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Ziting Zhang1, Lifang Hu1, Liangjie Lin3 and Ailian Liu1*

1Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, China,
2Department of Medical Imaging, Dalian Medical University, Dalian, China, 3Clinical & Technical
Solutions, Philips Healthcare, Beijing, China
Purpose: To quantitatively analyze renal sinus fat (RSF) dysfunction in type 2

diabetes mellitus (T2DM) patients using magnetic resonance imaging (MRI) fat

fraction (FF) and R2* mapping.

Methods: The inpatients who underwent 1.5 T MRI examination (including MRI FF

and R2* mapping) of the abdomen from January 2017 to December 2023 were

enrolled. The RSF volume, FF and R2* of the right and left kidneys and the mean

values were measured. Associations between mean FF and R2* value of RSF and

T2DM were assessed with logistic regression. Receiver operating characteristic

(ROC) curve was applied to calculate area under the curve (AUC) for the

parameters to identify T2DM patients. Partial correlation coefficients after

controlling for age, sex, and BMI were computed to analyze the correlations

among the mean RSF volume, FF and R2*.

Results: A total of 186 participants were finally enrolled in this study including 38

patients in T2DM group and 148 patients in non-T2DM group. Univariate logistic

regression analyses showed the significant correlations of mean RSF FF (OR:

1.111, 95%CI: 1.054 - 1.171), P < 0.001) and R2* (OR: 1.120, 95%CI: 1.013 - 1.237),

P = 0.027) with T2DM. Multivariate analysis showed that mean RSF FF (OR: 1.231,

95% CI: 1.098 - 1.380) is independently associated with T2DM after adjusting for

age, sex and BMI. The AUC of mean RSF FF was 0.701 (0.630 - 0.766) with the

sensitivity and specificity of 57.89% and 75.68%, respectively, when using 34.40%

as the cut-off value. The AUC of mean RSF R2* was 0.616 (0.542 - 0.686) with the

sensitivity and specificity of 68.42% and 58.11%, respectively, when using 21.97 Hz

as the cut-off value. Furthermore, mean RSF FF presents significantly higher

diagnostic efficacy for T2DM than R2* (P < 0.05). And combining mean RSF FF

and R2* improved the diagnostic performance (AUC = 0.729).
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Conclusion:Mean RSF FF and R2* were significantly associated with T2DM, and

mean RSF FF was the independent risk factor of T2DM. This finding indicates the

hypertrophy of adipocytes and excessive iron deposition and hypoxia in RSF,

which may represent dysfunction of RSF for T2DM.
KEYWORDS

renal sinus fat, fat dysfunction, type 2 diabetes mellitus, magnetic resonance
imaging, radiomarker
1 Introduction

In recent years, the prevalence of type 2 diabetes mellitus

(T2DM) has reached an alarming level. In 2021, as the tenth

leading cause of death in the world, diabetes caused a total of

79.2 million disability-adjusted life years globally with

approximately 529 million people living with the disease

worldwide and T2DM accounted for more than 96% as the main

driver of diabetes prevalence. By 2050, the number of people with

diabetes worldwide will reach 1.31 billion, representing a substantial

burden to healthcare systems (1, 2).

The renal sinus (RS) is located in the middle of the kidney

containing the renal hilum and is bordered by renal parenchyma

laterally. Renal sinus fat (RSF) refers to the ectopic perivascular fat

depot around renal hilum, which is in close contact with renal

vasculature, lymphatic vessel, renal pelvis and calyces. Moreover, it

is also a component of visceral adipose tissue. RSF has distinct

characteristics compared to other fat depots and impacts human

metabolism through various mechanisms including endocrine,

inflammation, and immune regulation. Additionally, excessive RSF

can lead to compression of renal blood vessels and kidneys (3, 4).

Recent studies have shown that T2DM is associated with RSF.

Excessive RSF accumulation has been observed to be more

prevalent in patients with T2DM compared to healthy controls,

even after adjusting for age, sex, and ethnicity (5). Adipocyte

hyperplasia and excessive hypertrophy of existing adipocytes may

contribute to a larger volume of RSF in T2DM patients (3).

Specifically, excessively large, hypertrophied adipocytes become

inadequately vascularized and hypoxic, resulting in cell stress,

apoptosis, immune cell infiltration, iron excess, and dysregulated
inus; RSF, renal sinus
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and fat with echo

tion; ROI, region of

, receiver operating

ss index; FPG, fasting
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release of cytokines and adipokines ultimately leading to RSF

dysfunction, related to insulin resistance (IR), a significant risk

factor for the development of T2DM (6–9).

Compared to RSF volume, there is limited knowledge about the

quality of RSF in T2DM patients, which can be associated with

adipose tissue dysfunction (10). Magnetic resonance imaging (MRI)

3D multi-echo fat water separation technique is currently the

optimal method for noninvasive and precise measurement of fat

content in human tissues (11). Additionally, it is a viable approach

for obtaining R2* (apparent spin-spin relaxation rate) values to

estimate oxygenation status in specific tissues by considering the

impact of paramagnetic substances on the T2* (apparent spin-spin

relaxation time) signal (12–16).

In previous research, we measured the volume and fat fraction

(FF) of RSF in normal Chinese subjects based on FF mapping and

explored the correlations between them and biometric parameters

(e.g., age and gender) (17). Nevertheless, the precise nature of RSF

as a form of ectopic fat and its physiological alterations in patients

with T2DM remain poorly understood. To the best of our

knowledge, to date, in contrast to studies on ectopic fat in other

organs or body regions such as the pancreas and liver, visceral and

subcutaneous adipose tissues, there was a lack of studies about RSF

dysfunction in T2DM patients by evaluating the variation of RSF FF

and R2* (18, 19).

We hypothesized that the RSF FF in patients with T2DM could

reflect hypertrophy of adipose tissue in the renal sinus, and R2*

could reflect hypoxia in RSF. Therefore, in this study, we aimed to

quantitative analyze of RSF dysfunction in T2DM patients using

MRI FF and R2* mapping.
2 Methods

2.1 Study design and participants

This retrospective study, conducted at a single center, collected

the data of hospitalized patients who underwent 1.5 T MRI

examination of the abdomen from January 2017 and December

2023, including MRI FF and R2* mapping sequences. The images of

the enrolled patients all incorporated clear and intact RS. Exclusion

criteria were as follows: ①Insufficient clinical information; ②Age <

18 years; ③Weight changes by more than 5% within one month; ④A
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history of alcohol addiction (alcohol intake ≥ 210 g/week for men

and 140 g/week for women in the past 10 years); ⑤Pregnancy;

⑥History of radiotherapy, chemotherapy, immunosuppressive

therapy, antiviral therapy, and endocrine therapy; ⑦History of

renal surgery, hydronephrosis, renal sinus mass, renal dysfunction

or renal malformation. Finally, a total of 186 subjects (82 men and

104 women) were covered in the analysis.

Diagnostic criteria for T2DM include fasting plasma glucose

(FPG) ≥ 7.0 mmol/L or receiving oral hypoglycemic medication or

insulin treatment. This study was approved by our hospital ethics

committee. And the waiver of informed consent was approved for

the collection of data.
2.2 MRI examinations

In this study, MRI examination was performed on a 1.5 T scanner

(GE Medical Systems, Inc., Waukesha, WI, USA), with an eight-

channel phased-array body coil. All patients fasted for 4-6 hours and

received pre-scanning instructions about how to exhale and hold their

breath for more than 20 seconds. The subjects were placed in the

supine position during the examination. A three-plane localization

imaging gradient-echo sequence was performed at the beginning of

the acquisition. We obtained the MRI FF and R2* mapping using

iterative decomposition of water and fat with echo asymmetry and

least square estimation-iron quantification (IDEAL-IQ), with the

scanning parameters as follows: TR = 13.4 ms, TE = 4.8 ms, FOV =

36 × 36 cm2, matrix = 256 × 160, NEX = 1, bandwidth = 125kHz, layer

thickness = 10 mm, layer spacing = 0, layer number = 24, breath

holding for less than 24s, and flip angle = 5◦. Multiple acquired echo

signals were collected during a single breath-hold, and the water-

phase, fat-phase, in-phase, out-phase, R2* and fat fraction mapping

were generated after reconstruction.
2.3 Measurement of renal sinus fat

RSF was characterized as an ectopic perivascular fat depot

around the renal hilum, which is close to the renal vasculature,

lymphatic vessels, renal pelvis and calyces (5, 20). All slices of
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upper-middle abdominal MRI FF mapping were selected for RSF

analysis (about 20 - 24 slices, slice thickness 10 mm) using the open-

source software ITK-SNAP (v.3.6.0, http://www.itksnap.org/), with

manual segmentation of RSF performed by the radiologist with 10

years of experience in abdominal imaging MR diagnosis. Based on

the anatomical structure of the kidney, RSF of both kidneys was

identified on MRI FF mapping by a straight-line tangent to the

parenchymal edges adjacent to the renal hilum in axial slices.

Subsequently, the adipose tissue in the bilateral RS was manually

segmented, with the structures of renal lymphatics, veins, and

ureters being excluded. After the scanning of IDEAL-IQ

sequence, fat fraction and R2* mappings can be automatically

reconstructed, without the need for manual alignment

(Figure 1A). Due to the adipose tissue has high signal intensity

on FF mapping, the RSF labeling process initiated from the upper

pole of the kidney, marking the high signal tissues in the renal sinus

area, and continued downwards until reaching the lower pole of the

kidney on FF mapping (Figures 1B, C). And the labels we made on

FF mapping were automatically put on the same region on R2*

mapping and measured (Figure 1D).

Finally, the RSF volume, FF and R2* of the right and left kidneys

and the mean values of both sides were automatically calculated

using homemade software based on MATLAB (MATLAB R2018a).

Specifically, mean RSF FF and mean RSF R2* are weighted averages

according to the proportion of the volume of the right and

left kidney.
2.4 Inter- and intra-observer variability

The intra-observer variability was assessed through repeated

MRI-acquired fat measurements of 30 randomly selected patients

taken by the same observer (with 10 years of experience in

abdominal imaging MR diagnosis), with a minimum interval of

four weeks between the two measurements. Inter-observer

variability was determined by having a second independent

observer (with 7 years of experience in abdominal imaging MR

diagnosis) perform repeated measurements on the same patients

using the identical method. Two radiologists involved in this study

were blinded to the grouping.
FIGURE 1

Regions of interest (ROIs) of left and right renal sinus fat. Fat fraction and R2* mapping can be automatically reconstructed after the scanning of
IDEAL-IQ sequence, without the need for manual alignment (A). Considering that renal sinus fat shows high signal on fat fraction mapping, the
segmentation of renal sinus fat of both sides was firstly delineated on fat fraction maps (B). The 3D label segmentations (C) were then extracted and
matched on the R2* mapping (D).
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2.5 Statistical analysis

All data were analyzed by GraphPad Prism (Version 8.4.0,

GraphPad software, LLC) and MedCalc (Version 22.009,

MedCalc Software bvba, Ostend, Belgium). The intraclass

correlation coefficient (ICC) was used to assess the reliability of

MRI-acquired fat measurements. The ICC was used to assess the

consistency between the two observers: ICC < 0.4 indicated

poor consistency; 0.4 ≤ ICC ≤ 0.75 indicated moderate

consistency; ICC > 0.75 indicated good consistency. The

Kolmogorov - Smirnov test was used to verify the normality

assumption of continuous variables.

Normally distributed data were presented by mean ± standard

deviation, and non-normally distributed data were presented by

median with interquartile range (25th percentile, 75th percentile).

Categorical variables were expressed as frequencies and percentages.

Comparisons between T2DM and non-T2DM group were

analyzed using the two-sided independent sample t-test for

normally distributed continuous variables, the non-parametric

Mann - Whitney U-test for non-normally distributed continuous

variables, and the Chi-square test for categorical variables.

Associations of mean RSF FF and R2* values to the presence of

T2DM were assessed with univariable and multivariable logistic

regression. Receiver operating characteristic (ROC) curve was

applied to calculate area under the curve (AUC) for the

parameters of RSF to identify T2DM patients. Additionally, the

optimal cut-off value, sensitivity, and specificity were determined by

calculating the Youden index. Delong test was used to compare the

AUC values.

To analyze the correlations among the mean volume, FF and R2*

value of RSF, partial correlation coefficients (r) after controlling for age,

sex, and BMI were computed. Correlation coefficients were clarified as

follows: weak, 0 - 0.4; moderate, 0.4 - 0.7; and strong, 0.7 - 1.0.

Ca l cu l a t ed two- ta i l ed P < 0 .05 was cons ide r ed

statistically significant.
3 Results

3.1 Study subject characteristics

A total of 186 participants were finally enrolled in this study

including 38 patients in the T2DM group (18 men and 20 women)

and 148 patients in the non-T2DM group (64 men and 84 women).

The average age of patients in the T2DM group was significantly

higher than those in the non-T2DM group (P < 0.05). There was no

significant difference in BMI or gender between the two groups.

Detailed clinical characteristics of the study population were shown

in Table 1.
3.2 Consistency analysis

Consistency of the data was shown in Table 2. The ICC values

were all higher than 0.90, which suggested good intra-observer

reproducibility and inter-observer agreement.
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3.3 Comparison of RSF parameters
between the T2DM and non-T2DM groups

Mean RSF FF and R2* of the T2DM group were 34.92% and

23.13 Hz, which were significantly higher than those of the non-

T2DM group (29.00% and 21.62 Hz, P < 0.05). It revealed no

statistical differences in mean RSF volume between the two groups

(Table 1, Figure 2).
3.4 Association between T2DM and
parameters of RSF

Univariate logistic regression analyses show the significant

correlation of mean RSF FF (OR (95%CI): 1.111 (1.054 - 1.171),

P < 0.001) and R2* (OR (95%CI): 1.120 (1.013 - 1.237), P < 0.027)

with the presence of T2DM. Multivariate analysis showed that

mean RSF FF (OR: 1.231, 95% CI: 1.098 - 1.380) is independently

associated with T2DM after adjusting for confounding factors of

age, sex and BMI (Table 3).

ROC curves evaluated the effect of mean RSF FF and R2* for

identifying T2DM. The AUC of mean RSF FF was 0.701 (0.630 -

0.766) with the sensitivity and specificity of 57.89% and 75.68%,

respectively, when using 34.40% as the cut-off value. The AUC of

mean RSF R2* was 0.616 (0.542 - 0.686) with the sensitivity and
TABLE 1 Characteristics of the study subjects.

Variables
T2DM
(n = 38)

Non-T2DM
(n = 148)

P-value

Age, years 63 ± 10.12 56 (46, 61.75) < 0.001

Sex, n (%) 0.648

Male 18 (47.37) 64 (43.24) —

Female 20 (52.63) 84 (56.76) —

BMI, kg/m2 24.80 ± 2.96 23.63 (21.89, 26.12) 0.111

FPG, mmol/L 7.48 (5.79, 10.82) 4.94 (4.69,5.39) < 0.001

TG, mmol/L 1.51 (1.02, 2.39) 1.07 (0.81,1.57) 0.002

TC, mmol/L 4.67 (4.07, 5.78) 4.68 (4.21,5.48) 0.768

HDL-C, mmol/L 1.24 ± 0.45 1.28 ± 0.40 0.627

LDL-C, mmol/L 2.76 (2.26, 3.49) 2.57 (2.18, 3.07) 0.288

SBP, mmHg
140.00
(120.00, 150.00)

120.00
(110.00, 130.00)

< 0.001

DBP, mmHg 80.00 (71.75, 90.00) 80.00 (70.00, 80.00) 0.012

Mean RSF
volume, cm3 29.86 ± 12.19 26.45 ± 8.74 0.112

Mean RSF FF, % 34.92 ± 8.21 29.00 ± 7.36 < 0.001

Mean RSF R2*, Hz 23.13 ± 4.15 21.62 ± 3.54 0.025
fro
BMI, body mass index; FPG, fasting plasma glucose; TG, triglycerides; TC, total cholesterol;
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol;
SBP, systolic blood pressure; DBP, diastolic blood pressure; RSF, renal sinus fat; FF,
fat fraction.
Data were expressed as mean ± SD, median (25th and 75th percentiles) or n (%); P-value
shows comparison of the T2DM and non-T2DM groups.
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specificity of 68.42% and 58.11%, respectively, when using 21.97 Hz

as the cut-off value (Table 4, Figure 3).

Furthermore, according to the comparison of AUCs between

mean RSF FF and R2*, mean RSF FF presented significantly higher

diagnostic efficacy for T2DM than R2* (P < 0.05). After combining

the two variables, the performance in identifying T2DM was

improved (AUC = 0.729).
3.5 Correlations among mean RSF volume,
FF and R2*

Mean RSF volume, FF and R2* were correlated with each other after

adjusting for age, sex and BMI. Mean RSF volume was significantly

positively associated with mean RSF FF (r = 0.384, P < 0.001) and mean

RSF R2* (r = 0.465, P < 0.001). Specifically, there was a higher

correlation between mean RSF FF and R2* (r = 0.763, P < 0.001).
4 Discussion

In this study, it was found that mean RSF FF and R2* were

significantly associated with T2DM, and mean RSF FF was the

independent risk factor of T2DM. And mean RSF FF presented a

higher efficacy than R2* in the identification of T2DM. Moreover,

combining mean RSF FF and R2* improved the model performance.

Previous studies showed that visceral adipose tissue and

perivascular adipose tissue both play important roles in
Frontiers in Endocrinology 05
metabolism, through mechanisms such as endocrinology and

immunology (7, 21–23).VAT was found to play a critical role in

the development of T2DM (24). Excess free fatty acids in VAT, in

conjunction with local inflammation due to cytokines secreted by

visceral adipocytes, have been demonstrated to be associated with

IR (25). Moreover, findings have indicated that visceral adiposity

better characterizes the progression of chronic kidney disease

(CKD) (26). Even minor accumulation of adipose tissues in the

abdominal region of non-obese metabolic-unhealthy people is

associated with a considerably adverse metabolic risk (27, 28). As

a kind of ectopic fat, considering its special anatomic localization,

RSF has the two identities of perivascular fat and visceral fat

simultaneously. Mechanistically, on the one hand, excessive

accumulation of RSF can elevate the intra-abdominal pressure,

compress the low-pressure renal venous structures and leading to

renal volume expansion, increase in renal interstitial pressure, and

activation of the renin-angiotensin-aldosterone system (RAAS)

(29), which activation may contribute to IR and CKD (30, 31).

Moreover, through the mechanical compression of renal

vasculature, hypertrophy of RSF leads to inadequate perfusion

and hypoxia. This, in turn, triggers cellular stress and the release

of pro-inflammatory cytokines, promoting chronic inflammation

and renal fibrosis, and ultimately exacerbating the progression of

CKD. Concurrently, the interaction of hypoxia and inflammation

enhances the activity of the RAAS, which further contributes to

hypertension, creating a vicious circle (32–34). On the other hand,

due to the similar characteristics with perivascular adipose tissue, as

an active endocrine tissue, RSF plays a crucial role in regulating

inflammation, vascular function, and metabolism, which may
TABLE 2 Two-observer measurement consistency.

RSF parameters Radiologist A1 Radiologist A2 ICC 1* Radiologist B ICC 2*

Mean RSF volume, cm3 26.92 ± 8.08 24.77 ± 7.80 0.951 24.27 ± 7.96 0.969

Mean RSF FF, % 31.53 ± 8.05 32.51 ± 7.88 0.971 33.27 ± 8.45 0.969

Mean RSF R2*, Hz 22.22 ± 3.48 22.56 ± 3.37 0.981 22.81 ± 3.62 0.980
*ICC 1 is the intra-observer ICC value and ICC 2 is ICC inter-observer value.
FIGURE 2

Comparison of RSF parameters between the T2DM and non-T2DM groups. Mean RSF FF (A), mean RSF R2* (B) of the T2DM group were higher than
those of the non-T2DM group (P < 0.05). RSF, renal sinus fat; FF, fat fraction.
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eventually lead to metabolic disorders and CKD (35–37). Since fat

content and oxygenation of adipose tissue can be reflected by FF

and R2* mapping on MRI respectively (38), it can be assumed that

significantly higher mean FF and R2* of RSF in the T2DM group

may suggest dysfunctional adipose tissue.

RSF FF, as an index reflecting the quality of RSF, may be related

to adipocyte hypertrophy and dysfunction resulting from the

excessive lipid depot. The larger the FF in the RSF area, the

greater the proportion of lipid components in this tissue area.

Moreover, the fat attenuation index (FAI) obtained based on

computed tomography (CT) can also reflect tissue fat content.

The lower the FAI, the higher the proportion of lipid components

in the tissue. In our study, the mean FF value of RSF in the T2DM

group was significantly higher than that in the non-T2DM group.

We found that the mean RSF FF was an independent risk factor for

T2DM after adjusting for confounding factors of age, gender, and

BMI, and displayed the better diagnostic performance than RSF R2*

for identification of T2DM at a cut-off value of 34.40%. Our study is

consistent with the results of the previous study by Lee et al. (10).

They found that, when compared with non-T2DM patients, the

proportion of lipid components in RSF in T2DM patients is

significantly higher by CT-based RS FAI, indicating that the

quality of RSF has changed. Furthermore, it suggests hypertrophy

of renal sinus adipocytes caused by excessive lipid accumulation

(39). Although no in vitro study has investigated the association

between the mean RSF FF measured on MRI or RS FAI measured

on CT and the cellular pathophysiology, it can be assumed that the

changes in the qualitative mapping of the adipose tissue may reflect

its function (40). Adipocytes have a limited capacity to proliferate

and become hypertrophic when storing excessive lipids. As these

cells expand, they become less vascularized and hypoxic, leading to

adipose tissue dysfunction (3).

The R2* value is obtained by re-aggregating gradients at

different times and can non-invasively reflect the RSF hypoxia

state. The R2* value is affected by blood flow, tissue oxygenation

status adjacent to perfused microvessels, paramagnetic
Frontiers in Endocrinology 06
deoxyhemoglobin concentration and ferritin-loaded cells (9, 12).

High tissue content of ferritin-loaded cells and deoxygenated

hemoglobin yields local magnetic field inhomogeneities producing

a phase shift of the hydrogen protons contributing to faster T2*

signal decay. So, increase of R2* (1/T2*) suggests iron overload and

poor oxygen content in tissue (9, 41). In our study, the R2* value of

RSF in T2DM patients was significantly higher than that in the non-

T2DM group; yet, it was not the independent risk factor of T2DM.

According to the ROC curve of mean RSF R2*, the AUC was 0.616

with the sensitivity of 68.42% and the specificity of 58.11% when

identifying T2DM. Previous research has shown increased R2* in

adipose tissue indicating the iron content run in parallel to liver iron

stores of subjects with obesity (9). It has also been reported that R2*

value obtained by IDEAL-IQ correlates with the overexpression of

HIF-1a, a classic microvessel density and hypoxic biomarker (12).

Adipocyte iron overload and hypoxia in RSF may be the main

manifestation of its dysfunction (42, 43). Shi et al. (40) reported

high-fat diet feeding in Zucker diabetic fatty rats led to a significant

increase in the R2* signal of the perirenal adipose tissue measured

by blood oxygen level-dependent MRI (BOLD-MRI). Of note, in

their study, R2* was significantly correlated with IR and systemic

inflammation. Increased R2* in RSF are in line with recent

observations showing increased expression of several iron-related

genes in adipose tissue of subjects with obesity and IR (44). High

iron levels and low oxygen levels in adipose tissue have multiple

relationships and interactive mechanisms, leading to adipose tissue

malfunction (45, 46).

In our study, there was no significant difference in the average

RSF volume between the T2DM and non-T2DM groups, it

corroborates with the results found by Lee et al. (10). They found

that there was no significant difference in RSF volume based on CT

between groups with and without metabolic syndrome under the

non-obese condition. Yet, in the study by Lin et al. (5), T2DM

patients demonstrated statistically larger left renal sinus fat volume

based on MRI than healthy controls. This may be because there was

no significant difference in BMI and gender ratio between the

T2DM and non-T2DM groups in our study, but there were

higher BMI (30.8 kg/m2) and male proportion (50%) in T2DM

group in their study. And this can be supported by our previous

finding that BMI and gender was associated with RSF volume (17).

It also indicates that when metabolic disorder develops in non-

obese individuals, change in the proportion of dysfunctional

adipose tissue may precede the increase in the volume of RSF.

BMI is the most widely used indicator for assessing obesity, yet, a

normal BMI may obscure the presence of elevated metabolic risk,

since it is ectopic fat deposition rather than BMI that truly reflects

metabolic abnormalities (47). The difference in FF and R2* in RSF
TABLE 3 Association between T2DM and parameters of RSF.

Variables Univariate analysis Multivariate analysis

P OR (95%CI) P OR (95%CI)

Mean
RSF FF

< 0.001 1.111 (1.054 - 1.171) 0.004 1.094 (1.029 - 1.164)

Mean
RSF R2*

0.027 1.120 (1.013 - 1.237) 0.446 1.046 (0.931 - 1.175)
RSF, renal sinus fat; FF, fat fraction; OR, odds ratio; CI, confidence interval.
TABLE 4 The efficacy analysis of mean RSF FF and R2* for identifying T2DM.

Parameters AUC (95%CI) Cut-off value Sensitivity (%) Specificity (%) P-value

Mean RSF FF 0.701 (0.630 - 0.766) 34.40 57.89 75.68 < 0.001

Mean RSF R2* 0.616 (0.542 - 0.686) 21.97 68.42 58.11 0.029

Combined model 0.729(0.659 - 0.792) – 63.16 80.41 < 0.001
AUC, area under the ROC curve; CI, confidence interval; RSF, renal sinus fat; FF, fat fraction.
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between T2DM and non-T2DM group, as observed in our study,

have the potential to enhance the early detection of this elusive high

metabolic risk.

In partial correlation analyses, we focused the relationship between

the mean RSF volume, mean RSF FF and mean RSF R2*, after

controlling the possible confounders: age, sex and BMI. The mean

RSF volume in T2DM patients may correspond to adipocyte

hypertrophy in RS. Our study result showed a significant positive

correlation between mean RSF volume and mean RSF FF (r = 0.384,

P < 0.001) and mean RSF R2* (r = 0.465, P < 0.001). As mentioned

above, hypertrophy caused by excessive accumulation of lipids in

adipocytes located in RS can be reflected by FF, and further

dysfunction of RSF, manifesting in iron deposition and hypoxia, can

be reflected by R2*. We found that there was a significant positive

correlation betweenmean RSF FF and R2* (r = 0.763, P < 0.001). This is

consistent with the conclusion in previous study that hypertrophy of

adipocytes leads to their abnormal function (3). The mean RSF volume,

FF and R2* together are indicative of abnormal renal sinus fat function,

having potential as imaging markers for early detection of T2DM.

Because the field strength of the MRI examination has an impact on the

value of R2*, rather than FF (48–51), participants included in our study

all underwent MRI examinations with a field strength of 1.5 T using the

same type equipment to ensure the accuracy and consistency of the data.

In addition, perirenal adipose tissue is a specific type of visceral

adipose tissue located in the retroperitoneal space that has a distinct

role in the metabolic system (52), and it can be assessed quantitively

by CT, MRI and ultrasound (53–55). Especially, ultrasound.

Ultrasound can directly and quickly assess perirenal fat thickness

(PrFT) by quantifying the average maximum distance from the

posterior part of the kidney to the inner edge of the abdominal wall

along the plane of the left and right renal veins (56). Research has

demonstrated that the ultrasound-measured PrFT was a

contributing independent variable to the estimated 10-year risk of

cardiovascular disease and atherosclerotic cardiovascular disease in
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patients with T2DM (57). Furthermore, it was demonstrated to

have a negative and independent correlation with estimated

glomerular filtration rate (eGFR), suggesting a potential role for

perirenal fat in renal insufficiency in patients with T2DM (58). PrFT

based on ultrasound may provide a convenient, cost-effective, and

widely available method of assessing metabolic status and renal

function. Advancements in ultrasound technology, such as

multiparametric ultrasound, three-dimensional ultrasound,

contrast-enhanced ultrasound, and super-resolution ultrasound,

offer effective methods for the early detection and differentiation

of renal disease patterns in the setting of metabolic abnormalities,

facilitating therapy adjustment and targeted prevention (59–62).

Further research using multimodal approaches, integrating MRI

and ultrasound modalities, is anticipated to yield additional insights

and refine the understanding of ectopic adipose deposition.

The strength of our study is that we incorporated the highly

reproducible qualitative and quantitative measures of RSF by

simultaneous non-invasive MRI FF and R2* mapping and

investigated the associations between quality and quantity of RSF

and T2DM after adjusting age, sex and BMI. However, our study

had several limitations. First, this retrospective study could not infer

cause and effect, and a longitudinal study would be necessary to

investigate the progression of RSF at different stages of T2DM.

Second, the RSF was manually segmented, which was time-

consuming and subjectively dependent, and the semi-automatic

or automatic segmentation methods should be explored in future

studies. Third, Since the R2* value can be significantly impacted by

the magnetic field strength, participants included in our study all

underwent MRI at 1.5 T to ensure the measurement accuracy and

consistency. Therefore, the results by the R2* mapping of this study

are only expected to be applicable to 1.5 T MRI examinations.

Fourth, our study sample was composed of Chinese subjects, so it

may limit the generalization of our results to other racial

populations. Fifth, the number of enrolled subjects was still
FIGURE 3

Receiver operating characteristic (ROC) curves of mean RSF FF and R2* for identifying T2DM.
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relatively small, which was probably why the AUC values in our

study was not so high, and further studies with enlarged sample size

are expected for stronger confirmation of our findings.
5 Conclusion

Simultaneous FF and R2* mapping by MRI can non-invasively

reflect the RSF dysfunction in T2DM patients. Our results suggest

that the higher FF and R2* of RSF are associated with T2DM, and

FF showed the better diagnostic performance for identifying T2DM.

These findings indicate the hypertrophy of adipocytes, excessive

iron deposition, and hypoxia in RSF, which may represent

dysfunction of RSF for T2DM. Furthermore, it suggests that MR-

derived RSF FF and R2* could potentially be new markers for

image-based measurements of site-specific abdominal fat tissue for

early identifying T2DM and guiding personalized T2DM

management. It also indicates RSF as a potential therapeutic

target for IR andT2DM. In future studies, the combination of

both MRI and ultrasound techniques for multimodal data of

various RSF parameters will facilitate early detection of T2DM

and CKD, as well as help in T2DM patient stratification and

efficacy assessment.
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