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Objective: To systematically review and meta-analyze the effectiveness of deep

learning algorithms applied to optical coherence tomography (OCT) and retinal

images for the detection of diabetic retinopathy (DR).

Methods:We conducted a comprehensive literature search inmultiple databases

including PubMed, Cochrane library, Web of Science, Embase and IEEE Xplore up

to July 2024. Studies that utilized deep learning techniques for the detection of

DR using OCT and retinal images were included. Data extraction and quality

assessment were performed independently by two reviewers. Meta-analysis was

conducted to determine pooled sensitivity, specificity, and diagnostic

odds ratios.

Results: A total of 47 studies were included in the systematic review, 10 were

meta-analyzed, encompassing a total of 188268 retinal images and OCT scans.

The meta-analysis revealed a pooled sensitivity of 1.88 (95% CI: 1.45-2.44) and a

pooled specificity of 1.33 (95% CI: 0.97-1.84) for the detection of DR using deep

learning models. All of the outcome of deep learning-based optical coherence

tomography ORs ≥0.785, indicating that all included studies with artificial

intelligence assistance produced good boosting results.

Conclusion: Deep learning-based approaches show high accuracy in detecting

diabetic retinopathy from OCT and retinal images, supporting their potential as

reliable tools in clinical settings. Future research should focus on standardizing

datasets, improving model interpretability, and validating performance across

diverse populations.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/,

identifier CRD42024575847.
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Introduction

Diabetic retinopathy (DR) is one of the most common

microvascular complications of diabetes and a leading cause of

blindness in adults worldwide (1). As the prevalence of diabetes

continues to rise globally, the incidence of DR is also increasing

significantly. Retinal vascular abnormalities, which are hallmarks of

DR, gradually lead to a decline in patients’ vision and, in severe

cases, can cause blindness (1, 2). Given the current medical

capabilities, the disease cannot be completely cured; treatment

focuses on maintaining the patient’s existing level of vision. If DR

can be diagnosed and treated early, in most cases, patients’ vision

can be preserved. Early detection and timely treatment of DR are

crucial for preventing vision loss (3).

Traditionally, the detection of DR relies on ophthalmologists’

manual evaluation of retinal images (4). However, this method is

time-consuming, labor-intensive, and subject to variability due to

the experience and subjective judgment of the evaluators, leading to

inconsistent detection outcomes (5). Currently, most

ophthalmologists still use traditional methods to diagnose diabetic

retinopathy (DR) by analyzing the presence and types of

abnormalities in retinal images. Microaneurysms (MIA),

hemorrhages (HEM), soft exudates (SOX), and hard exudates

(HEX) are the four most common types of lesions (3–5).

Manual detection of diabetic retinopathy (DR) images presents

several issues. First, interpreting DR images requires trained

ophthalmologists, but in underdeveloped countries, there is a

severe shortage of ophthalmologists, leading to many patients

being unable to receive timely screening and treatment (6).

Additionally, the cost of DR examinations is high, making it

unaffordable for many patients and causing them to miss the

opportunity for early intervention. These issues contribute to the

high prevalence and risk of blindness associated with DR (7). Since

timely detection is crucial in preventing vision loss, scientists and

engineers have been working to design automated methods to

achieve accurate and rapid diagnosis and treatment. Automated

methods not only address the shortage of human resources but also

significantly reduce the cost of screening, benefiting more patients

(8). In recent years, with the rapid development of machine learning

(ML) and artificial intelligence (AI) technologies, ML models

trained on a large number of fundus images have achieved high

accuracy in automated DR classification (9). These models can

quickly and efficiently analyze large volumes of images, allowing for

a substantial number of screenings to be completed in a short time.

To further improve detection performance, substantial effort has

been invested in developing automated methods that are both

efficient and cost-effective. These methods not only consider the

accuracy of detection but also emphasize ease of use and cost

control, making them more suitable for implementation in

resource-limited settings (10).

Recently, advancements in optical coherence tomography

(OCT) and retinal imaging technology have provided

high-resolution image data for the early detection of DR (9, 10).
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OCT technology can generate detailed three-dimensional images of

the retina, revealing subtle lesion features, allowing for detection of

abnormalities at an early stage of the disease. These high-resolution

image data greatly enhance the performance of automated detection

systems, enabling more accurate identification and classification of

DR lesions, thereby providing timely and effective treatment

recommendations for patients (11). These images can capture

minute changes in the retina, enabling more accurate detection of

DR. With the rapid development of deep learning technology,

significant breakthroughs have been achieved in the field of

computer vision. Deep learning algorithms, particularly

convolutional neural networks (CNNs), have demonstrated

exceptional performance in image recognition and classification

tasks and have been widely applied in medical image analysis.

Kazakh-British et al. (11)conducted experimental research using

relevant processing pipelines to extract arteries from fundus images

and then trained CNNmodels to identify lesions (9). Alexandr et al.

(12) compared two widely used classical designs (DenseNet and

ResNet) with a new enhanced structure (EfficientNet) in their other

work. Previous studies have shown that deep learning-based models

can automatically analyze OCT and retinal images, accurately

identifying and classifying different stages of DR (13).

Despite numerous studies exploring the application of deep

learning in DR detection, their results and conclusions often vary,

and a unified perspective has yet to emerge. Therefore, there is a

need for a systematic review and meta-analysis to comprehensively

evaluate the effectiveness of deep learning-based OCT and retinal

image analysis for DR detection, clarifying its clinical value and

future directions.

This study aims to systematically review and meta-analyze

existing research to assess the accuracy and reliability of deep

learning models in detecting DR from OCT and retinal images

and to identify key factors influencing detection performance.

Through this research, we hope to provide scientific evidence for

clinical practice and promote the application and popularization of

deep learning technology in ophthalmic diagnostics.
Materials and methods

Reporting of this review and meta-analysis followed the

PRISMA checklist. The study protocol was registered after the

initial screening stage. The design of the inclusion and exclusion

criteria of this study was based on the five main principles of the

Participant-Intervention-Comparator-Outcomes-Study (PICOS)

design search principle (14). Our PICO question was as follows:

In deep learning applications developed based on retinal images for

early screening of diabetic retinopathy (Participants), how does DL

(Intervention) compare with traditional landmarks by a single

expert or with scripted eye care provider referral and education

(Control) in terms of accuracy (Outcome). The systematic

evaluation program is registered on the International Prospective

Systems Evaluation website (PROSPERO-CRD42024575847).
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Inclusion criteria

The included patients all had diabetic retinopathy, regardless of

age, sex, or race. The control group received conventional basic

treatment (e.g., scripted eye care provider referral and education).

The treatment group was treated with deep learning-based optical

coherence tomography and retinal images (color fundus

photography). The primary outcome indicators were as follows:

diabetic eye exam completion rate, the proportion of participants

who completed follow-through with an eye care provider, and DR

classification accuracy. The types of included literature were

randomized controlled trials (RCTs) and observational studies,

with no restrictions on language, blinding, or allocation

concealment requirements. Any study approved by the local

institution was included in the scope of this study and registered

in the international database.
Exclusion criteria

Self-control studies, case reports, literature reviews, duplicate

publications, experience summaries, animal experiment research,

studies with incomplete data, studies involving patients with other

diseases, studies lacking clear diagnostic or efficacy evaluation

standards, and studies combining other therapies different from

the control group were excluded.
Information sources

We systematically screened five electronic databases(Cochrane

library, PubMed, Embase, IEEE Xplore, Web of science) for studies

published up January 2017 to July 2024. Search terms included

Coherence Tomography, Optical, Optical Coherence Tomography,

OCT Tomography, Tomography, OCT (Spectral Domain OCT (SD-

OCT). This allowed for a high-resolution 3D imaging of the retinal

layers and provided detailed information for the deep learning model

analysis), Diabetic Retinopathies, Retinopathies, Diabetic,

Retinopathy, Diabetic, Deep learning-based,Deep learning. A two-

pronged search strategy, combining the technique of interest (AI,

CNN, DL, etc.) and the diagnostic target, was applied. The best effort

was made to ensure the comprehensiveness of the preliminary search

work so as not to lose valuable research data. According to the search

modes of different databases, keywords could be combined with free

words for a comprehensive search.
Data collection, items, and study selection

Based on the electronic database search strategy outlined above,

two researchers conducted searches in both Chinese and English

electronic databases. They used EndNote X7 software to identify and

remove duplicate studies, integrated the search results from the

different databases, created an information database, and

downloaded the full texts of the relevant studies. Subsequently, two
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researchers independently performed preliminary screening and

extracted data according to a pre-defined table. They cross-checked

and reviewed the extracted data, recorded the reasons for excluding

each study, and consulted third-party experts to resolve differing

opinions and reach a final decision. The data extraction encompassed

fundamental details from the included studies (e.g., first author and

publication year), pertinent information about the experimental and

control groups (such as case numbers, intervention measures, and

outcome indicators), and the study design along with quality

assessment data (including randomization methods, blinding

procedures, allocation concealment, completeness of outcome data,

selective reporting, and other sources of bias). The search strategy was

as follows: (((Coherence Tomography, Optical[MeSH Terms]) OR

Optical Coherence Tomography[MeSH Terms]) OR OCT

Tomography[MeSH Terms]) OR Tomography, OCT[MeSH

Terms] AND ((Diabetic Retinopathies[MeSH Terms]) OR

Retinopathies, Diabetic[MeSH Terms]) OR (Retinopathy, Diabetic

[MeSH Terms]) AND (Deep learning-based [MeSH Terms]) OR

(Deep learning[MeSH Terms]).
Quality assessment

The methodological quality of the included studies was assessed

using Cochrane’s revised risk of bias tool for randomized trials (RoB 2.0)

(15). This evaluation covered various aspects including the

randomization process, deviations from intended interventions,

missing outcome data, outcome measurement, and the selection of

reported result areas. Each evaluation module consists of several signal

questions, with possible responses being: Y (yes), PY (probably yes), PN

(probably no), N (no), and NI (no information). Risk of bias was

assessed independently by two reviewers, who discussed their findings

in case of disagreement to come to aconsensus. We do not provide

further guidance as to the certainty of the evidence (e.g., using any kind

of grading), but provide descriptive statistics of the individual and

overall risk of bias together with meta-analytic estimates.
Statistical methods and data synthesis

First, the authors used RevMan5.4 software to analyze the

publication bias of the literature. Second, for the direct

comparison results, the authors used Stata17.0 software for data

merging, statistical analysis and meta-analysis. In Stata17.0, the

meta package was used to perform meta-analysis. The relevant

commands were executed to analyze data with both fixed-effect and

random-effects models. The meta package provided functionalities

for computing heterogeneity statistics, generating forest plots, and

creating funnel plots. For meta-regression analysis to explore

sources of heterogeneity, the metareg package was utilized with

specific covariates. The analysis involved using these packages to

compare different interventions and to map network meta-analysis

results with random-effects model data. Significance was

determined using P < 0.05 and 95% confidence intervals (95%

CIs). For efficacy analysis, odds ratios (OR) were used for count
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data, while measurement data employed either the weighted mean

difference or the standardized mean difference (mean difference,

MD). Each effect size was reported with a 95% CI (16).
Assessment of heterogeneity

The heterogeneity was graded using I2 according to the

recommendations of the Cochrane Handbook (17). Cochrane’s Q

test was used to detect whether there was a significant difference in

effect sizes between studies. The Q statistic followed a chi-squared

distribution, and the P-value was used to determine the significance

of heterogeneity. If the P-value was significant (typically < 0.05), it

indicated substantial heterogeneity. The I²index statistic

represented the percentage of total variation due to heterogeneity.

The I²index ranged from 0% to 100%, with higher values indicating

greater heterogeneity. Generally, 0% to 25% suggested low

heterogeneity, 25% to 50% indicated moderate heterogeneity, 50%

to 75% indicated substantial heterogeneity, and 75% to 100%

indicated considerable heterogeneity.

The clinical and methodological heterogeneity of the included

studies was evaluated, and the levels of fit of the fixed-effects model

and the random-effects model were compared (18). In the absence

of significant clinical heterogeneity (P ≥ 0.1, I2 ≤ 50%), a fixed-

effects model was used for meta-analysis. If there was significant

clinical heterogeneity between the results of each study (P < 0.1,

I2 > 50%), the source of the heterogeneity was first analyzed, the

influence of clinical or methodological heterogeneity was excluded

and the random-effects model was used for the meta-analysis.

When the data provided by the clinical trial could not be meta-

analyzed, they were subjected to a descriptive analysis.
Publication bias

According to the recommendations of the Cochrane Handbook,

the RevMan 5.4 software was used to analyze potential publication

bias (19). Typically, in the absence of publication bias, a funnel plot

should appear symmetrical. If the funnel plot is asymmetrical, it

may indicate the presence of publication bias. Egger’s regression test

was performed using Stata 17.0 to calculate publication bias. This

test assesses the symmetry of the funnel plot through regression

analysis to quantitatively detect publication bias. If the intercept of

the regression significantly deviates from zero, it suggests the

presence of publication bias (20).
Results

Study selection and characteristics

From 478 identified studies, 258 were screened in full texts, and

10 studies were eventually included in our review and meta analysis.

The report flowchart is shown in Figure 1. The treatment group

included 8 Artificial intelligence (AI)-based algorithm, Inoveon
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Diabetic Retinopathy (DR-3DT) system and Nonmydriatic ultra-

widefield (NM UWF) screening. The basic characteristics of the

included studies are shown in Tables 1 and 2. Three studies focused

on the analysis of retinal images, which used own data. Seven

studies used publicly available data from cohort studies. 86% of the

DL models were built using CNN algorithms, with one study using

Inception-V4 and five studies using Inception-V3. The outcome

measures of the studies all evaluated the accuracy and sensitivity of

DL in monitoring diabetic retinopathy, furthermore, ETDRS

macular edema stage the “gold standard” for the evaluation of

diabetic retinopathy.

Notably, many studies employed multiple test datasets. The

reference test in the training dataset was established by two experts

in 7 studies.
Risk of bias and applicability concerns

Among the 10 included studies, 4 were double-arm randomized

controlled trials (RCTs) and 6 were observational studies. In the 7

evaluation modules, 5 were rated as low risk. In the assessment of

missing outcome data and data integrity, all 10 studies were rated as

low risk according to the RoB 2.0 evaluation results, indicating good

quality and complete data in the included literature. However, two

studies were assessed as high risk regarding participant details

because they used cohort reporting and did not provide specific

information on participant age and other demographics. The risk of

research bias is expressed as a percentage of all the included studies,

as shown in Figures 2 and 3.
Meta-analysis

Two meta-analyses were performed, one synthesizing the

effectiveness of imaging to screen for Diabetic Eye Disease

(Figure 4) and one on the proportion of Deep-learning-based

automatic computer-aided diagnosis system for diabetic

retinopathy (Figure 5).

In the comparison of the accuracy of diagnosing diabetic

retinopathy using deep learning-based optical coherence

tomography and retinal images, the results were shown in

Figures 4, 5, and Table 3. A random-effects model was used when

I2 > 50. The forest plot results showed that, compared to standard

care, autonomous artificial intelligence improved the completion

rate of diabetic eye exams in adolescents with diabetes [OR = 1.88,

95% CI = (1.45, 2.44), p = 0.031]. The overall detection accuracy

with the assistance of artificial intelligence also showed significant

improvement compared to traditional methods [OR = 1.33, 95%

CI = (0.97, 1.84), p < 0.001]. All of the outcome of deep learning-

based optical coherence tomography had ORs ≥0.785, indicating

that all included studies with artificial intelligence assistance

produced good boosting results (Table 3).

Heterogeneity was assessed using funnel plots and the Egger

test. The funnel plots in Supplementary Figures S1 and S3 were

relatively symmetrical, with the effect sizes of the studies evenly
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distributed around the overall effect size. Egger’s test, a regression

test used for quantitatively assessing publication bias, showed

p-values of 0.686 (> 0.05) in Supplementary Figure S2 and 0.569

(> 0.05) in Supplementary Figure S4, indicating that the symmetry

of the funnel plots was not significant and the likelihood of

publication bias was low, suggesting no heterogeneity.
Discussion

Currently, the assessment of the severity of diabetic retinopathy in

patients heavily relies on manual interpretation of retinal fundus

images, which poses significant challenges (31). Therefore, automated

image grading systems play a crucial role in the early diagnosis and

evaluation of these vision-threatening diseases. For example, deep

learning algorithms and image processing techniques can analyze

large volumes of fundus images, providing consistent and highly

accurate diagnostic results, reducing human error, and improving

diagnostic accuracy (32–34). By regularly collecting and analyzing

patients’ fundus images, automated image grading systems can

continuously monitor the progression of diabetic retinopathy,

assisting doctors in timely adjusting treatment plans to achieve the

best therapeutic outcomes (34). Multiple studies (35–37) have shown

that deep learning algorithms can be used to generate expert-level
Frontiers in Endocrinology 05
grading diagnoses for retinal fundus images. However, these methods

often achieve good performance at the expense of increased time

complexity. Due to the same input image size in these independent

models, the robustness of their classification is relatively poor.

Therefore, this study employs a systematic review and meta-analysis

to analyze the role of deep learning-based optical coherence

tomography and retinal images in the detection of diabetic retinopathy.

The results of this meta-analysis confirmed that, compared to

standard care, autonomous artificial intelligence improved the

completion rate of diabetic eye exams in adolescents with diabetes

[OR=1.88, 95% CI=(1.45, 2.44), p=0.031]. Risa M et al. (21) were

the first to assess the role of artificial intelligence in narrowing the

care gap among racially and ethnically diverse adolescent diabetic

patients. The study indicated that closing the care gap for diabetic

eye exams, as measured by MIPS and HEDIS quality indicators, was

a crucial component of value-based care. The results suggested that

autonomous artificial intelligence could help meet these historically

challenging benchmarks, particularly among racially/ethnically

diverse and resource-limited youth. Li et al. (28) confirmed that,

although deep learning (DL) detection often showed larger

deviations at points such as the porion, subspinale, gonion,

articulare, and anterior nasal spine, DL might not exceed expert

detection accuracy but could clearly assist both regular and

experienced examiners in landmark detection. Training models
FIGURE 1

The flow chart of literature screening.
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TABLE 1 Characteristics of the selected studies included in the systematic review and meta-analysis.

Author
(year)

Type
of study

Treatment
measures

Sample size
(invention/
control)

Age
(years)

Outcome indicators Treatment
time

Reference Jadad
Scale

Risa
M 2024

Randomized
control trial

Artificial
intelligence (AI)

164(81/83) 8-21 diabetic eye exam
completion rate; the
proportion of participants

6 months (21) 4

Selina
L 2023

Randomized
control trial

Nonmydriatic ultra-
widefield (NM
UWF) screening

658(335/323) 30-61 the proportions of AED
between groups

12 months (22) 3

Stephen
R 2002

Observational
study

Inoveon Diabetic
Retinopathy (DR-

3DT) system

290(145/145) – Accuracy (sensitivity,
specificity, predictive values)

of the digital system

– (23) 4

Huma
N 2022

Randomized
control trial

Automated
unsupervised
deep learning

Data set: 3662 24-74 Accuracy (sensitivity,
specificity, predictive values)

– (24) 3

Wang
Y 2021

Observational
study

Artificial intelligence
(AI)-based algorithm

Data set:12252 – Accuracy (sensitivity,
specificity, predictive values)

– (25) 3

Alwakid
G 2023

Observational
study

Artificial intelligence
(AI)-based algorithm

Data set:9952 – Accuracy (sensitivity,
specificity, predictive values)

– (26) 3

Mehboob
A 2022

Observational
study

Artificial intelligence
(AI)-based algorithm

Data set:96213 – Accuracy (sensitivity,
specificity, predictive values)

– (27) 4

Li F 2022 Observational
study

Artificial intelligence
(AI)-based algorithm

Data set:8739 – Accuracy (sensitivity,
specificity, predictive values)

– (28) 3

Surya
J 2023

Randomized
control trial

Artificial intelligence
(AI)-based algorithm

723(382/341) 35-65 Accuracy (sensitivity,
specificity, predictive values)

6 months (29) 3

Mansour
R 2017

Observational
study

Artificial intelligence
(AI)-based algorithm

Data set:35126 – Accuracy (sensitivity,
specificity, predictive values)

– (30) 4

Nunez
d 2022

Observational
study

Artificial intelligence
(AI)-based algorithm

Data set:20489 53-67 Accuracy (sensitivity,
specificity, predictive values)

– (3) 2
F
rontiers in E
ndocrinology
 06
 fron
TABLE 2 Characteristics of the selected studies (Artificial intelligence (AI)-based algorithm).

Author (year) Type of machine learn-
ing models

Imaging
modality

Imaging
pattern

Accuracy
of result

Sensitivity
of result

Reference

Risa M 2024 autonomous AI system fundus images – 100% 78.9% (21)

Selina L 2023 – OCT images 100°, 200° 99.1% – (22)

Stephen R 2002 – fundus images 30°, 1152 ×
1152 pixels

98.2% 89.7% (23)

Huma N 2022 the fuzzy clustering method, deep embedded
clustering, and k-means for generalizability

98.66% – (24)

Wang Y 2021 CNN color
fundus photography

– 90.6% 90.6% (25)

Alwakid G 2023 Inception-V3, CNN high-resolution
retinal pictures

3216 ×
2136 pixels

98% – (26)

Mehboob A 2022 RFT, CNN color
fundus photography

90°, 180° 83.78% 78.55% (27)

Li F 2022 CNN color
fundus photography

– 90.21% 93.24% (28)

Surya J 2023 CNN underwent
fundus photographs

45° 89.75% 83.33% (29)

(Continued)
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TABLE 2 Continued

Author (year) Type of machine learn-
ing models

Imaging
modality

Imaging
pattern

Accuracy
of result

Sensitivity
of result

Reference

Mansour R 2017 DNN, CNN color
fundus photography

– 90.15% 91.3% (30)

Nunez d 2022 CNN color retinal images 40° 92.56% 91.22% (3)
F
rontiers in Endocrinol
ogy
 07
CNN, Convolutional Neural Network; Inception-V3, CNN, Inception-V3 Convolutional Neural Network; RFT, Random Forest Tree; Inception-V4, Inception-V4 Convolutional Neural
Network; Dr Noon AI, Doctor Noon Artificial Intelligence; DNN, Deep Neural Network; CNN, Convolutional Neural Network; VISUHEALTH-AI DR, VISUHEALTH Artificial Intelligence for
Diabetic Retinopathy.
FIGURE 2

Risk of bias graph in the included studies.
FIGURE 3

Risk of bias summary in the included studies.
Overall, IV (I2 = 71.1%, p = 0.031)

Stephen R 2002

Selina L 2023

Risa M 2024

ID

1.88 (1.45, 2.44)

1.24 (0.81, 1.89)

2.04 (1.26, 3.29)

2.81 (1.80, 4.38)

(95% CI)

Risk ratio

100.00

37.33

29.06

33.62

Weight

%

.25 1 4

FIGURE 4

Forest plot of studies reporting the effectiveness of imaging to screen for Diabetic Eye Disease (primary outcome).
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on larger datasets might have eventually helped achieve or surpass

expert accuracy. The results indicated that DL models included in

the studies achieved an accuracy above 83% for identifying diabetic

retinopathy. A total of 71% of established DL research models had

detection accuracies exceeding 90%. Mehboob A et al. (27)

proposed a DL architecture consisting of three phases: image pre-

processing, feature extraction, and classification. Deep

convolutional networks (CNNs) were trained to extract deep

features. Heat maps extracted from the proposed framework

highlighted the presence of any exudates, microaneurysms,

hemorrhages, cotton wool spots, or new vessels, indicating feature

extraction from the affected region and achieving high accuracy.

Deep CNNs could take unknown images as input and extract

problem-specific features, thereby generating an appropriate

response. The results showed that the proposed technique

outperformed existing ones in terms of sensitivity. Even with a

lighter CNN architecture, it demonstrated competitive accuracy.

Moreover, among ensemble-based architectures, the proposed

framework achieved the highest accuracy using average pooling

when trained on an augmented dataset. F. Mansour Romany (30)

used deep convolutional networks to classify data into normal and

diseased categories with an accuracy of 97.93%.

Common deep learning ensemble algorithm classifiers include

Random Forest, Support Vector Machines (SVM), Neural

Networks, K-Nearest Neighbors (KNN), Multilayer Perceptrons,

Naive Bayes, Decision Trees, and Logistic Regression. In 2021, an

ensemble-based machine learning algorithm was proposed (38),
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which combined three different classifiers: Random Forest, Support

Vector Machines (SVM), and Neural Networks, with a meta-

classifier for decision-making. This ensemble-based approach

enhanced the robustness and performance of the algorithm. The

algorithm was tested on the Messidor dataset and achieved an

accuracy of 0.75. Another ensemble-based algorithm for diabetic

retinopathy screening was proposed by Nagi, A in 2021 (39). This

algorithm employed a two-stage classifier, where the first stage

consisted of outputs from six classifiers: SVM, KNN, Multilayer

Perceptron, Naive Bayes, Decision Trees, and Logistic Regression,

followed by a second stage using a Neural Network to make the final

decision based on the classifier outputs. The algorithm achieved a

test accuracy of 76.40% on the Messidor dataset. In 2020, an

ensemble-based deep neural network architecture was established.

This model used ResNet (40) and leveraged four ResNets to

perform binary classification among five categories of diabetic

retinopathy: normal vs. mild DR, normal vs. moderate DR,

normal vs. severe DR, and normal vs. proliferative DR. The

results from each classifier in Stage 1 were then processed by an

AdaBoost classifier in Stage 2 to obtain the final classification

results. The algorithm was evaluated on the Kaggle dataset

APTOS 3662 retinal images, resulting in an accuracy of 61.9%.

The study results indicated that to enhance the accuracy of artificial

intelligence in diabetic retinopathy detection and assessment, an

automated algorithm should have followed a two-step strategy (41).

The first method involved automatically defining the acceptability of

retinal images to determine if they qualified for automatic grading, and
Overall, IV (I2 = 87.2%, p < 0.001)
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FIGURE 5

Forest plot of studies reporting the effectiveness of imaging to screen for Diabetic Eye Disease (secondary outcome).
TABLE 3 The outcome of deep learning-based optical coherence tomography (OR,95%CI).

Id OR lower OR-OR lower OR OR upper-OR OR upper P-value

Huma N 2022 (24) 0.9753 0.0113 0.9866 0.0061 0.9927 <0.001

Wang Y 2021 (25) 0.9016 0.0207 0.9223 0.0347 0.957 <0.001

Alwakid G 2023 (26) 0.808 0.073 0.881 0.106 0.987 <0.001

Mehboob A 2022 (27) 0.7308 0.0542 0.785 0.0528 0.8378 <0.001

Li F 2022 (28) 0.916 0.009 0.925 0.011 0.936 <0.001

Surya J 2023 (29) 0.7755 0.0745 0.85 0.0745 0.9245 <0.001

Mansour R 2017 (30) 0.9015 0.04 0.9415 0.0378 0.9793 <0.001
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then only applying the automated algorithm if the retinal images

passed the acceptability test. The second method suggested that to

ensure global applicability of automatic grading, the development of

automated algorithms should have used images that reflected the

specific acquisition conditions in real-world programs, allowing the

model to understand and leverage these unique characteristics. Among

the most commonly used DL models in research, CNN included two

different convolutional neural network (CNN) architectures:

Inception-v3 and Inception-v4 (42). These architectures had

significant differences in design and performance. Inception-v3

enhanced feature extraction capabilities mainly through improved

Inception modules, which included multiple parallel convolutional

and pooling layers, as well as 1x1 convolutions to reduce

computational complexity. It also introduced batch normalization

and separable convolutions to accelerate training and improve

efficiency. In contrast, Inception-v4 built upon Inception-v3 by

integrating residual networks (Residual Networks), introducing

Inception-ResNet and Reduction-ResNet modules (43–45). These

improvements gave Inception-v4 deeper network layers and better

feature extraction capabilities, while residual connections addressed

gradient vanishing issues in deep networks, enhancing training

stability. Although Inception-v3 performed excellently in various

computer vision tasks, Inception-v4 generally offered higher accuracy

and faster training speed. Li et al. (28) developed an improved

Inception-v4 network based on stem, inception, and reduction

modules, and created an ensemble of five classification model

instances based on this Inception-v4 network. Its performance level

was comparable to or exceeded that of ophthalmologists, achieving

excellent results on the primary dataset used. The detection accuracy

was comparable to Inception-v3, but its responsiveness was notably

higher than other Inception-v3-based DL models (25–27).

However, as all studies tested in this same dataset (and most also

trained on this dataset), we likely have high comparability but limited

generalizability. Future studies should aim to test DL models on broad

data, demonstrating robustness and generalizability. This review and

the included studies have a number of limitations. First, the precision

and recallresults for some types of lesions in our study, which we

mentioned above, were limited. More training data for these lesions

should becollected to improve the performance of our model. Second,

The established dataset was not necessarily a good representation of

data from screening programs in clinical practice. Thereby, the built

dataset was not sufficient to reflect the algorithm’s performance in

broader clinical use. Future studies should consider including a wider

outcome set and aim to test DL applications comprehensively in other

study designs and settings (e.g., observational studies in clinical care,

randomized controlled trials).

Conclusion

DL shows relatively high accuracy for detection of diabetic

retinopathy, whether using a self-trained DL model or choosing an

established AI model. The majority of studies focused on CNN

(Inception-V3)to develop DL models. The results showed that the

accuracy of DL models in evaluating diabetic retinopathy was highly

consistent across different studies and superior to the control group,
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with no heterogeneity observed. Further validation with larger

datasets is needed, and it is hoped that more randomized controlled

trials will be used for model validation, and the true value of using DL

in clinical care needs to be demonstrated. Future research should

focus on standardizing datasets, improving model interpretability,

and validating performance across diverse populations.
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SUPPLEMENTARY FIGURE 1

Funnel plot of studies reporting the effectiveness of imaging to screen for

Diabetic Eye Disease (primary outcome).

SUPPLEMENTARY FIGURE 2

Egger-test of studies reporting the effectiveness of imaging to screen for
Diabetic Eye Disease (primary outcome).
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SUPPLEMENTARY FIGURE 3

Funnel plot of studies reporting the effectiveness of imaging to screen for

Diabetic Eye Disease (secondary outcome).

SUPPLEMENTARY FIGURE 4

Egger-test of studies reporting the effectiveness of imaging to screen for
Diabetic Eye Disease (secondary outcome).
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