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Magnetic resonance
imaging -based radiomics
of the pituitary gland is
highly predictive of precocious
puberty in girls: a pilot study
Michele Maddalo1, Maddalena Petraroli2, Francesca Ormitti3,
Alice Fulgoni4, Margherita Gnocchi4, Marco Masetti4,
Eugenia Borgia4, Benedetta Piccolo2, Emanuela C. Turco2,
Viviana D. Patianna2, Nicola Sverzellati4, Susanna Esposito2,4,
Caterina Ghetti1 and Maria E. Street2,4*

1Medical Physics Department, University Hospital of Parma, Parma, Italy, 2Unit of Pediatrics,
Department of Mother and Child, University Hospital of Parma, Parma, Italy, 3Neuroradiology Unit,
University Hospital of Parma, Parma, Italy, 4Department of Medicine and Surgery, University of Parma,
Parma, Italy
Background: The aim of the study was to explore a radiomic model that could

assist physicians in the diagnosis of central precocious puberty (CPP). A

predictive model based on radiomic features (RFs), extracted form magnetic

resonance imaging (MRI) of the pituitary gland, was thus developed to distinguish

between CPP and control subjects.

Methods: 45 girls with confirmed diagnosis of CPP (CA:8.4 ± 0.9 yr) according to

the current criteria and 47 age-matched pre-pubertal control subjects (CA:8.7 ±

1.2 yr) were retrospectively enrolled. Two readers (R1, R2) blindly segmented the

pituitary gland on MRI studies for RFs and performed a manual estimation of the

pituitary volume. Radiomics was compared against pituitary volume in terms of

predictive performances (metrics: ROC-AUC, accuracy, sensitivity and

specificity) and reliability (metric: intraclass correlation coefficient, ICC).

Pearson correlation between RFs and auxological, biochemical, and ultrasound

data was also computed.

Results: Two different radiomic parameters, Shape Surface Volume Ratio and

Glrlm Gray Level Non-Uniformity, predicted CPP with a high diagnostic accuracy

(ROC-AUC 0.81 ± 0.08) through the application of our ML algorithm.

Anthropometric variables were not confounding factors of these RFs

suggesting that premature thelarche and/or pubarche would not be potentially

misclassified. The selected RFs correlated with baseline and peak LH (p < 0.05)

after GnRH stimulation. The diagnostic sensitivity was improved compared to

pituitary volume only (0.76 versus 0.68, p<0.001) and demonstrated higher inter-

reader reliability (ICC>0.57 versus ICC=0.46).
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Discussion: Radiomics is a promising tool to diagnose CPP as it reflects also

functional aspects. Further studies are warranted to validate these

preliminary data.
KEYWORDS
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1 Introduction

Central precocious puberty (CPP) is a condition of premature

activation of the hypothalamus-pituitary-gonadal (HPG) axis (1).

The key players involved are regulators of the hypothalamus that

secretes gonadotropin-releasing hormone (GnRH) which

stimulates in turn the anterior pituitary gland to secrete LH and

FSH; these then trigger the production of sexual hormones by the

gonads (2, 3).

Currently, the diagnosis of CPP relies on the gonadotropin-

releasing hormone (GnRH) stimulation test (4, 5) in addition to

clinical, and radiological data (6). Among these latter the

ultrasonographic evaluation of the internal genitalia in females

allows the exclusion of malignancies or cystic lesions and can

confirm ovarian activation and hormonal stimulation of the

uterus (7). Magnetic resonance imaging (MRI) of the brain and of

the hypothalamus-pituitary region is required to exclude central

organic causes. At present, the general advice is to perform MRI in

all girls under the age of 8 yr and all boys under 9 yr with CPP (8, 9).

The overall prevalence of unsuspected intracranial lesions is

reported to be 5,7-40% in boys, and 8-33% in girls (10, 11). The

estimated risk of detecting a tumor in girls between the ages of 6 and

8 yr is low (12), therefore, it is debated whether this screening

should be performed or not above the age of 6 yr. A recent study on

a cohort of 112 girls showed that hypothalamic-pituitary

congenital/developmental anomalies and other cerebral lesions

were present in less than half of the subjects (13). Thus, as

evidence-based criteria are yet lacking, brain MRI is currently

recommended (7, 14).

During pubertal development the pituitary gland undergoes

changes in shape and volume. Typically, a higher pituitary grade,

height, and sagittal cross-sectional area are observed (14).

Subsequently the pituitary gland becomes more convex

superiorly, with a significantly lower length/height index making

the finding of a nearly spherical gland in association with early

sexual development particularly suggestive of CPP (15). It has been

reported that pituitary volume is increased in children with CPP

(16) and some authors have suggested that volume per se might be

predictive of CPP reporting a sensitivity of 0.54, and a specificity

0.72. Moreover, pituitary volume was described to be associated also

with LH serum concentrations, LH/FSH ratio and bone age

although a reliable cut-off value was not found (17). Sex steroids
02
levels have been described also to be positively associated with the

volume of the pituitary gland (18).

To date artificial Intelligence (AI) includes image analysis and

related algorithms that fall in the category of Computer Vision

(CV). Image segmentation represents a fundamental technique in

CV allowing image processing to extract meaningful information

from digital images and helping to find diagnostic and decision

making-algorithms (19). In medicine, the term that technically

defines this new methodologic approach is radiomics, an

emerging research field holding enormous potential (20).

Radiomics can be considered the bridge between medical

imaging and personalized medicine, as its main goal is to

correlate large numbers of quantitative parameters with clinical or

biological endpoints, thus supporting clinical decisions, in the

context of diagnostic processes, prognostic evaluation and in the

analysis of therapeutic response (21). Furthermore, radiomics

enables the identification of potentially important information

that may not be appreciable upon visual examination (22). Deep

Learning networks have significantly improved the ability of image

segmentation, specifically through the application of Convolutional

Neural Networks (CNNs), that consume pixels of images as input

and are able to recognize patterns in the image itself (23).

CNNs can be taught to predict the features of interest from novel

medical datasets.

This study aimed at analyzing through a radiomic model, MRI

scans of the pituitary gland, in girls with CPP compared with a pre-

pubertal age and sex-matched control group to study the differences

in information compared with the traditional method. Moreover,

any possible associations among auxological, hormonal and

radiological parameters and radiomic data were investigated to

better understand any relationships with morphological features

of the pituitary gland and the clinical and hormonal presentation of

CPP for diagnostic purposes.
2 Materials and methods

2.1 Study design and subjects

The MRI scans of 45 girls (mean age ± SD at diagnosis: 8.4 ± 0.9

yr) referred for precocious pubertal development to the Pediatric

Endocrinology Unit of the Children’s University Hospital in Parma
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(Italy) from January 2015 to December 2022, who received a

conclusive diagnosis of CPP (4) were analyzed, and compared

with the findings of 47 pre-pubertal age-matched girls (mean age

± SD: 8.7 ± 1.2 yr) who were referred to the Pediatric Neurology

Unit of the same hospital and that underwent brain MRI for

headaches, brain trauma, epilepsy and nonspecific neurological

symptoms with negative findings. Exclusion criteria were: male

sex, non-idiopathic CPP including premature thelarche, presence of

significant comorbidities or other endocrine conditions requiring

hormonal therapies or any medications that may interfere with

pubertal development.

All subjects were diagnosed of idiopathic CPP with no evidence

of hypothalamic-pituitary congenital malformations, other

endocrine or chronic diseases, neurological disorders, or

malignancies. As to ethnicity, 3 girls were African and 2 Indian, 4

girls of non-Italian origin were adopted and family history and mid-

parental height were unavailable. The remaining were Caucasians.

At the time of the first assessment, all patients underwent a clinical

examination including an auxological evaluation. Pubertal stages

were assessed according to Tanner’s criteria (24). Height was

recorded using a Harpenden stadiometer and body mass index

(BMI) was calculated according to the formula weight (kg)/height2

(m2), both expressed as standard deviation scores (SDS) using the

Italian reference data (25). Target height (THt) was calculated based

on sex-adjusted mid-parental height [father’s height + mother’s

height –13]/2 and converted to SDS (26). Height, BMI and THt

were plotted on Italian reference growth charts by Cacciari

et al. (27).

Medical history, family history of precocious puberty, parents’

height, and age at the onset of pubertal signs were recorded.

Moreover, the rate of pubertal progression, defined as the time

elapsed between the appearance of Tanner breast stage 2 (as

recorded by the general pediatrician or referred by parents) and

diagnosis was also evaluated. Bone age was assessed using the

Greulich & Pyle Atlas (28). Bone age advancement was defined as

the difference between bone age and chronological age.

Pelvic trans-abdominal ultrasound was performed to assess the

degree of maturation of internal genitalia. Uterine length, the fundus/

cervix ratio, the ovarian volumes, and the presence or absence of

endometrial thickening were evaluated. A uterine longitudinal

diameter ≥ 35 mm, a body/cervix ratio ≥ 1, an ovarian volume of

≥ 2 ml, and the presence of endometrial thickening were considered

suggestive of pubertal activation (29–31).

GnRH stimulation test was performed by intra venous

administration of GnRH at a dose of 75 mg/m2 (maximum 100

mg), with measurement of LH and FSH by chemiluminescent

immune assays (Beckman Coulter) at times 0, + 15, + 30, + 45, +

60, + 90 minutes. We considered peak LH and FSH above 5 IU/L

suggestive of CPP (4). Only in one girl the GnRH test was not

performed due to significant increased basal gonadotropin levels.

For all patients basal estradiol was recorded, and thyroid function

(TSH, FT4) was normal in all subjects.

The diagnosis of CPP was based on age, pubertal stages, LH and

FSH response to the GnRH test, pelvic US and bone age.

Clinical, hormonal and pelvic ultrasound findings of the girls

having CPP are reported in Table 1.
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2.2 Magnetic resonance imaging of the
pituitary gland and segmentation

MRI was performed on a 1.5-T MRI (1.5T Philips Ingenia, Best,

The Netherlands). The sagittal T1W3D TFE sequence with no

contrast agents was selected to perform image segmentation of the

pituitary gland. Repetition time and echo time were equal to 8.1 ms

and 3.7 ms respectively, while the slice thickness was set to 1 mm.

The pituitary volume (PV) was calculated using the ellipsoid

formula L*H*W/2 (17, 32, 33). Length and height were determined

on the midline sagittal thin section from the posterior wall to the

anterior wall. The width was measured on the thin coronal section

from anterior to the entrance of the pituitary stalk.

MR images were independently and blindly reviewed by two

readers with different levels of expertise, i.e. a neuroradiologist with

4-years of experience (R1) and a 1-year radiology resident (R2).

Both readers manually evaluated PV (ellipsoid formula) and

performed the segmentation of the pituitary gland using the 3D

Slicer v. 5.0.3 software (34).
2.3 Radiomics

The extraction of radiomics features was carried out using the

open-source python package Pyradiomics (35). An isotropic voxel
TABLE 1 Clinical, hormonal and pelvic ultrasound findings of the girls
diagnosed of CPP.

Clinical Parameter Mean ± SD

CA (years) 8.2 ± 0.6

Bone Age (years) 9.5 ± 1.2

BMI SDS -0.2 ± 1.0

Height SDS 1.0 ± 0.9

Hormonal measurements Mean ± SD

Basal LH (mU/mL) 1.6 ± 1.4

basal FSH (mU/mL) 4.7 ± 2.2

peak LH (mU/mL) 23.7 ± 16.0

peak FSH (mU/mL) 14.5 ± 4.6

D LH 22.2 ± 15.2

D FSH 9.6 ± 4.5

TSH (uUI/mL) 2.1 ± 1.6

FT4 (ng/dL) 0.9 ± 0.1

Ultrasonographic parameters Mean ± SD

Uterine body length (mm) 46.3 ± 8.1

Left ovarian volume (mL) 2.7 ± 1.5

Right ovarian volume (mL) 2.6 ± 1.2

Fundus/cervix ratio 1.5 ± 0.6
Data are reported as mean values and associated standard deviations (SD). Regarding
Hormonal measurements, peak hormonal values were acquired after GnRH stimulation
and D values represented the differences between peak and basal LH and FSH values.
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size of 1 x 1 x 1 mm was considered in order to avoid that Radiomic

Features (RFs) could depend on the image sampling condition.

We included only original features, without performing image

preprocessing, thus, the extracted RFs included both first-order and

subsequent-order features including shape, first-order, Gray-Level-

Co-occurrence-Matrix (Glcm), Gray-Level-Run-Length-Matrix

(Glrlm), Gray-Level-Size-Zone-Matrix (Glszm), Neighboring-

Gray-Tone-Difference-Matrix (Ngtdm) and Gray-Level-

Dependence-Matrix (Gldm) functions, for a total of 107

extracted RFs.
2.4 Machine learning and statistical analysis

A Monte Carlo Cross-Validation (MCCV) test with 100 rounds

was implemented considering a proportion of 80%-20% and

balancing with respect to the endpoint. MCCV iteratively

performed a random split of the database into training and

validation sets with a different patient inclusion among rounds.

All the following analyses were cross validated using MCCV:
Fron
1. Radiomic model development.

2. Reference clinical model development.

3. Evaluation of the impact of confounders.

4. Association of radiomic features with endpoint surrogates.

5. Evaluation of reliability of both clinical and radiomic model

parameters between R1 and R2.
2.4.1 Radiomic model
The analysis pipeline included two distinct and consecutive

phases, the first for feature selection and the second for training and

validation of the classifier.

The first phase was performed 100 times on the training set.

Patients’ inclusion in the training set was iteratively modified using

a random approach (i.e. the MCCV). This phase consisted of the

following operations:
1. Removal of highly cross-correlated RFs. A Pearson

correlation coefficient greater than 0.99 was considered

indicative of redundancy.

2. Evaluation of RF predicting capability using univariable

Mann-Whitney nonparametric test. In each round, RFs

with a p-value below 0.001 were scored.
At the end of 100 rounds the top two RFs with the greatest

cumulative score (sum of scores across rounds) were selected. The

selected RFs were not included in the subset of RFs that correlated

with at least one of the confounders.

In the second phase aMCCVwith 100 training/validation splits was

implemented again. A Linear Discriminant Analysis (LDA) (36, 37)

classifier was trained on training data using only the two top- scored

RFs. Optimal thresholds for the selected RFs were identified using the

Youden method for comparison between readers. In each round,

the trained models were then applied without any modification on
tiers in Endocrinology 04
the validation set for unbiased evaluation of the model performances.

Validation performances were thus determined. Following the described

methodology, two distinct models were developed, one based on data

generated by R1 and another one based on data from R2. The R1

radiomic model was considered as the primary, while the R2 model was

added for comparison to understand the variability of results and the

reliability of the algorithms with respect to reader’s expertise.

Furthermore, top-scored RFs yielded by R1 segmentation were

employed for R2 model development also.

Performance metrics included ROC-AUC, accuracy, sensitivity,

specificity and G-Mean (the square root of the product of sensitivity

and specificity) and were expressed as mean values of 100 iterations

with associated standard deviations. Mean threshold values and

their ranges across 100 rounds were calculated. The consistency of

findings between R1 and R2 was evaluated by calculating the

absolute difference between R1 and R2 mean performances. A

cumulative value that aggregated all performance metrics was

computed by adding together all metrics differences. The analysis

pipeline was developed using the R software environment (38) with

Caret (39) and MASS (40) packages.

2.4.2 Reference model
The PVs were used to develop a reference model for comparison

purposes. A single predictor was considered. The same

methodology as described for radiomics (second phase) was used

to develop the reference model. One reference model per each

reader was produced. The correlation between the manual

evaluation of PV and the PV obtained by radiomics was tested

for consistency purposes.

2.4.3 Evaluation of the impact of
possible confounders

Age, height, BMI and bone age of patients were tested as

possible confounding parameters for radiomic predictors and for

the pituitary volume (ellipsoid formula). These were continuous

variables, so Pearson correlation was used to assess the association

of RFs with each possible confounder parameter. Correlations were

considered as statistically significant only if the p-value (on training

data) was less than 0.05 in at least 50% of the rounds of the MCCV.

The mean value of the correlation coefficient (̅ R) across 100 rounds
was then calculated.

2.4.4 Association analyses of RFs with clinical,
biochemical and pelvic ultrasound data

The present analysis was conducted on the CPP patients only.

Endpoint surrogates included both categorical (ordered)

variables, i.e. pubertal stages, and continuous variables, i.e. basal

and peak LH, and FSH, estradiol, ovarian volumes, uterine length,

and fundus/cervix ratio.

The association of RFs with categorical endpoint surrogates was

evaluated by means of the Kruskal-Wallis nonparametric test. As

for the evaluation of confounders, in each round of MCCV, the RFs

that showed a p-value (on training data) below 0.05 were tracked.

At the end of the MCCV procedure the RFs with a cumulative score

greater than 50% were considered significantly associated with the
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endpoint surrogate. Pearson correlation was computed among RFs

and continuous endpoint surrogates. To evaluate correlations, the

same approach was used for confounders calculations of R and p-

values in each repetition on the training set, while the final

classification was established based on cumulative scores over

100 rounds.

2.4.5 Evaluation of reliability between R1 and R2
Reliability of RFs yielded by R1 and R2 segmentations was

evaluated using the Intraclass Correlation Coefficient (ICC). The

reliability of the manual evaluation of PV was assessed in addition.

The ICC was computed by a single-rating, absolute-agreement, 2-

way random-effect model and then the level of agreement was

evaluated using the following general guideline (41): values less than

0.5 are suggestive of poor reliability, between 0.5 and 0.75 indicate
Frontiers in Endocrinology 05
moderate reliability, between 0.75 and 0.9 indicate good reliability,

and greater than 0.90 indicate excellent reliability.
3 Results

3.1 Machine learning and statistical analysis

3.1.1 Radiomic and reference models
The top scored RFs after 100 rounds of feature selection are

reported in Figures 1A, B, for R1 and R2 readers, respectively. The

two radiomic predictors with the greatest predictive capability for

CPP for R1 were: Surface Volume Ratio (shape feature) and Gray

Level Non-Uniformity from Glrlm matrix. Surface Volume Ratio

represents a shape parameter and gives morphologic information,
FIGURE 1

Cumulative scores of the top 15 radiomic features, calculated as the sum of scores obtained over 100 rounds. (A) Feature scores derived from R1
segmentation and (B) feature scores obtained from R2 segmentation.
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evaluating the degree of sphericity of the gland. Conversely, Gray

Level Non-Uniformity is a second-order parameter that measures

the difference in gray levels within the pituitary gland: the higher,

the more the voxels show different intensity, thus evaluating the

non-uniformity of grey levels. The predictors with the highest

predictivity for R2 were Ngtdm Coarseness and Gray Level Non-

Uniformity of GLDM matrix. Shape Surface Volume Ratio and

Glrlm Gray Level Non-Uniformity was also highly ranked

(positions 3 and 6, respectively) (Figure 1B).

Mean and standard deviations of the two top-scored RFs and

corresponding pituitary volumes (ellipsoid formula) are listed in

Table 2 for both readers.

CPP patients and control subjects aggregated data were

calculated. CPP cases presented a lower Surface Volume Ratio

(i.e. a greater sphericity) and a higher GrayL Level Non-

Uniformity (i.e. a lesser homogeneity of voxels intensities) with

respect to control subjects.

Optimal thresholds (mean values and ranges) are reported in

Table 2 with good agreements between the two readers.

Significant correlations between manual and radiomic

evaluations of the PV (Supplementary Figure 1) were observed

for both R1 (R = 0.67, p < 0.001) and R2 (R = 0.71, p < 0.001).

Performances of radiomic and reference models in training and

validation sets are reported in Figure 2 and showed a good

agreement, indicating that no significant overfitting was present.

Radiomics achieved a ROC-AUC of 0.72–0.80 and an accuracy

between 0.70 and 0.77, while the reference model showed a ROC-

AUC between 0.72–0.83 and an accuracy of 0.67–0.77. The models

showed differences in sensitivity and specificity. The sensitivity and

specificity of the radiomics ranged from 0.67 to 0.76 and 0.72 to

0.76, respectively. In contrast, for the reference model sensitivity

ranged from 0.56 to 0.69, and specificity ranged from 0.77 to 0.84.

Therefore, the radiomic model achieved a well-balanced trade-off

between sensitivity and specificity.

The scatter plot of training cases with the LDA line

(CPP and controls) is reported in Figure 3 for both readers with

similar findings.

The scatter plot of validation cases with correctly/wrongly

classified subjects is reported in Figure 4 (round 49). Among the
Frontiers in Endocrinology 06
19 validation cases, 74% had a compatible position in both R1 and

R2 scattered plots. The remaining 26% of cases was not in

agreement between R1 and R2, and a prediction error by one of

the two models exists. Of these, four subjects were misclassified by

one reader only, while two were misclassified by both.

The actual values of radiomic and clinical predictors were

subsequently reported to a coronal MRI view of the corresponding

subject for four randomly selected representative cases to better

evaluate ML results (Figure 5). The first patient (n. 20) had a high

pituitary volume, a more spherical shape and an accentuated non-

homogeneity of voxel values and was successfully classified as CPP by

both the clinical reference model and the radiomic model. Similarly,

the second patient (n. 85) was correctly identified as a control, had a

small pituitary volume, a flattened shape and a uniform texture of the

pituitary gland. In the third patient (n. 8) texture data in addition to

shape allowed the diagnosis of CPP. Finally, case n. 15 evidenced the

possible limit of radiomics used alone but had a smaller pituitary

volume, flattened shape and uniform texture.

3.1.2 Evaluation of the impact of
possible confounders

Correlations between RFs and confounders are reported in

Table 3. Among the 107 RFs, 7 RFs were found to be modified by

BMI, 3 by age, and 19 by bone age whereas none correlated with

height. However, all observed correlations were weak (0.3≤|R̅ |<0.5).

Importantly, the selected RFs, Surface Volume Ratio (shape feature)

and Gray Level Non-Uniformity (Glrlm) did not correlate with BMI

SDS, height SDS, age, and bone age (Table 3). At variance, PV

(ellipsoid formula) correlated with height SDS and bone age (R̅ =

0.35, p < 0.05; R̅ = 0.36; p < 0.05, respectively).

3.1.3 Association analyses of RFs with clinical,
biochemical and pelvic ultrasound data

Pubertal stages at diagnosis were not associated with the

selected RFs, but with other non-shape radiomic features (Table 4).

Correlations of RFs with hormonal levels and pelvic US features

in girls with CPP are reported in Table 5. In detail, basal LH serum

concentrations were correlated with the Shape Surface Volume Ratio

(R̅ = -0.44, p < 0.05) and the Glrlm Gray Level Non-Uniformity (R̅ =
TABLE 2 Mean values of radiomic and clinical predictors, and thresholds of predictive models.

Shape Surface
Volume Ratio

Glrlm Gray Level
Non-Uniformity

Volume
(ellipsoid method)

Whole population
R1 1.14 ± 0.22 44.7 ± 16.5 0.20 ± 0.09

R2 1.08 ± 0.20 48.8 ± 17.4 0.23 ± 0.08

Positive class (CCPs)
R1 1.05 ± 0.17 52.5 ± 16.7 0.25 ± 0.08

R2 1.01 ± 0.14 56.1 ± 17.5 0.26 ± 0.09

Negative class (controls)
R1 1.23 ± 0.22 37.2 ± 12.4 0.16 ± 0.06

R2 1.15 ± 0.22 41.7 ± 14.2 0.20 ± 0.07

Threshold (Youden method)
R1 1.13 ± 0.0 46.9 ± 4.0 0.21 ± 0.01

R2 1.02 ± 0.05 49.4 ± 2.5 0.26 ± 0.03
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0.56, p < 0.05). Similarly, LH peak serum concentrations were

correlated with the Shape Surface Volume Ratio (R̅ = -0.45, p <

0.05) and Glrlm Gray Level Non-Uniformity (R̅ = 0.49, p < 0.05).

Associations with clinical, biochemical and pelvic ultrasound data of

RFs that were not included in the radiomic model are reported in

Supplementary Tables 1 and 2.
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3.1.4 Evaluation of reliability between R1 and R2
Surface Volume Ratio and Gray Level Non-Uniformity had

ICCs of 0.68 and 0.58, respectively for both radiomic predictors.

The reliability of the predictor of the reference model was low (ICC

= 0.47). Reliability data of all RFs for both R1 and R2 are reported in

Supplementary Table 3.
FIGURE 2

Model performances of radiomic and reference models. Error bars represent 95% confidence intervals. Single thick line: training set; Double thin
lines: validation set; Orange: radiomics; Blue: Pituitary Volume using the ellipsoid method.
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4 Discussion

In this study we analysed radiomic data from MRI of the

pituitary gland, extracted through image segmentation techniques,

to investigate radiomic features that may be able to predict CPP

through a ML algorithms. We identified two different radiomic

parameters, Shape Surface Volume Ratio and Glrlm Gray Level

Non-Uniformity, which, through the application of our ML

algorithm, allowed to predict CPP with a high diagnostic

accuracy (ROC-AUC 0.81 ± 0.08). We confirmed also a

diagnostic value of PV (ellipsoid formula), however, this reference

model had a much lower sensitivity, in accordance with previous

studies (17). In addition, radiomics showed a high inter-reader
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reliability. Clinical and anthropometric variables were not

confounding factors of the main RFs of interest suggesting that

premature thelarche and/or pubarche would not be potentially

misclassified versus CPP. Finally, basal and peak gonadotropin

levels were correlated with the selected RFs. Very few studies to

date have investigated the role of radiomics in the diagnostic

workup of CPP. Jiang et al. (42) developed a radiomic score that

was able to predict CPP with a slightly lower performance

compared to our model (ROC-AUC = 0.76). However, their

patient cohort was very small (18 girls with CPP and 12 healthy

controls), and their data showed a huge variability. Zou et al. more

recently developed machine learning models based on MRI

radiomics and on clinical, hormonal and pelvic ultrasound data
FIGURE 3

Scatter plots of training cases as determined by Surface Volume Ratio (Shape) and Gray Level Non-Uniformity (Glrlm) for both readers. The line that
better discriminated the two classes is drawn. N (negative class): control cases; Y (positive class): CPP cases. Black cases denote correct predictions,
while red cases are wrong predictions.
FIGURE 4

Scatter plot of validation cases as determined by Surface Volume Ratio (Shape) and Gray Level Non-Uniformity (Glrlm). Red color (negative class):
control cases. Green color (positive class): CPP cases. Circle: correctly classified patients. Triangle: patients wrongly classified.
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FIGURE 5

Graphical representation of four representative cases that help to interpret the classification mechanism of the developed predictive models.
TABLE 3 Significant correlations between RFs and
confounding parameters.

Confounder RFs significantly
correlated *

Size of
correlation ^

BMI SDS None –

Height SDS Volume: ellipsoid method WEAK

Age Volume: ellipsoid method WEAK

Bone age None –
F
rontiers in Endocrin
ology
*Correlation with p-value < 0.05 in at least 50% of rounds.
^The size of the correlation was attributed according to the mean value of the correlation
coefficient (�R) across 100 rounds.
TABLE 4 Significant associations between models’ predictors and
categorical endpoint surrogates describing the clinical stage of puberty.

Endpoint surrogate RFs significantly associated with
the categorical

endpoint surrogate*

Tanner Breast stage Volume: ellipsoid method

Tanner Pubic Hair stage None
*Significant difference (p-value < 0.05) of RF value among endpoint (surrogate) subgroups in
at least 50% of rounds.
09
TABLE 5 Significant correlations between models’ predictors and
hormonal and pelvic US endpoints.

Endpoint
surrogates

RFs significantly
correlated *

Size of
correlation ^

basal LH glrlmGrayLevelNonUniformity MODERATE

shapeSurfaceVolumeRatio WEAK

Volume: ellipsoid method MODERATE

peak LH glrlmGrayLevelNonUniformity WEAK

shapeSurfaceVolumeRatio WEAK

basal FSH Volume: ellipsoid method WEAK

peak FSH None –

Left ovarian volume glrlmGrayLevelNonUniformity WEAK

Right
ovarian volume

None –

Uterine length None –

Fundus/cervix ratio None –

Estradiol None –
*Correlation with p-value < 0.05 in at least 50% of rounds. ^The size of correlation was
attributed according to the mean value of the correlation coefficient (�R) across 100 rounds.
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to discriminate central precocious puberty from peripheral

precocious puberty (43). They obtained promising results (ROC-

AUC = 0.86) from the integration of multiomic/multimodal data,

while less optimal findings (ROC-AUC = 0.67) for radiomics alone.

However, these results also are not completely comparable with our

findings due to the different target of the predictive models.

Therefore, to the best of our knowledge until now, the Literature

lacks reliable data highlighting the ability of MRI radiomics to

differentiate between CPP patients and control cases.

This study provides new meaning to MRI findings, and ideally

could lead to a significant change in the diagnostic assessment of

CPP, without the need for a GnRH stimulation test.

The determination of basal LH alone is not currently considered

sufficient, although discussed, for the diagnosis of CPP (4) but could

potentially become such in addition to “potentiated”MRI imaging of

the pituitary gland without the need for further testing. Over the past

years in fact, several studies have investigated the accuracy of baseline

gonadotropins in the diagnostic workup of CPP. Some studies have

suggested that LH values <0.2 IU/L are associated with a lower risk of

pubertal activation, while LH >1 IU/L generally would display a high

positive predictive value. However, precise reference values have not

yet been identified, both for the confirmation or the exclusion of CPP,

hence the need to perform a GnRH test in many cases (5, 44, 45). In

our radiomic model, interestingly, peak LH did not provide

additional information with respect to basal LH.

The radiomic model reflected the changes that the pituitary

gland undergoes during puberty related with the proliferation of

specific cell populations within and increased secretion of

hormones (46, 47). During adolescence, in humans, the pituitary

gland shows a “growth spurt” with increase in volume and height

that is generally greater in girls than in boys, as a reflection of the

activation of different hormonal profiles (48, 49). Therefore, the

association we found between the radiomic parameter Shape

Surface Volume Ratio with basal and peak LH values may

underline this functional-morphological correlation. Moreover,

the correlation of both basal and peak LH with the non-

uniformity parameters (Glrlm Gray Level Non-Uniformity)

highlight once again how radiomics reflects functional aspects (43).

The method has anyway limitations, as shown by the

misclassification of case n. 15 suggesting that it might not be accurate

in subjects having very small pituitary volumes, and at the very initial

stages of activation. This could be mitigated, however, using a high-

resolution MRI sequence, and is justified also by the existence of a

minority of CPP cases that had borderlinemorphological and functional

characteristics. Furthermore, the main limitation of this study is

represented by the small number of subjects and further validation

studies are warranted. Finally, we showed good reliability of findings

using both an unexperienced, and a moderately experienced reader.

Concluding, these data open the way to the potential use of

radiomics for the diagnosis of CPP.
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