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G Protein-Coupled Estrogen Receptor 1 (GPER-1) is a membrane estrogen

receptor that has emerged as a key player in breast cancer development and

progression. In addition to its direct influence on estrogen signaling, a crucial

interaction between GPER-1 and the hypothalamic-pituitary-gonadal (HPG) axis

has been evidenced. The novel and complex relationship between GPER-1 and

HPG implies a hormonal regulation with important homeostatic effects on

general organ development and reproductive tissues, but also on the

pathophysiology of cancer, especially breast cancer. Recent research points to

a great versatility of GPER-1, interacting with classical estrogen receptors and

with signaling pathways related to inflammation. Importantly, through its

activation by environmental and synthetic estrogens, GPER-1 is associated with

hormone therapy resistance in breast cancer. These findings open new

perspectives in the understanding of breast tumor development and raise the

possibility of future applications in the design of more personalized and effective

therapeutic approaches.
KEYWORDS
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1 Introduction

Breast cancer is a malignant disease that originates in the cells of the breast tissue. In

this type of cancer, breast cells multiply abnormally and uncontrollably, forming a tumor or

mass in the breast. Breast cancer comprises a variety of subtypes, and its aggressiveness and

behavior can vary significantly between patients, often posing clinical challenges in terms of

diagnosis and treatment (1). Morphologically, the most common type of breast cancer

affects the ducts responsible for milk transport (ductal cancer), while the second most

frequent form starts in the lobules, i.e. the milk-producing glands (lobular cancer).
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Breast cancer is the most common form of cancer in women (2)

but can also affect men (3). Conventional biomarkers used to assess the

disease include estrogen (ER) and progesterone receptors (PR), as well

as evaluation of the Human Epidermal Growth Factor Receptor 2

(HER2) and Epidermal Growth Factor Receptor (EGFR) genes, along

with the BRCA1 and BRCA2 genes. In addition, biomarkers such as

Ki-67 and p53 provide additional information on tumor aggressiveness

(4). The presence or absence of the ERa receptor in the tumor cell

allows the cancer’s categorization as sensitive or insensitive to estradiol,

respectively. This categorization is critical for medical decisions in the

process of diagnosis and treatment.

Although timely diagnosis and the development of effective

therapies have led to significant progress towards reducing breast

cancer mortality. The molecular variability, within and between

patients (1), underlie phenotypic and behavioral changes in tumor

cells. These changes drive the cellular resistance to anticancer

therapies, rendering breast cancer as one of the worldwide leading

causes of cancer-related deaths (5). Hence, new biomarkers that

contribute to improving the diagnostic and treatment of breast

cancer patients represents a major goal in breast cancer research.

The Hypothalamus-Pituitary-Gonads (HPG) axis promotes

organic development, contributing to reproductive function, as

well as to the menstrual cycle and breast development in women.

An important part of these physiological responses is mediated by

estradiol through its nuclear specific receptors, ERa and ERb.
However, interaction of estradiol with the membrane G Protein

Coupled Estrogen Repector-1 (GPER-1) contributes to the

physiological regulation of the HPG axis, sexual hormone levels

and to the fine mechanisms of estradiol release (6). In fact, the

expression of GPER-1 has been detected in key tissues in human

hormonal communication, such as the hypothalamus, the pituitary
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gland, the gonads (especially the ovaries) and the mammary gland

(Figure 1). Importantly, alterations in the regulation of the

neuroendocrine axis generate relevant effects on breast cancer

development (7). In some cases, GPER-1 is overexpressed in

tissues within the HPG axis, dysregulating the estrogenic

signaling pathways that relay on GPER-1 receptor activity. These

alterations ultimately contribute to cancer cell proliferation (8, 9).

GPER-1 is also expressed in breast cancer stem cells. Cancer stem

cells exhibit stem cell-like properties in terms of self-renewal and

differentiation. These cells contribute to tumor growth, metastasis,

and resistance to therapeutic treatments (10). A study using

xenografts derived from patients with ER-/PR+ breast cancer

(CSCM) has shown that GPER-1 is significantly expressed in

these cells. In fact, GPER-1 silencing reduces the pluripotency

characteristics of this cell type. Moreover, activation of GPER-1

by tamoxifen promotes Protein Kinase A (PKA)/Bcl-2-antagonist

of cell death (BAD) phosphorylation, which maintains stemness

and viability characteristics in CSCMs (Y.-T. 11).

Since the identification of GPER-1 as an estrogen receptor, it

has attracted increasing interest due to its involvement in the

pathophysiology of various chronic diseases, including metabolic,

nervous, cardiovascular and cancer diseases (12). Interestingly,

GPER-1 also interacts with molecules that exhibit structural

homology with estradiol, which could contribute to breast cancer

development and its relation to environmental pollution (13).

In summary, recent research indicates that the involvement of

GPER-1 in the regulation of the HPG axis is extremely relevant in

the context of breast cancer, as alterations in hormonal signaling

promote tumor growth and cancer progression. Understanding

these interactions may provide crucial information for developing

personalized therapeutic strategies.
FIGURE 1

Overexpression of GPER-1 during Epithelial-Mesenchymal Transition in Breast Cancer. Prolonged exposure to noxious stimuli, such as
xenoestrogens or other estrogenic molecules, creates a favorable tumor environment for epithelial-mesenchymal transition in breast cancer cells.
This is characterized by increased expression of GPER-1 in the tumor cell, leading to increased activity of signaling pathways dependent on
this receptor.
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2 The emerging role of GPER-1 in
estradiol-dependent signaling

The discovery GPER-1, also known as GPR30, in the 2000’s

marked an important milestone in estrogenic signaling research

(14). This finding has provided a novel insight into how estrogens

interact with cells, allowing a greater understanding of estrogen

versatile role in health and disease.

Early indications about GPER-1 activity involved the

observation of rapid intracellular responses to estrogen (15)

included calcium mobilization and activation of protein kinases.

Both processes occur within seconds or minutes, contrasting to the

slower genomic responses that require regulation of gene

transcription driven by the activation of estrogen nuclear

receptors (16).

GPER-1 is now known to play a crucial role in intracellular

signal transduction in response to estradiol (17b-estradiol or E2),
but also to other types of physiological estrogens, such as estrone

(E1) and estriol (E3) (17). Moreover, activation of GPER-1 by

several estrogenic compounds of natural (such as phytoestrogens)

and synthetic origin (such as bisphenols) has also been reported

(18). In addition, tools such as the GPER-1 specific synthetic

agonist, G1, together with the antagonist compounds G15 and

G36, have been used to assess GPER-1 function in different cells and

animal models (17, 19). These compounds are derived from

quinolones, and their functional groups give them bioactive

properties. Since their discovery, these pharmacological tools have

been essential for the development of new strategies focused on the

characterization of GPER-1 signaling (10, 20, 21). New

computational techniques have enabled detailed ligand analysis

and facilitated the design of new drugs targeting GPER-1. This

has contributed significantly to the understanding of the underlying

molecular mechanisms, as well as to the identification of potential

modulators and therapeutic candidates (22).

In triple-negative MDA-MB-231 and HCC 1386 cells, GPER-1

silencing using a specific siRNA reduces the invasiveness of breast

tumor cells. Furthermore, this silencing increases sensitivity to

tamoxifen through estrogen receptor beta (23). A recent

investigation in estradiol-sensitive breast cancer cell lines resistant

to 4-hydroxytamoxifen (4-OHT), the major metabolite derived

from tamoxifen, showed that silencing of Cysteine-Rich

Angiogenic Inducer 61 (CYR61) expression resulted in a

significant decrease in cell invasion and re-sensitization to 4-

OHT, suggesting that CYR61 suppression could be a promising

therapeutic strategy to improve the treatment of tamoxifen-

resistant breast cancer (24).

GPER-1 can mediate both genomic and non-genomic

responses. Its activation leads to diverse intracellular events, such

as transactivation of the epidermal growth factor receptor (EGFR)

(25). EGFR transactivation leads to the rapid of mitogen-activated

protein kinases (MAPKs), especially extracellular signal-regulated

kinases 1 and 2 (ERK1/2), phosphorylation of phospholipase C

(PLC) and phosphatidylinositol- 3-kinase (PI3K). Ultimately,

adenyl cyclase (AC) stimulation directs the intracellular

mobilization of Ca2+ (26, 27). EGFR is a key player in the
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regulation of cell proliferation and survival. Its interaction with

GPER-1 triggers a signaling cascade involving the activation of

kinases which can modulate the activity of ryanodine channels

(RyR1 and RyR2) of the endoplasmic reticulum (28). Subsequent

intracellular calcium release plays a crucial role in cell proliferation

and in the acquisition of drug-resistant phenotypes in tumor cells,

making this pathway a promising therapeutic target (29). In

addition, GPER-1 regulates estradiol-related gene expression

through activation of PI3K and pERK1/2, mediating cell survival

and proliferation signals (30).

GPER-1 activation complexly modulates the expression of

multiple microRNAs in breast cancer (31). MicroRNAs

(miRNAs) are small non-coding RNA molecules that regulate

gene expression at the post-transcriptional level by binding to

messenger RNAs (mRNAs) and inhibiting their translation or

promoting their degradation. For example, miRNAs such as miR-

9-5p, miR-10b-5p and miR-21-5p are overexpressed and act as

oncogenes, promoting GPER-1 expression and suppressing tumor

genes such as PTEN and TIMP3, which in turn are associated with

increased resistance to treatments (32–34). On the other hand,

miRNAs such as miR-205-5p and miR-206 exert tumor suppressor

effects by inhibiting oncogenic signaling pathways such as Ras/Raf/

MEK/ERK and reducing the invasiveness of cancer cells (35). These

findings could be useful not only for the development of new

therapeutic strategies, but also for understanding treatment failure

in cancer patients.

On the other hand, it is well established that ERa plays a

gravitating role in the development of breast cancer. Of note, ERa
presence and activity are closely related to the growth and

proliferation of tumor cells (36). Thereof, tumors expressing this

receptor are typed as ERa-positive, meaning that they are

stimulated by estradiol, the most potent biological form of

estrogen (4). These cancers correspond to 60%-70% of breast

cancer cases (37). On the other hand, overexpression of ERa
favors the stabilization and repair of the genome of tumor cells

(38, 39). The ERa-positive classification is relevant for choosing a

therapeutic strategy. Tamoxifen or aromatase inhibitors are the

general choice in these cases, as the objective is to block or reduce

ERa activity. ERa-negative breast tumors do not respond to

hormone therapy and tend to grow and proliferate more rapidly,

have a higher propensity to metastasize, and have a limited response

to chemotherapy, resulting in a less favorable prognosis.
3 GPER-1 in the communication of
the hypothalamic-pituitary-gonadal
axis, new implications in
breast cancer.

3.1 Role of GPER-1 in the endocrine
regulatory axis HPG

The ubiquity of GPER-1 in various body tissues suggests its

fundamental role in organ homeostasis and dysregulation.
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Numerous studies have demonstrated its involvement in the

regulation of key physiological systems, such as the cardiovascular

and immune systems. For a comprehensive review of the multiple

functions of GPER-1 in these contexts, please refer to (12). Until

recently, the cellular response to estradiol in the nervous and

reproductive systems were thought to rely exclusively on the

classical nuclear receptors. However, the discovery of GPER-1 has

revealed that a significant part of estrogenic responses may result

from the activity of this membrane receptor (12). Importantly, the

responses commanded by GPER-1 may be different in males and

females, due to changes in their expression levels, especially during

the estrous cycle (40).

GPER-1 has been identified at various locations in the central

nervous system, suggesting a broad involvement of this receptor in

both behavioral and reproductive processes. For instance, GPER-1

has been detected in different hypothalamic cell types, including

neurons, astrocytes, and oligodendrocytes (41).

Furthermore, studies in female rats have determined that

GPER-1 is related to estradiol activity on the functions of the

anterior hypothalamus, ranging from feeding behavior to sexual

receptivity (41). Hence, this receptor could collaborate in several of

the biological responses regulated by the hypothalamus, such as

sleep, feeding, stress response and endocrine regulation (42). In

addition, GPER-1 expression has also been detected in the

amygdala and dorsal hippocampus, modulating anxiety, social

recognition, and spatial memory (40). Opening the interrogation

of its role in other neuronal processes.

The presence of GPER-1 has recently been determined in

lactotrophs, a cell type of adenohypophysis whose main function

is to synthesize the hormone prolactin. Interestingly, the GPER-1

agonist G1 induced a rapid stimulation of prolactin secretion, both

in vitro and ex vivo. This effect was prevented by the GPER-1

antagonist G36 (43). Furthermore, GPER-1 is expressed in anterior

pituitary gonadotroph cells. Modulating the response of these cells

to gonadotropin-releasing hormone (GnRH) and contributing to

the negative feedback exerted by estradiol on luteinizing hormone

(LH) secretion (44).

LH plays a crucial role in the reproductive system of both males

and females. In males, GnRH stimulates Leydig cells in the testis for

the synthesis of testosterone, which together with follicle-

st imulating hormone (FSH) promotes the process of

spermatogenesis (45). GPER-1 has also been identified in

testicular tissue. Somatic, Leydig and Sertoli cells, as well as germ

cells, including spermatogonia, spermatocytes and spermatids show

GPER-1 expression (26) (Table 1). Furthermore, in Leydig cells,

estradiol directs a GPER-1-dependent down-regulation of

testosterone synthesis (20-30%) relative to untreated Leydig cells

(46). Immature Sertoli cells survival is enhanced by stimulation with

estradiol or G1. Increasing anti-apoptotic signals through the

GPER-1/EGFR/mitogen-activated protein kinase3/1 (MAPK3/1)

pathway (47, 48). In this line, it has been observed that

nanomolar concentrations of the synthetic estrogenic compound

bisphenol A (BPA) increases the proliferation rate of mouse

immature Sertoli cells. The increase in the proliferation of this

cells involves both GPER/EGFR/ERK1/2 and ERa/b/ERK1/2
pathways (49). Altogether, these findings position GPER-1 as a
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mediator of the estrogen-dependent testicular development

and spermatogenesis.

In females, luteinizing hormone (LH) stimulates ovulation

and subsequent corpus luteum formation (54). The involvement

of GPER-1 in ovogenesis has been the subject of study in

several vertebrate species (55, 56). For instance, GPER-1

expression has been detected in the oocyte membrane, especially

as it reaches a higher degree of maturation (50). More recently,

follicle stimulating hormone (FSH) has been found to stimulate

aromatase enzyme expression and estradiol biosynthesis in mouse

cumulus-oocyte complexes (COCs). Estradiol then activates the

GPER-1/ERK1/2 pathway promoting oocyte expansion and

maturation (57).

Granulosa cells are crucial components of ovarian follicles,

surrounding and providing nutritional support to developing

oocytes. Interestingly, expression of both FSH receptor (FSHR)

along with GPER-1 has been demonstrated in this cell type (51).

During follicular maturation, in response to FSH released by the

adenohypophysis, granulosa cells convert androgens to estradiol for

regulation of the menstrual cycle and preparation of the uterus for

potential implantation. Recently, the formation of heteromeric

complexes between GPER-1 and FSHR at the cell membrane has

been demonstrated, contributing to the viability of granulosa cells

(52). GPER-1 and FSHR are estimated to collaborate by generating

a signaling network that promotes gametogenesis (53).

Although mice lacking GPER-1 do not show clear alterations in

reproduction or fertility (58), the evidence indicates that GPER-1

contributes to the synchronization of sex hormone release,

particularly estradiol, modulating its physiological effects on

peripheral and reproductive tissues. On the other hand, the

GPER- 1 deficient murine model allowed linking this receptor to

the development and metastatic capacity of breast cancer (59).

Several investigations have evidenced the impact of various

compounds with estrogenic activity on the hypothalamic-pituitary

axis, although the interaction of these compounds with GPER-1 is

not entirely clear, some studies suggest an active role of GPER-1 in

the hypothalamic-pituitary axis, in the context of exposure to

molecules with estrogenic activity (60), opening the possibility of

new avenues of research on unconventional mechanisms of

hormone action (61). In addition, bisphenol-GPER-1 interaction

has been associated with male infertility (62). The results of future

studies could reveal complex molecular mechanisms and their

implications in endocrine pathophysiology.
3.2 GPER-1 in the endocrine disruption and
pathophysiology of breast cancer

GPER-1 also is expressed in different types of mammary cells,

including epithelial cells, myoepithelial cells, and stromal cells,

being involved in normal mammary gland development and

function (63). In addition, GPER-1 has also been observed to be

associated with several pathological processes, especially

breast cancer.

Aging is considered one of the main risk factors for breast

cancer development (64). With age, the ability to repair DNA
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decreases, making cells prone to cancer-promoting genetic changes.

In addition, the ability of the immune system to respond to tumor

cells is altered during aging (65). Another important factor

corresponds to alterations in the regulation of hormone release.

During menopause, which marks the end of menstruation, the

ovaries decrease the biosynthesis of sex hormones (66). However,

during a time corresponding to the menopausal transition (MT),

the adenohypophysis generates a monotropic (constant) increase in

FSH in response to the ovarian reserve reduction. During MT

estradiol levels also increase, before decreasing significantly during

menopause (67). However, not all estrogenic hormones are

downregulated during this period. One example is estrone, which

is mainly produced in adipose tissue. Hence, the decrease in

estradiol during menopause does not mean a total reduction in

estrogen exposure (Figure 1).

Another important factor in breast cancer development is the

regulation exerted by the tumor microenvironment. Tumor

microenvironment may promote carcinoma cells to change their

epithelial nature to mesenchymal characteristics, a phenomenon

known as epithelial-mesenchymal transition (EMT) (68).

Importantly, recent research indicates that estrone induces EMT,

thus facilitating the invasiveness of breast cancer (69). Furthermore,

it has been suggested that, in postmenopausal women, the

relationship between estrone and estradiol may be an important

factor in breast cancer risk (69). Hence, estrone, by acting as a

GPER-1 agonist (70), could contribute to the development of

estrogen-sensitive breast cancer. GPER-1 activation correlates

with increased expression of mesenchymal markers such as

vimentin and N-cadherin (71). In turn, estrone, a major GPER-1

agonist (17), has been implicated in promoting EMT (69). Exposure

of breast cancer cells to estrone induces the expression of EMT-

associated transcription factors, such as Snail and Slug, and
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promotes the generation of more invasive cells (Y. 72). These

findings suggest a causal relationship between GPER-1 activation

by estrone and EMT induction, underscoring the potential role of

this receptor in tumor progression and metastasis. Furthermore,

pharmacological inhibition of GPER-1 or inhibition of its

expression by interfering RNA (siRNA) techniques reverses EMT

and reduces the invasiveness of cancer cells (73).

On the other hand, hormone replacement therapy, aimed at

preserving the beneficial effects of estradiol on female physiology.

Particularly regarding metabolism and cardiovascular health (74),

could also have undesirable side effects, contributing to the

development of breast cancer (75). Similarly, the use of oral

contraceptives, consisting of a combination of estrogens and

progestogens, is considered a risk factor for the development of

breast cancer (76). Increased exposure to estrogens alters the

physiological regulation of sex hormone release, disrupting the

signaling commanded by estrogen receptors and promotes

hormone-dependent cancer development (77). In fact, it has been

observed that a significant number of estradiol-sensitive (ERa-
positive) breast cancer cases co-express GPER-1 (78), which is

associated with worse prognosis and diminished survival of

patients, even in those patients treated with tamoxifen (78, 79).

Dysregulation of estrogen signaling may play a critical role in

tumor progression by providing an environment conducive to

tumor growth and facilitating metastasis (80). Increased

expression of GPER-1, as well as its aberrant activation, is

associated with several hormone-dependent cancers, including

cervical (81), prostate (82), testicular (26), breast (83), lung (81)

and glioblastoma (84). However, in some types of reproductive

tumors, antitumor activity of the GPER-1 receptor has been

demonstrated through mechanisms such as apoptosis, cell cycle

and arrest in G2 (85). Low levels of GPER-1 are associated with
TABLE 1 GPER-1 and its role in the HPG axis.

System Region/Cell GPER-1 Function Detailed Signaling Pathways References

Central
Nervous System

Hypothalamus
Regulation of feeding, sexual behavior, sleep, stress,
hormone secretion

MAPK/ERK1/2, PI3K/Akt, Ca2+, cAMP 41, 42;

Amygdala,
Dorsal Hippocampus

Modulation of anxiety, social recognition,
spatial memory

MAPK/ERK1/2, Ca2+ 40

Pituitary Gland Lactotrophs Stimulation of prolactin secretion MAPK/ERK1/2 43

Gonadotrophs
Modulation of GnRH response, negative feedback on
LH secretion

MAPK/ERK1/2 44

Testis Leydig cells
Regulation of testosterone
synthesis (downregulation)

MAPK/ERK1/2, EGFR 26, 46

Sertoli cells Survival, proliferation
MAPK/ERK1/2, EGFR, PI3K/Akt
Synergistic effects with ERa/b in BPA-
induced proliferation

47–49

Germ cells Spermatogenesis MAPK/ERK1/2 26

Ovaries Oocytes Oocyte maturation MAPK/ERK1/2 50, 57

Granulosa cells
Collaboration with FSHR, follicular
maturation, gametogenesis

MAPK/ERK1/2, PI3K/Akt
Formation of heteromeric complexes
with FSHR

51–53
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antitumor effects in prostate cancer (86). Interestingly, an

overexpression of GPER-1 in ovarian cancer is associated with

decreased tumor development (87).

Some research indicates that GPER-1 expression is strongly

influenced by epigenetic factors, especially through DNA

methylation. This process implies that proteins that bind methyl

groups can recruit both activators and repressors, particularly on

CpG islands, which are regions rich in cytosine and guanine

dinucleotides. These islands are often found at transcription start

sites (88). Two CpG islands are associated with GPER. One, located

at approximately 1 kb upstream of the transcription initiation site,

has been associated with the transcriptional regulation of GPER-1.

Interestingly, breast cancer cell lines that express GPER-1 showed

hypomethylation of this CpG island. Furthermore, treatment with

5-azacytidine, an inhibitor of DNA methyltransferases, increased

GPER-1 expression (89). Suggesting an inverse relation between

DNA methylation and GPER-1 expression in breast cancer (90).

Similar results have been observed for gastric cancer (91) and

colorectal cancer, with samples from patients showing higher

methylation levels and lower GPER1 expression compared to

patient-matched normal tissue (92). Recently, analysis of various

databases has shown that DNA methylation of GPER-1 and ERa is

associated with survival in tumor patients. It is suggested that

methylation of these genes may play a role in cancer progression

by modulating chromatin configuration (93).

Additionally, molecules that can mimic the biological effects of

estrogens due to a structural homology with estradiol are globally

cataloged as xenoestrogens. Environmental pollution determines

our constant exposition to these molecules with estrogenic capacity.

Raising interest in the association between xenoestrogens

exposition and cancer development (94). Xenoestrogens are

foreign to our physiology, some of these molecules have their

origin in plants, as is the case of phytoestrogens, and others are of

industrial origin, covering many molecules from phthalates to

bisphenols (18). Much of the evidence indicates that industrial

xenoestrogens may act as endocrine disruptors (18, 94, 95). In this

context, bisphenol A (BPA) and phthalates, a chemical compound

that is incorporated in plastic containers used to store water,

beverages, food, and numerous items of modern life, stands out

(96). Phthalates, BPA, and other types of bisphenols have been

detected in virtually all biological fluids and tissues. These include

amniotic fluid (97) and adipose tissue (98–100).

Phthalates, such as butylbenzyl phthalate (BBP), dibutyl

phthalate (DBP) and di(2-ethylhexyl)phthalate (DEHP), have

been shown to have estrogenic effects in breast cancer cells,

interacting with estrogen receptor alpha (ERa) at micromolar

concentrations (101, 102). Although their ability to induce cell

proliferation suggests a possible interaction with GPER-1, direct

binding between these phthalates and GPER-1 has not yet been

demonstrated (102).

Environmentally relevant doses of BPA generate activation of

classical estrogen receptors, inducing protumor activity (103). It has

recently been proposed that stimulation of estradiol-sensitive breast

cancer cells with BPA increases breast cancer cell proliferation

(104). However, it has also been determined that BPA can
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exacerbate cancer cell behavior by acting on G protein-coupled

receptors, specifically GPER-1 (13, 105) (Table 2).

The pathophysiological effects of different concentrations of

BPA have been analyzed. High doses, in the micromole range, have

been linked to oxidative stress, subcellular damage, cytotoxicity, and

apoptosis (112). Chronic exposure to these high doses may facilitate

inflammation, pancreatic beta-cell death and metabolic dysfunction

(113, 114). However, low doses, in the nanomoles range, have raised

more concern (115) due to their prevalence in the environment

(116) and the variability of BPA in serum, ranging from 1 to 10 nM,

which has a high potential to alter endocrine function (117). This

alteration can interfere with the gonadotropin-releasing hormone

(GnRH) release axis, generating alterations in early development

and in the human reproductive cycle (118).

In murine models, low oral doses of BPA have shown

remarkable proestrogenic activity (119). Several studies indicate

that low concentrations of BPA can modify cell behavior in prostate

(120) and mammary (121) tissues, which could increase long-term

cancer risk. Additionally, exposure to BPA and other endocrine

disruptors has adverse effects on genes that regulate placental

function and fetal development (122, 123), associated with

negative consequences on fetal development and neurological

function (122).

Due to negative health effects and growing concern in the

scientific community and the general public, the use of other

bisphenols, such as bisphenol S (BPS) and bisphenol AF (BPAF),

has been promoted (99). However, these compounds exhibit

hormonal properties, with BPAF being more potent than BPS. In

fact, several reports, using as models yeast (Saccharomyces

cerevisiae), zebrafish (Danio rerio), or human and rat stem cells,

indicate that their toxic and estrogenic effects are similar or even

exceed those of BPA (106–108).

In MCF-7 cells, low concentrations of BPAF through GPER-1

triggered PI3K/Akt and ERK1/2 signaling pathways, promoting cell

proliferation, and increased levels of intracellular calcium, and

reactive oxygen species (ROS) (109). Recently, it has been

observed in immortalized murine hypothalamic cells, both of

embryonic and adult origin, that exposure to BPS, through

GPER-1, induces the expression of the Agouti-related peptide

(AgRP) gene, a neuropeptide crucial in the regulation of appetite

and energy balance, which could contribute to metabolic disorders

associated with obesity (124).

Adipose tissue tends to bioaccumulate various types of

xenoestrogens, due to the lipophilic characteristics of these

compounds (125, 126). This phenomenon, in the case of

phthalates and bisphenols, has been consistently linked to

adipogenesis, and to the long-term development of endocrine and

metabolic diseases (127–129).

In perspective, exposure to hormone replacement therapy,

contraceptive, or xenoestrogens triggers intracellular signaling

pathways that are mediated by GPER-1 and induced by

physiological estrogens (30). However, in the context of breast

cancer, these pathways may exacerbate tumoral behavior,

enhancing the signaling pathway activation or its components,

such as ERK1/2, AKT, cyclic adenosine monophosphate (cAMP)
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or by increasing intracellular calcium levels. GPER-1 may also act

through direct or indirect association with other estradiol-

responsive receptors or inflammation-related receptors, and its

levels may also be affected by the activity of cancer-associated

fibroblasts (CAFs) in the tumor microenvironment (Figure 2).

Thus, for example, continuous exposition to tamoxifen, the first-

line drug against estradiol-sensitive breast cancer, overexpresses

GPER-1, increasing calcium mobilization and cell proliferation (9).
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Suggesting that GPER-1 overexpression constitutes a mechanism of

drug resistance (9, 110, 111).

Interestingly, a recognition domain of GPER-1 in ERa has

recently been reported, such a region has also been found in a

truncated isoform of estrogen receptor alpha, named as ERa36
(130). An association between GPER-1 and insulin-like growth

factor (IGF1R) signaling, promoting breast cancer metastasis, has

also been suggested (131). Similarly, a relationship of GPER-1 with
TABLE 2 Factors contributing to breast cancer development.

Factor Description
Impact on Breast
Cancer Development

Signaling Pathways References

Age-related
Hormonal Changes

Aging, menopause, hormonal fluctuations
(Estrogens, FSH)

Altered hormonal balance, increased
breast cancer risk, especially hormone-
dependent types

Estrogen receptors, GPER-1 →

MAPK ERK1/2, EGFR, PI3K/
Akt, Ca2+ release

17, 64–67,
69–71

Endocrine
Disruption by
Exogenous
Compounds

Hormone therapy, contraceptives, xenoestrogens
(BPA, BPS, BPAF, phthalates).
Epigenetic regulation of GPER-1
(DNA methylation)

Altered hormonal balance, increased
breast cancer risk, especially hormone-
dependent types; Epigenetic
modifications influence GPER-1
expression.
Tamoxifen-mediated GPER-1 activation
sustains CSCM stemness and viability.

Estrogen receptors, GPER-1 →

MAPK ERK1/2, EGFR, PI3K/
Akt, Ca2+ release.
Upregulating PKA/
BAD phosphorylation.

11, 13, 18, 75,
76, 83, 88–95,
103, 105–109

Tumor
Microenvironment
and GPER-
1 Activation

Cell-cell interactions, extracellular matrix; GPER-
1 activation correlates with mesenchymal markers
(vimentin, N-cadherin). Estrone induces EMT via
Snail and Slug transcription factors

Promotes cell proliferation, EMT,
invasion, angiogenesis, and therapy
resistance; creates a pro-
tumor microenvironment

GPER-1 → MAPK ERK1/2,
EGFR, PI3K/Akt, Ca2+ release;
activation of CAFs → IL-6,
VEGF, other growth factors

9, 17, 69, 69,
71–73, 85,
110, 111
FIGURE 2

GPER-1 plays a crucial role in the physiological regulation of the HPG axis. GPER-1 is involved in the intricate regulatory network of the hypothalamic-
pituitary-gonadal (HPG) axis. The ubiquity of this receptor, both in the central nervous system and in peripheral tissues, determines an integrative role of
neuroendocrine and environmental signals. In the hypothalamus and pituitary, GPER-1 modulates the synthesis and pulsatile release of gonadotropins,
hormones essential for follicular development, ovulation and spermatogenesis. In the ovaries, GPER-1 mediates the effects of estradiol on cell proliferation,
apoptosis and steroid synthesis, thus influencing ovarian function and fertility. The mammary gland, another target tissue of GPER-1, undergoes
morphological and functional changes in response to hormonal fluctuations. Disruption of GPER-1 signaling by exposure to estrogenic chemicals or
physiological alterations such as menopause can trigger a cascade of events leading to reproductive, metabolic and carcinogenic disorders.
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proinflammatory receptors has been observed (9, 132). Further

research is required to increase our understanding of the

interactions between GPER-1 and other receptors, and the role

those interactions play in breast cancer development.

GPER-1 expression has also been observed in triple-negative

breast cancer (TNBC) (83), a neoplasm characterized by a lack of

ERa, PR and HER2 receptors. In this context, GPER-1 can

modulate key pathways, including MAPK activation and EGFR

signaling (133), contributing to cell proliferation and invasion. This

scenario associates TNBC with the most aggressive phenotypes of

breast cancer (83). Indeed, the RAS/RAF/MEK/ERK signaling

cascade, key in the physiological response to estradiol, has been

found to be frequently over activated in various types of cancers,

although mutations in this pathway are not usually described in

breast cancer. TNBC cancer has been associated to driver mutations

in the Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS), and

v-Raf murine sarcoma viral oncogene homolog B (BRAF) genes,

promoting the synthesis of K-RAS and RAF proteins (134).

Furthermore, a recent report used CRISPR/Cas9 to knockout

GPER-1 expression in triple-negative MDA- MB-231 cells. Cells

lacking GPER-1 showed a shift towards pro-apoptotic and

antiproliferative signaling driven by reduced cAMP levels and

activation of the c-Jun N-terminal kinase (JNK/c- Jun)/p53/Noxa

pathway (135). Therefore, GPER-1 would be intrinsically related to

the mechanisms that determine the development of TNBC.

Additionally, in the tumor microenvironment, GPER-1

expression has been detected in CAFs. GPER-1 activation

stimulates the secretion of proinflammatory factors such as

interleukin 6 (IL-6) and epidermal growth factor (VEGF)

(Figure 2). This phenomenon would ultimately also contribute to

resistance to hormonal treatments such as tamoxifen (85).

Taken together, these data suggest that GPER-1 modulates a

complex signaling network of importance for the development of

estradiol-sensitive breast cancer and TNBC, which is influenced by

several interrelated factors. First, GPER-1 expression and tumor cell

type are critical, as GPER-1 shows remarkable versatility in the

target signaling pathways it activates, which generates a variable

impact depending on the cellular context. Second, the tumor

microenvironment plays a crucial role; the extracellular matrix

can modify GPER-1 activity and thus alter tumor responses.

Third, activation of GPER-1 by molecules that mimic estrogen

structure, such as xenoestrogens (e.g., Bisphenol A), poses a

potential risk of endocrine disruption. Finally, the interaction of

GPER-1 with other receptors, such as EGFR and ERa, may amplify

estrogenic signaling, opening exciting opportunities to investigate

combination therapies targeting these pathways.
4 Conclusion

The dynamic interaction between GPER-1 and signals from the

hypothalamus-pituitary- gonads axis suggests a direct connection
Frontiers in Endocrinology 08
between sex hormone regulation and molecular events associated

with the progression of several types of cancer, especially breast

cancer. The ability of GPER-1 to modulate key signaling pathways,

influence gene expression, and participate in specific molecular

cascades in nervous and reproductive tissue is a developing area but

represents a significant advance toward a greater understanding of

the pathophysiology of breast cancer and other chronic nerve and

metabolic diseases.

Recent discoveries about the interaction of GPER-1 with

synthetic and environmental estrogens emphasize the

importance of considering the expression and activity of this

receptor in the formulation of more effective and specific

therapeutic approaches for breast cancer, establishing an

additional link that strengthens the ability to tailor therapeutic

interventions to the specific molecular characteristics of

each patient.
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