific drug selection and

multidisciplinary approaches. Although conventional treatments,

such as lifestyle interventions, glycemic control , and

pharmacotherapy, can delay the progression of CKM syndrome,

the incidence of adverse heart-kidney outcomes remains high.

Patients with both DM and kidney disease have an all-cause

mortality rate approximately 30 times higher than those with

diabetes alone (16). Even with comprehensive treatment

strategies, disease progression is not fully prevented, with a 41.6%

mortality rate over a 14-year follow-up (17). Large-scale cohort

studies have confirmed that baseline CKD, CVD, and cardiac-

kidney comorbidity significantly increase the risk of all-cause

mortality by 1.5-fold, 1.8-fold, and 2.4-fold, respectively,
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compared to those without these conditions. Thus, there is an

urgent need to explore therapeutic strategies that reduce the

incidence and mortality of CKM syndrome. Uremic toxins such

as IS and TMAO have emerged as specific risk factors. Strategies

aimed at regulating these uremic toxins offer potential avenues for

reversing and managing CKM syndrome, providing new insights

for its clinical diagnosis and treatment.
Unique environment of protein-bound
uremic toxins in CKM syndrome

Production and metabolism of gut-derived
uremic toxins

Currently, over 100 uremic toxins have been identified in the

serum of patients with CKD, including a type known for its high

protein affinity, called protein-bound uremic toxins (PBUTs).

PBUTs, such as IS, p-cresyl sulfate (PCS), and TMAO, primarily

originate from endogenous metabolic products, intestinal bacterial

breakdown, and exogenous intake. As renal failure progresses,

dysbiosis of the gut microbiota, changes in enzymatic activity,

and ineffective renal excretion lead to the accumulation of

PBUTs, exacerbating multi-organ damage, including to the heart

and kidneys (18–20).

Many uremic toxins derive from dietary components such as

tryptophan, tyrosine, and choline metabolism. Gut bacteria

metabolize dietary tryptophan into uremic toxin precursors, which

pass through the intestinal mucosal barrier via the portal vein to the

liver. There, they couple with sulfate ions to transform into PBUTs, IS

(21). Tyrosine and phenylalanine metabolites generate p-cresol,

which is absorbed by the intestines and converted to PCS through

the action of sulfotransferases in intestinal epithelial cells, with a small

portion metabolized in the liver into glucuronide-conjugated p-cresol

(22). Phenylacetic acid in host liver cells forms phenylacetylglutamine

(PAGln) (23). Trimethylamine (TMA) is absorbed and circulates to

the liver, where it is converted to TMAO (24). Ultimately, uremic

toxin precursors are transformed into PBUTs and secreted via renal

tubules into urine (25).

In renal tissue, organic anion transporters (OATs) on the

basolateral side of proximal tubule cells play a crucial role in the

selective absorption of PBUTs from the blood and their active

secretion into the renal tubular lumen (26, 27). In patients with

CKD, the abnormal increase in uremic toxins primarily stems from

changes in intestinal microbiota, leading to increased toxin

precursors and reduced secretion through renal tubules due to

declining kidney function. In the context of PBUTs accumulation in

the bloodstream, increased OATs expression stimulated by CKD

leads to significant PBUTs secretion. However, further renal tubular

toxicity and fibrosis worsen renal function, failing to compensate

for toxin accumulation. Accumulated toxins can specifically bind to

the aryl hydrocarbon receptor (AhR), participating in systemic

intracellular signaling pathways related to uremic toxicity, and

contributing to the occurrence of CKD and its complications,

such as CVD (28) (Figure 1).
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Interaction between PBUTs and CKD

According to the “gut-kidney axis” hypothesis, patients with CKD

experience a disruption of the “healthy” microbial community in the

gut. Gut microbiota produce large quantities of PBUTs, such as IS,

PCS, and TMAO, which contribute to kidney damage. Increased gut

barrier permeability allows these PBUTs to enter the bloodstream.

Toxins produced by harmful bacteria accumulate in the blood, causing

persistent inflammation, oxidative stress, immune responses, and

alterations in microbial metabolism and composition. This forms a

vicious cycle, leading to the development and progression of CKD and

its complications (29, 30). In a large-scale clinical cohort study

involving 223 patients with ESRD and 69 gender- and age-matched

healthy controls, metabolomics analysis indicated that gut microbiota

in patients with ESRD caused metabolic alterations characterized by

the accumulation of several PBUTs and secondary bile acids (31).

Furthermore, our team conducted deep metagenomic sequencing on

different stages of kidney disease compared to healthy individuals,

identifying 54 high-quality microbial genome-assembled genomes

with differential presence. Functional analysis revealed more genes

encoding PBUTs, antibiotic resistance, and virulence factors in

functional groups positively correlated with disease severity,

suggesting a role of PBUTs in the occurrence and progression of

kidney disease (32).

Accumulated PBUTs in patients with CKD inhibit the expression

of genes associated with tight junction proteins such as zonula

occludens-1 and claudins, leading to intestinal barrier damage and

increased permeability (33–35). This allows PBUTs to enter the

bloodstream and damage the kidneys. IS and PCS can increase

reactive oxygen species (ROS) content and triphosphopyridine

nucleotide (NADPH) oxidase activity in a time-dependent manner,

significantly raising downstream mRNA expression of transforming

growth factor-b (TGF-b1) and tissue inhibitor of metalloprotease-1

(TIMP-1), thereby damaging renal tubular cells (36, 37). Additionally,

IS and PCS activate the local renin-angiotensin system in the kidneys,

increasing levels of TGF-b1, promoting sustained renal

hyperperfusion and fibrosis (38–40). Various antigens produced by

potential pathogens in the gut can activate immunity, triggering a
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cascade of inflammatory reactions, leading to a unique state of

“chronic inflammatory immune suppression” that induces

glomerulosclerosis and tubulointerstitial fibrosis (41–43). Renal

biopsy results show significant aggregation of M1 macrophages in

early CKD stages, transitioning to M2 macrophages in later stages,

promoting renal damage repair and fibrosis (44–46). In CKD mouse

models, antibiotic treatment can reduce M1 and M2 polarization in

bone marrow-derived macrophages induced by TMAO, thus

alleviating renal fibrosis progression (47).Studies indicate that PCS

interferes with antigen presentation by macrophages and inhibits T

helper cell 1immune responses, leading to adaptive immune

dysfunction in patients with CKD (48). PCS also directly inhibits

macrophage immune responses and reduces peripheral blood B cell

counts (29).

In addition to causing common oxidative stress, inflammation,

and immune effects that contribute to renal damage in patients with

CKD, PBUTs can also alter autophagy and epigenetic states,

furthering CKD progression. A clinical study found almost non-

existent mRNA levels of autophagy-related genes in patients with

ESRD, indicating impaired autophagy activation in patients with

CKD (49). DNA methylation, an important epigenetic regulatory

mechanism, requires methyl donors derived from choline

metabolized by gut microbiota. In the absence of gut microbiota,

intestinal DNA methylation levels significantly decrease (50–52).
Cardiovascular effects of PBUTs

An increasing number of studies have l inked the

aforementioned PBUTs with cardiovascular mortality in patients

with CKD. Compared to non-CKD patients, those with CKD

exhibit a twofold higher CVD mortality rate, with the risk

increasing with the severity of CKD (53). In a study involving 147

patients with CKD, elevated plasma IS levels were associated with

major adverse cardiovascular events, independent of glomerular

filtration rate (GFR) and nutritional status (54). Clinically, elevated

plasma TMAO levels have been established as an independent

predictor of cardiovascular risk and validated in a large
FIGURE 1

Protein-bound uremic toxins in CKM syndrome. IS, indoxyl sulfate; PCS, p-cresol; TMAO, trimethylamine-N-oxide.
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prospective cohort study (55). Two meta-analyses indicated that

higher TMAO levels are associated with a 23%-67% increased risk

of CVD events and a 55%-91% increased risk of all-cause mortality

(56, 57). Additionally, in a cohort of 4000 coronary artery disease

patients undergoing selective diagnostic cardiac assessment, those

with higher plasma levels of PAGln, especially patients with

concomitant T2DM, experienced higher rates of major adverse

cardiac events over three years (23, 58).

The impact of PBUTs on cardiovascular pathology primarily

manifests as arteriosclerosis, thrombosis, vascular calcification,

neointimal hyperplasia, and myocardial fibrosis, ultimately leading

to conditions such as myocardial infarction, heart failure, arrhythmias,

stroke, and peripheral artery disease. TMAO promotes thrombosis

and exacerbates arteriosclerosis through mechanisms involving

macrophage scavenger receptors, foam cell activation, endothelial

cell activation, increased platelet reactivity, and inhibition of reverse

cholesterol transport (59, 60). Additionally, TMAO induces tissue

factor and vascular cell adhesion molecule-1 expression in human

microvascular endothelial cells, significantly enhances Ca2+

stimulation and platelet aggregation, influences vascular

calcification, and promotes the progression of arteriosclerosis (61).

Long-term dietary supplementation of carnitine in mice alters gut

microbiota composition, significantly increasing the synthesis of TMA

and TMAO, which aggravates arteriosclerosis. However, inhibiting gut

microbiota prevents this phenomenon (62). Thus, modifying gut

microbiota to reduce the production of protein-bound uremic

toxins can improve cardiovascular outcomes.

IS, a classic PBUT, enhances platelet activity, increases reactions

involving collagen and thrombin, and elevates microparticles and

platelet-monocyte aggregates derived from platelets. IS binds to the

ligand-binding domain of AhR in endothelial cells and vascular

smooth muscle cells, activating AhR and inducing tissue factor

transcription (63, 64). Concurrently, IS induces ROS expression and

stimulates the expression of inflammatory cytokine, mediating

thrombosis, vascular injury, and myocardial fibrosis (65, 66).
Interaction between PBUTs and
metabolic syndrome

A meta-analysis of 25 cohort studies, 3 cross-sectional studies,

and 19 case-control studies confirmed that obesity increases the risk

of developing CKD in the general population (67). Elsa et al. (68)

demonstrated that overweight and obesity in middle-aged

individuals increase the risk of CVD by 31% and 76%,

respectively, while in older adults, the risks are elevated by 22%

and 40%, respectively. Additionally, approximately 20%-40% of

diabetic patients also have kidney disease (69), with CVD being a

major cause of morbidity and mortality in patients with T2DM (9).

In a large retrospective study involving over ten thousand

participants with an average age of 41.8 years and a follow-up

period of 3.7 years, the presence of metabolic syndrome was

analyzed for its association with all-cause mortality and CVD

mortality risk. The results indicated that metabolic syndrome

increases the risk of all-cause mortality in women and CVD

mortality risk across the entire population (70). This increased
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risk of metabolic disorders is primarily caused by insulin resistance

and obesity, ultimately leading to chronic dysfunction of the heart

and kidneys, highlighting the need for early intervention and

aggressive treatment upon diagnosis of metabolic syndrome.
PBUTs and obesity
An increasing number of studies indicate that disruptions in gut

microbiota and the accumulation of PBUTs play significant roles in

the development of obesity. For instance, individuals with severe

obesity exhibit higher proportions of Firmicutes and Proteobacteria

compared to healthy obese and lean individuals. These bacteria can

metabolize dietary components into precursors of uremic toxins such

as phenylacetic acid (PAA) and TMA (71, 72). A meta-analysis

exploring the association between circulating TMAO levels and

obesity risk reveals a positive correlation between TMAO and

increased BMI (73). Furthermore, a dose-dependent relationship

between TMAO and obesity has been observed even in seemingly

healthy individuals. Using 16S rRNA sequencing and untargeted

metabolomics to analyze differences in gut microbiota, plasma, and

intestinal metabolism between rats fed a high-fat diet and those on a

normal diet, it was found that changes in gut microbiota included

decreased abundance at the phylum level and reduced levels of

Akkermansia, Ralstonia, Bacteroides, and Faecalibacterium at the

genus level; Significant alterations were also observed in intestinal

and plasma metabolite levels (74). Previous studies have

demonstrated that Sangzhi alkaloids (SZ-A) alleviate high-fat diet-

induced obesity, improve fat tissue metabolism, and reduce

inflammation associated with obesity (75). Oral administration of

SZ-A significantly reduces body weight, fat mass, total cholesterol,

and low-density lipoprotein levels in high-fat diet-induced obese

mice. Interestingly, SZ-A also modulates gut microbiota and alters

fecal metabolite composition in obese mice. Compared to the high-fat

diet group, SZ-A improves the proportions of Firmicutes and

Proteobacteria at the phylum level and significantly increases the

abundance of Bacteroidetes and Akkermansia muciniphila at the

genus level. This change affects the relative abundance of microbial

genes involved in PBUTsmetabolism. Overall, SZ-A alleviates obesity

and metabolic syndrome in high-fat diet-induced obese mice by

improving gut microbiota and their metabolic characteristics (76).

PBUTs and diabetes
Research has confirmed a link between alterations in gut

microbiota and the accumulation of PBUTs with host insulin

sensitivity, glucose metabolism, and impaired amino acid

metabolism related to DM. Our team previously identified

changes in gut microbiota in patients with DM (77). In a case-

control study involving thousands of newly diagnosed T2DM cases

and controls, plasma TMAO concentrations were measured and

found to be elevated in patients with DM (78). Within patients with

DM, gut microbiota convert tryptophan into indole and its

derivatives, which act on the AhR pathway, leading to reduced

production of glucagon-like peptide-1 (GLP-1) and Interleukin-22.

This contributes to increased intestinal permeability and

translocation of lipopolysaccharides, resulting in inflammation,

insulin resistance, and hepatic steatosis (79). Screening of 130
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patients with T2DM revealed that IS levels increase with urinary

proteinuria, and PCS also showed an upward trend in urine (80).

Treatment of non-DM and early-stage hyperglycemic diabetic mice

with a sodium-glucose co-transporter-2 inhibitor for one week not

only lowered blood glucose levels but also reduced the formation of

PBUTs such as IS by gut microbiota, thereby decreasing their systemic

exposure and the need for renal detoxification. This provides a

metabolic basis for kidney and cardiovascular protection (81, 82).

Therefore, as blood glucose levels rise in patients with DM,

exacerbating renal excretory burden, accumulated PBUTs play a

“bridging” role, manifesting as a triangular relationship among

“diabetes, gut microbiota/PBUTs, diabetic complications,”

demonstrating interactions, mutual influences, and mutual

development among these three entities.

Nutritional intervention

Low-protein diet

Dietary intervention has long been the cornerstone of treatment

for patients with CKM syndrome, aimed at reducing the intake of

precursors to PBUTs. This approach addresses the root cause to

diminish PBUTs production, thereby preventing the onset and

delaying the progression of CKM syndrome.

The 2022 edition of the CKD Early Screening, Diagnosis, and

Treatment Guidelines (82) specifies protein intake recommendations

for both non-diabetic CKD and diabetic CKD patients, emphasizing a

reduction in overall protein intake while ensuring adequate high-

quality protein intake. An experimental evaluation of a low-protein

diet (LPD) among CKD patients demonstrated significant reductions

in serum levels of IS and PCS in those adhering to LPD (83).

Additionally, the PREDICT 1 study from the UK, involving

thousands of participants, correlated gut microbiota composition

with habitual diets and cardiovascular metabolic markers in blood.

The research identified specific components of the microbiota

associated with dietary intake and multiple measures of

cardiovascular metabolic health, suggesting the potential use of gut

microbiota as biomarkers for cardiovascular metabolic risk and

strategies to reshape the microbiota to improve personalized dietary

health (84). Among healthy species, Firmicutes showed the highest

correlation; while Clostridium difficile was associated with overall poor

health. These gut microbiota all participated in the metabolic

processes of PBUTs. In addition to a LPD with adequate high-

quality protein, CKM syndrome patients, especially those in stages

II-IV of CKD, often suffer from complications such as calcium and

phosphorus metabolism disorders, hyperkalemia, and hypertension.

Therefore, they also need to adhere to low-phosphorus, low-

potassium, and low-sodium diets.

Special dietary patterns

Mediterranean diet

The Mediterranean diet (MD) is characterized by high

consumption of vegetables, legumes, fruits, nuts, whole grains,
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and dairy, abundant use of extra virgin olive oil, and encourages

the selection of lean proteins (85). It has protective effects against

CKD syndrome, obesity, diabetes, chronic kidney disease, and

cardiovascular diseases (86–89). A meta-analysis of 70 studies

analyzed the correlation between adherence to the MD and the

risk of major chronic diseases (T2DM, CKD, and CVD),

consistently demonstrating a significant negative association

between higher adherence to the MD and the risk of these

chronic diseases (86). Adherence to the MD pattern is associated

with distinct characteristics of the gut microbiota.

An evaluation of the gut microbiota and metabolome of 153

individuals with different dietary habits, stratified by diet type and

adherence to the MD, revealed a significant correlation between

vegetable-based diets and increased levels of fecal short-chain fatty

acids(SCFAs), Prevotella, and certain fiber-degrading Firmicutes.

Conversely, higher urinary TMAO levels were detected in

individuals with lower adherence to the MD (90). An 8-week

isocaloric MD dietary intervention study (n=82) showed changes

in various microbial features in the gut, including increased

abundance of major dietary fiber metabolites, decreased PBUTs

metabolites, and beneficial changes in cardiovascular metabolic

biomarkers (90).

Additionally, a parallel randomized controlled trial involving 82

healthy overweight and obese participants found significant

reductions in plasma cholesterol in the MD group compared to

the control group consuming a regular diet. Metagenomic analysis

indicated changes in the gut microbiota reflecting increased gene

richness in participants with reduced systemic inflammation and

PBUTs during the intervention. Higher levels of microbial

carbohydrate degradation genes associated with fiber degradation

and butyrate metabolism were also observed (91).
Intermittent fasting

Clinical trials on overweight adults have shown that

intermittent fasting is beneficial in various contexts such as

obesity, diabetes, and cardiovascular diseases (92, 93).

Intermittent fasting is increasingly recognized as a promising

approach to managing CKM syndrome, potentially improving

lifestyle and cardiovascular metabolism to prevent the onset of

T2DM and CVD. Su et al. (94) evaluated the impact of intermittent

fasting on gut microbiota in young and middle-aged healthy non-

obese individuals, finding significant reshaping of the gut

microbiota with increased Clostridiaceae, Helicobacteraceae, and

butyrate-producing bacteria, and decreased Prevotellaceae, which

produce TMAO. These changes contributed positively to blood

sugar levels, weight, and body fat. However, a follow-up study

involving thousands of diabetic patients found a linear inverse

correlation between daily eating frequency and overall mortality

as well as cardiovascular disease-related mortality, with HRs (95%

CIs) of 0.88 (0.80-0.98) and 0.77 (0.63-0.93), respectively (95).

Another large-scale follow-up experiment over 8.0 years found

that intermittent fasting was significantly associated with

increased cardiovascular mortality risk (95). Currently, there is no

consistent conclusion on whether intermittent fasting is beneficial
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in clinical conditions. Evidence suggests that higher eating

frequency is associated with a lower risk of metabolic syndrome

and hypertension (96, 97), while another study indicates that higher

eating frequency is associated with blood pressure in adults without

cardiovascular disease and diabetes, as well as the progression rate

of new-onset hypertension (98). Therefore, larger studies and

standardized experimental protocols are needed to determine the

association between eating frequency and mortality rates. This

could potentially serve as a strategy for daily dietary management

in diabetic patients and offer valuable insights into preventing

premature mortality from CKM syndrome.
Exercise intervention

In the preliminary management of CKM syndrome, priority

should be given to addressing the impact of adverse social

determinants of health and improving patients’ unhealthy lifestyle

habits such as diet and exercise (6). Exercise is a cost-effective lifestyle

intervention that can prevent and treat obesity, T2DM, and their

complications, and is closely linked to microbiota research (99, 100).

A study randomized 39 pre-diabetic patients who had not previously

received drug treatment into a sedentary control group and an

exercise training group. Significant reductions in weight and obesity

were observed across the entire exercise group; Improvements were

also noted in insulin sensitivity, lipid profiles, cardiorespiratory health,

and levels of adipose factors associated with insulin sensitivity. Further

metagenomic sequencing identified significant changes in the relative

abundance of Firmicutes, Bacteroidetes, and Proteobacteria. To

understand how exercise-induced changes in gut microbiota

regulate host metabolism, KEGG enrichment analysis indicated

increased gene abundance in the sedentary group involved in

producing phenolic derivatives (indole and p-cresol) and sulfates

from aromatic and sulfur-containing amino acids. Subsequently, fecal

microbiota from both groups were transplanted into mice, revealing

similar trends in body composition, oxygen consumption, and

respiratory exchange rates among mice transplanted with feces

from exercise participants. Mice receiving fecal transplants from

exercise participants showed significant decreases in glucose and

insulin levels, marked improvements in glucose handling, and

exhibited a microbial metabolite profile distinct from that observed

in humans (101). Similarly, another study transplanting feces from

exercise participants into mice revealed that metabolites produced by

the microbiota could modulate the gut-brain axis to regulate exercise

motivation (102).
Strategies for managing
gut microbiota

Probiotics

The use of probiotics may help improve the progressive changes

in CKM syndrome (103, 104). Probiotics can colonize the human

intestinal tract, enhance gut microbiota, regulate metabolism, and
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maintain intestinal balance. Clinical studies have revealed the

positive effects of probiotic interventions on glucose metabolism,

particularly the hypoglycemic effects of lactobacilli and

bifidobacteria, which have been confirmed in multiple clinical

trials (105, 106). Akbari et al. (107) found that probiotic

supplementation significantly reduces insulin resistance, fasting

blood glucose, and glycosylated hemoglobin levels. In a clinical

study recruiting 38 patients with CKD who used specific probiotic

capsules daily for 6 months, the average estimated glomerular

filtration rate (eGFR) decline rate significantly slowed from an

average monthly decline of 0.54 (-0.18 to -0.91) to 0.00 mL/min/

1.73 m² (+0.48 to -0.36), and serum levels of inflammatory cytokine

and IS were significantly reduced following probiotic use (108).

Additionally, a 6-week randomized, placebo-controlled, crossover

trial, administering heat-killed Lactococcus, Lactobacillus

acidophilus, and Bifidobacterium longum to patients with CKD

reduced plasma PCS levels, alleviating cardiovascular damage

caused by PBUTs accumulated in CKD. Some preliminary

evidence suggests that probiotics may protect cardiovascular

metabolism in CKM syndrome (109). For instance, a randomized

controlled trial reported beneficial effects of Brewer’s yeast in heart

failure patients, improving left ventricular ejection fraction (110).

However, probiotics administered to critically ill patients with

weakened immunity may become opportunistic pathogens

causing endocarditis (111), indicating that careful consideration is

needed before administering probiotics to vulnerable groups.
Prebiotics

“Prebiotics” refers to substrates selectively utilized by host

microorganisms that confer health benefits (112). Prebiotics

naturally exist in many fruits, grains, vegetables, honey, and

breast milk.

In a single-center, double-blind, placebo-controlled trial

involving overweight or obese children aged 7-12 years,

participants were randomly assigned to either a prebiotic or

placebo group for 16 weeks. Compared to children receiving the

placebo, those in the experimental group experienced significant

decreases in weight score (3.1% decrease), body fat percentage

(2.4% decrease), and trunk fat percentage (3.8% decrease), while

the placebo group showed increases (0.5%, 0.05%, and -0.3%,

respectively). Additionally, Interleukin 6 levels and triglycerides

decreased significantly from baseline in the experimental group,

while the placebo group showed a 25% increase. 16S rRNA

sequencing indicated a significant increase in Bifidobacterium

species in the experimental group and a decrease in ordinary

pseudo-bacteria species (113). Professor Zhao Liping designed

and developed a diet called WTP, consisting primarily of various

whole grains, traditional Chinese medicinal food homologues, and

prebiotics. Multiple clinical trials have shown that this dietary fiber

can significantly enhance the ability of intestinal bacteria in obese

and diabetic patients to produce SCFAs. Further studies have

demonstrated that similar dietary interventions can improve gut

microbiota composition and metabolic health (114).
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Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) is the most direct

method to reshape gut microbiota. Initially recommended for

treating recurrent Clostridioides difficile infection (115), FMT has

also shown efficacy in managing diabetes (116), obesity metabolic

syndrome (101), and CKD (117). Anne Vrieze et al. (118)

successfully applied FMT to patients with metabolic disorders,

finding significantly increased insulin sensitivity in obese patients

with metabolic syndrome after gut microbiota infusion from lean

donors. In a study by Pieter de Groot’s team, 20 diabetic patients

were randomly assigned to receive either autologous or allogeneic

(healthy donor) FMT. Results showed significantly preserved

stimulated C-peptide levels in the autologous FMT group at 12

months. A negative correlation was found between small intestinal

Prevotella and residual b-cell function (r=-0.55, p=0.02), while

plasma metabolites correlated positively with residual b-cell
preservation (rho=0.56, p=0.01 and rho=0.46, p=0.042) (119).

Early research from our team found significant alleviation of

symptoms in diabetic complications following FMT from healthy

donor fecal microbiota (120). Animal models, divided into control,

CKD, and CKD+FMT groups, showed significant improvement in

disrupted gut microbiota, reduced PCS accumulation, and

improved glucose tolerance after FMT treatment (121).

FMT therapy is increasingly accepted and recognized as a

“natural” therapeutic method for treating various diseases due to

its effectiveness, safety, and convenience. It has become a hot topic

of interest among biologists, clinicians, and other stakeholders and

is rapidly evolving. However, FMT poses unique and complex

challenges for clinicians and regulatory agencies, including

unclear mechanisms of action, definitions of healthy donors,

screening procedures, sample preparation, storage conditions,

dosing responses, administration methods, and settings. These

factors may limit its broader application in clinical practice and

hinder its expansion.
Drug therapy

The AHA has established detailed staging criteria and clinical

management recommendations for CKD-MBD syndrome. These

guidelines can be utilized for managing CKD-MBD syndrome at

different stages, aiming to improve cardiovascular and renal outcomes.

For CKD-MBD stages 0 and I, the focus is on lifestyle adjustments to

maintain normal weight and other health indicators. For CKD-MBD

stage II and beyond, individualized pharmacological treatment is

recommended (6).

The AHA recommends considering medications with cardio-

renal protective effects to improve gut microbiota and alleviate CKD

syndrome outcomes. These medications include angiotensin-

converting enzyme inhibitors (ACEIs), angiotensin II receptor

blockers (ARBs), glucagon-like peptide-1 receptor agonists (GLP-

1RAs), sodium glucose co-transporter 2 inhibitors (SGLT-2is), and

novel non-steroidal mineralocorticoid receptor antagonists (MRAs)

like finerenone (6, 122–125). A study involving 36 patients treated

with ACEIs/ARBs and 19 untreated patients conducted 16S rRNA
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sequencing and fecal metabolomics analysis. It showed that ACEI/

ARB treatment improved gut microbiota by reducing potentially

pathogenic bacteria such as Escherichia coli and Klebsiella spp. and

increasing beneficial bacteria like Odoribacter spp. Additionally,

significant metabolic changes were associated with ACEI/ARB

treatment (126). Empagliflozin, an SGLT2i, not only improves

hyperglycemia but also reduces weight, lowers blood pressure,

and decreases cardiovascular events and mortality (127, 128). Our

research team found that the cardiovascular benefits of

empagliflozin might be related to changes in gut microbiota and

plasma metabolites. In a randomized, open-label, 3-month clinical

trial involving 76 newly diagnosed T2DM patients with CVD risk

factors, patients were administered either empagliflozin or

metformin. Both groups showed significant reductions in HbA1c

levels and improvements in glucose metabolism. However, only the

empagliflozin group improved cardiovascular disease risk factors,

significantly reshaped gut microbiota after one month, elevated

levels of SCFAs-producing bacteria such as Roseburia ,

Ruminococcus, and Faecalibacterium spp., and decreased levels of

harmful bacteria including Escherichia coli-Shigella, Bilophila, and

Hungatella spp (129). To further understand the primary

mechanisms of SGLT2i, non-diabetic and diabetic mice with early

and mild hyperglycemia were treated with SGLT2i for one week.

This treatment revealed impacts on cardiac and hepatic signaling,

with more pronounced effects observed in white adipose tissue,

showing increased lipolysis. These effects were particularly

influenced by gut microbiota capable of fermenting phenylalanine

and tryptophan into cardiovascular PBUTs, with a lower relative

abundance of specific bacterial taxa (81).

Similarly, the 2023 ESC Guidelines for managing cardiovascular

disease in diabetes patients emphasize the importance of

comprehensive management to reduce cardiovascular and renal

failure risks, recommending first-line therapies such as non-

steroidal MRAs with established cardiovascular and renal benefits

(130). Animal studies have shown that compared to spironolactone,

finerenone improves myocardial and renal hypertrophy, reduces

BNP and proteinuria levels, and decreases the expression of pro-

inflammatory and pro-fibrotic genes in cardiac and renal tissues

(131).The Phase 3 FIDELIO-DKD and FIGARO-DKD trials

confirmed that in patients with T2DM-related CKD, finerenone

not only provides renal protection but also improves cardiovascular

outcomes. The FIDELITY trial (n = 13,026) further demonstrated

the clinical benefits of finerenone, with a 14% reduction in

composite cardiovascular risk (HR 0.86, 95% CI: 0.78, 0.95) and a

23% reduction in composite renal outcomes risk (HR 0.77, 95% CI:

0.67, 0.88) (132).

Currently, no studies link gut microbiota and its metabolites to

finerenone both domestically and internationally. However,

previous research has shown that steroidal mineralocorticoid

receptor antagonists can alter the composition and diversity of

gut microbiota in hypertensive patients, impacting intestinal barrier

permeability and sympathetic nervous system function (133).

Therefore, further exploration is needed to determine whether the

cardiovascular and renal benefits of finerenone in CKD syndrome

patients are mediated through changes in gut microbiota and its

toxin-like metabolites as potential targets.
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Klotho protein

The Klotho protein is a protective transmembrane protein in

the kidneys (134). Animal experiments have shown that IS and PCS

can inhibit Klotho expression, activate the renin-angiotensin-

aldosterone system (RAAS) and TGF-b pathways, ROS

generation, exacerbate oxidative stress and inflammation, and

promote renal tubulointerstitial fibrosis formation (135, 136). In a

clinical study involving 86 predialysis patients, serum Klotho levels

were found to decrease as eGFR declined. Additionally, the

interaction between elevated IS levels and increased left

ventricular mass was more pronounced in patients with low

Klotho levels (137). Serum Klotho levels gradually decrease in

CKD patients, while levels of the inflammatory factor Tumor

Necrosis Factor-a increase. This significant correlation indicates a

close association between reduced Klotho protein and the

development of CKD-related microinflammatory states (138).

Studies consistently indicate that Klotho can prevent uremic

toxin-related cardiac toxicity by inhibiting oxidative stress to

suppress IS-induced endothelial dysfunction (138). Treatment

with Klotho protein in a CKD-related left ventricular hypertrophy

mouse model significantly inhibited the development of left

ventricular hypertrophy (137). Additionally, Klotho protein

therapy can prevent IS-induced thrombosis and atherosclerosis in

apolipoprotein E knockout mice (139). Therefore, exogenous

supplementation of Klotho may be a potential therapeutic

approach to inhibit the progression of uremic cardiomyopathy.
Aryl hydrocarbon receptor

Aryl hydrocarbon receptor (AhR) is a ligand-dependent

transcription factor widely expressed in immune, epithelial,

endothelial, and stromal cells within barrier tissues. Recent studies

indicate that AhR signaling serves as a critical mediator in the

progression of diseases induced by various PBUTs, contributing to

intestinal homeostasis between the host and gut microbiota (140). All

tryptophan metabolites—indole uremic solutes and kynurenic acid—

are agonists of the AhR pathway (141, 142). Cardiovascular disease is

a leading cause of mortality associated with CKD-MBD syndrome. In

a rat model of cardiac hypertrophy, hypertension, and myocardial

fibrosis induced by 5/6 nephrectomy, AhR pathway activation was

observed, including AhR translocation and downstream protein

Cytochrome P450 1(CYP1) expression, accompanied by increased

ROS production detected via staining. Experimental evidence

demonstrated that IS triggers AhR translocation, leading to

significantly increased downstream gene expression, and that AhR

inhibitors, CYP1 inhibitors, and AhR-targeting siRNA effectively

block ROS production. Moreover, inhibition of the AhR/CYP1/

ROS pathway collectively attenuates IS-mediated cardiomyopathy

promotion. This research highlights the activation of the AhR/CYP1

pathway in disease, specifically associated with the uremic toxin IS
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(143). The central role of AhR in the progression of CKD-MBD

syndrome and its activation by PBUTs provide compelling evidence

supporting AhR as a therapeutic target in the later stages of CKD-

MBD. Resveratrol, a natural AhR antagonist, suppresses proteinuria,

hypoalbuminemia, and hyperlipidemia in nephritic rats (144). Addi

et al. (145) confirmed that CH223191, a specific AhR antagonist,

reduces the expression of TF in human endothelial cells during the

PBUTs indole-3-acetic acid-mediated process. Meanwhile, Assefa

et al. (146) demonstrated that resveratrol attenuates vascular

endothelial activation and permeability by blocking the IS/AhR

pathway, thereby exerting cardiovascular protective effects.

Despite AhR’s potential as a promising clinical target, much of

our understanding of its physiological and pathological functions in

CKD-MBD syndrome comes from animal models, complicating the

translation to clinical applications. Therefore, further research is

essential to unravel the complex roles of AhR, ensuring its safe and

effective use in prevention and treatment.
AST-120

AST-120 is an oral medication designed to adsorb and remove

precursors of PBUTs produced in the gastrointestinal tract. It is

currently the only drug known to improve PBUTs symptoms in

patients with CKD and delay the need for dialysis (147). AST-120

effectively lowers circulating and renal levels of IS (148, 149). In

Japan, it has been widely used in patients with CKD to clear

intestinal precursors of PBUTs. Recent case studies by Tomino

et al. (150) reported that patients with CKD receiving AST-120

showed an increase in GFR, with kidney function improving rapidly

and progressing to ESRD upon discontinuation of treatment.

Another study found that AST-120 therapy significantly reduced

levels of total IS, PCS, free IS, and free PCS (151). A prospective

randomized study on stage II and IV patients with CKD

demonstrated that IS levels decreased in the AST-120 treatment

group but not in the control group. Besides preserving kidney

function and clearing toxins, a retrospective study indicated that

AST-120 helped reduce the incidence of cardiovascular events and

mortality rates in patients with CKD (152). Additionally, animal

experiments have shown that AST-120 can prevent the progression

of arteriosclerosis in a mouse model of chronic renal failure by

preserving levels of anti-angiogenic factors (153).

Therefore, in addition to traditional drug treatments for CKM and

related diseases, therapeutic approaches targeting the gut microbiota

primarily include dietary and lifestyle interventions, supplementation

with beneficial bacteria, FMT, and research into new drugs. Both

supplementation with beneficial bacteria and FMT essentially involve

the introduction of exogenous probiotics. Existing studies have shown

that they can alleviate disease by increasing the abundance of

beneficial gut bacteria, competing for limited nutrients to inhibit the

growth of pathogenic bacteria, and reducing the production of PBUTs

by pathogenic bacteria. However, its application is limited due to the

difficulty of supplementing probiotics in establishing long-term

colonization in the host and the risk of transmission of viruses and
frontiersin.org

https://doi.org/10.3389/fendo.2025.1500336
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Zhang et al. 10.3389/fendo.2025.1500336
diseases from donors. The clinical effect of traditional drug treatment

in CKM is not good and the progression of the disease cannot be

controlled, so there is a greater need for innovative treatments to

reduce PBUTs to maintain the overall state of the disease, but at

present, a large number of clinical experimental studies and

validations are needed. In conclusion, the treatment of PBUTs

needs to be developed urgently (Figure 2).
Prospect

The AHA report emphasizes that CKM syndrome is a systemic

and progressive pathophysiological process. It is not merely an

aggregation of several diseases, but rather a result of the mutual

influences and promotion among metabolic diseases such as

diabetes, CKD, and CVD. As the disease progresses, the

accumulation of PBUTs generated through metabolism

exacerbates these conditions, ultimately leading to cardiorenal

damage. Therefore, early detection and prevention are crucial in

treating CKM syndrome. Clinical practitioners need a clear

understanding of CKM syndrome and should actively screen at-

risk populations. Developing new screening and risk prediction

models for CKM syndrome will help prevent CVD events

associated with it, significantly delaying its progression and

improving patient survival rates. Our preliminary cross-sectional

study found distinct gut microbiota characteristics in healthy

individuals, early-stage patients with DKD, and late-stage patients

with DKD, with variations in core genome content associated with

toxin production. We identified 54 core genomes capable of

significantly distinguishing patients with DKD from healthy

individuals and demonstrating good discriminatory ability among

patients with DKD of different severities (32). Therefore, gut

microbiota and PBUTs hold promise as a CKM syndrome

screening and risk prediction model, addressing early screening

challenges and enabling proactive prevention and treatment to

avoid adverse cardiorenal outcomes.
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PBUTs, characteristic of the CKM syndrome environment, have

been the focus of numerous experimental and clinical approaches

aimed at mitigating their pathogenic effects and halting the

progression of cardiorenal outcomes. However, further discussion

is needed to evaluate whether these methods can reverse the CKM

syndrome state and their impact on prognosis. Additionally,

detailed staging of CKM syndrome requires the adoption of

multiple modalities to adjust clinical management across different

stages, facilitating precise, targeted therapy against these toxins.

The introduction of the novel concept of CKM syndrome

represents not only a redefinition of the disease status but also a

comprehensive update of treatment paradigms. Addressing PBUTs

in the treatment of CKM syndrome offers a promising approach to

overcoming challenges in screening, predicting, and managing the

progression of CKM syndrome. This approach aims for the

integrated, holistic management of patients with CKM syndrome.
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