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Chong Dong2,3, Qian Sun1* and Shaoqing Lei1*

1Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China, 2Organ
Transplantation Center, Tianjin First Central Hospital, Tianjin, China, 3Tianjin Key Laboratory for Organ
Transplantation, Tianjin, China
Background: Diabetic cardiomyopathy (DC) is a serious complication in patients

with type 1 diabetes mellitus and has become a growing public health problem

worldwide. There is evidence that endoplasmic reticulum stress (ERS) is involved

in the pathogenesis of DC, and related diagnostic markers have not been well-

studied. Therefore, this study aimed to screen ERS-related genes (ERGs) with

potential diagnostic value in DC.

Methods: Gene expression data on DC were downloaded from the GEO

database, and ERGs were obtained from The Gene Ontology knowledgebase.

Limma package analyzed differentially expressed genes (DEGs) in the DC and

control groups, and then integrated with ERGs to identify ERS-related DEGs

(ERDEGs). The ERDEGs diagnostic model was developed based on a combination

of LASSO and Random Forest approaches, and the diagnostic performance was

evaluated by the area under the receiver operating characteristic curve (ROC-

AUC) and validated against external datasets. In addition, the association of the

signature genes with immune infiltration was analyzed using the CIBERSORT

algorithm and the Spearman correlation test.

Results: Gene expression data on DC were downloaded from the GEO database

and ERGs were obtained from the Gene Ontology Knowledgebase. Limma

package analysis identified 3100 DEGs between DC and control groups and

then integrated with ERGs to identify 65 ERDEGs. Four diagnostic markers, Npm1,

Jkamp, Get4, and Lpcat3, were obtained based on the combination of LASSO and

random forest approach, and their ROC-AUCs were 0.9112, 0.9349, 0.8994, and

0.8639, respectively, which proved their diagnostic potential in DC. Meanwhile,

Npm1, Jkamp, Get4, and Lpcat3 were validated by external datasets and a mouse

model of type 1 DC. In addition, Npm1was significantly negatively correlated with

plasma cells, activated natural killer cells, or quiescent mast cells, whereas Get4

was significantly positively correlated with quiescent natural killer cells and

significantly negatively correlated with activated natural killer cells (P < 0.05).
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Conclusions: This study provides novel diagnostic biomarkers (Npm1, Jkamp,

Get4, and Lpcat3) for DC from the perspective of ERS, which provides new

insights into the development of new targets for individualized treatment of type

1 diabetic cardiomyopathy.
KEYWORDS
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Introduction

Type 1 diabetes mellitus is a chronic metabolic disease that

threatens global health, with the latest epidemiology showing that it

accounts for about two percent of the nearly 500 million total

diabetes mellitus worldwide and is rising for some unknown reason

(1, 2). Persuasive studies show that cardiovascular complications

are the dominant cause of morbidity and mortality in Type 1

diabetes mellitus (3, 4). Diabetic cardiomyopathy (DC) is defined as

structural and functional abnormalities of the heart in the absence

of coronary artery disease, hypertension, and valvular heart disease,

manifested by diastolic and systolic dysfunction, and ultimately

progressing to heart failure, arrhythmias, and even sudden death

from cardiogenic shock (5, 6). Potential mechanisms include

oxidative stress, inflammation, and calcium impairment, as well

as alterations in substrate metabolism/utilization, insulin signaling,

gene regulation, mitochondrial dysfunction, endoplasmic reticulum

stress (ERS), neurohumoral activation, and cell death (7). Currently,

there is no specific treatment for DC, and a large number of patients

irreversibly progress to heart failure. Therefore, it is crucial to

identify effective biomarkers for early diagnosis and treatment.

The endoplasmic reticulum (ER) of mammalian cells serves as the

primary site for protein folding and assembly, establishing its role as

“the core organelle that ensures normal cell function” (8). Under

normal conditions, misfolded proteins in the body trigger an unfolded

protein response (UPR) within the endoplasmic reticulum lumen,

effectively mitigating the adverse effects of misfolded proteins and

potentially preventing disease onset (8, 9). However, it is important to

note that in the presence of metabolic diseases such as diabetes, ocular

conditions like age-related macular degeneration and retinitis

pigmentosa, or cardiovascular diseases, liver disease and even cancer,

factors such as oxidative stress, metabolic abnormalities, and Ca2+

dysregulation become widely activated (8, 10–13). These factors can

lead to a significant increase in unfolded and misfolded proteins,

resulting in the overactivation of the unfolded protein response and

consequently inducing endoplasmic reticulum stress (8, 14–17).

Following the occurrence of endoplasmic reticulum stress,

downstream pathways are primarily activated through three signaling

proteins: inositol-requiring protein-1a (IRE1a), protein kinase RNA-

like ER kinase (PERK), and activating transcription factor 6 (ATF6)

(18–20). These pathways ultimately inhibit protein synthesis, regulate
02
gene expression, and determine cell fate, including processes such as

apoptosis. In summary, endoplasmic reticulum stress serves as a

sensitive sensor for the onset of disease and plays a crucial role in

determining the final fate of cells. A significant number of studies have

indicated that diabetic cardiomyopathy, a serious condition

characterized by various risk factors including oxidative stress,

metabolic abnormalities, and Ca2+ overload, is closely associated with

endoplasmic reticulum stress (21–23). Furthermore, many

investigations have highlighted that endoplasmic reticulum-related

genes may serve as early markers of ischemic heart disease and play

a crucial role in its pathophysiology (24, 25). Building on this

foundation, we propose the scientific research hypothesis that

endoplasmic reticulum-related genes may be involved in the

progression of diabetic cardiomyopathy and could potentially serve

as predictive markers for identifying intervention targets.

Many recent studies have emphasized that immune responses

and ERS crosstalk with each other and are fundamentally and

comprehensively intertwined (26–28). The effects of ERS include

direct defense against microbial pathogens, production of pro-

inflammatory cytokines, presentation of antigens to T cells,

immunogenic cell death, metabolic homeostasis, and maintenance

of immune tolerance (29). Effective immunity depends on

endoplasmic reticulum homeostatic processes such as calcium

signaling, glycosylation, lipid metabolism, and oxidative protein

folding (30). During transient ER stress, all three signaling pathways

of the UPR can crosstalk with inflammatory and stress signaling

pathways, including nuclear factor-kappa B (NF-kB), a major

transcriptional regulator of innate immunity (31). In view of this,

ERGs and transcriptomic data on type 1 DC were collected from

public databases, and ERS-related differentially expressed genes

(ERDEGs) between DC and control samples were identified,

which screened potential ERS-related diagnostic markers,

providing new ideas for the diagnosis and treatment of DC.

Result

Identification and functional enrichment
analysis of differentially expressed genes

To increase the sample size for enhanced confidence and

reliability of the results, GSE155377, GSE210611, and GSE123975
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were combined into one cohort, which ultimately consisted of 13

control samples and 13DC samples. Box plot analysis (Figures 1A, C)

andPCA (Figures 1B, D) indicated that batch effects were successfully

eliminated. The batch-corrected PCA analysis showed that the data

distribution tended to be uniform across the datasets, implying that

normalization might be completed correctly. A total of 3100 DEGs

were identified, of which 1662 were down-regulated and 1438 were

up-regulated (Figure 1E). In addition, gene set enrichment analysis
Frontiers in Endocrinology 03
revealed that the biological processes (BP) involved in DC mainly

consisted of complement activation, eosinophil migration, regulation

of vascular endothelial growth factor production, response to cold and

vascular endothelial growth factor production (Figure 1F). Cellular

components (CC) involved in DC mainly consisted of collagen-

containing extracellular matrix、external encapsulating structure,

extracellular matrix, extracellular region and extracellular space

(Figure 1G). molecular functions (MF) involved in DC mainly
FIGURE 1

Identification and functional enrichment analysis of DEGs. (A-D) Boxplots and PCA were applied to visualize the batch correction effect before (A, B)
and after (C, D) batch effect removal. (E) Volcano plot of DEGs. Blue and red dots indicate significantly up-and down-regulated genes, respectively,
while gray dots indicate genes with no significant difference. (F) Top ten biological processes active in DC. (G) Top ten cellular components active in
DC. (H) Top ten molecular functions active in DC. (I) Top ten KEGG pathways active in DC.
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consisted of chemoattractant activity, endopeptidase inhibitor

activity, endopeptidase regulator activity, peptidase inhibitor

activity and thioester hydrolase activity (Figure 1H). The active

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways

were mainly biosynthesis of unsaturated fatty acids, fatty acid

elongation, malaria, ovarian steroidogenesis, and PPAR signaling

pathways (Figure 1I).
Identification and functional annotation
analysis of endoplasmic reticulum stress-
related differentially expressed genes

Sixty-five ERDEGs were obtained by crossing 345 ERGs with

DEGs (Figure 2A). Of these, 35 were up-regulated and 30 were down-

regulated (Figure 2B). Functional annotation analysis was applied to

further explore the functions of ERDEGs, and as a result, many terms

related to ERS were enriched. The BP was mainly enriched for

response to ERS, cellular response to topologically incorrect

protein, and cellular response to unfolded protein (Figure 2C),

suggesting that their perturbation may mediate the pathogenesis of
Frontiers in Endocrinology 04
DC. The CC was mainly enriched for the endoplasmic reticulum

lumen, organelle outer membrane, protein folding chaperone

complex, etc. (Figure 2D). The MF was significantly enriched for

unfolded protein binding, protein-folding chaperone binding, and

misfolded protein binding (Figure 2E). Of particular note, KEGG

analysis revealed that the top-ranked pathway was protein processing

in the endoplasmic reticulum (Figure 2F).
Identification and ROC analysis of ERS-
related signature genes by LASSO
algorithm and RandomForest

When LASSO was constructed based on 10-fold cross-

validation, the minimum error value corresponded to 12

signature genes, including Pik3r1, Tomm20, Prkn, Rasgrf2, Sgta,

Scamp5, Rcn3, and Pdia3 (Figures 3A, B). Using 0.25 as the

importance score threshold, 18 signature genes were obtained,

including Npm1, Jkamp, Get4, Lpcat3, Ppp2cb, Mkks, Clpx,

Bcl2l1, Ube2g2, Flot1, Ppp1r15a, Nfe2l2, Rpap2, Srpx, Calr3,

Serpinh1, Hspb1, and Herpud2 (Figure 3C). Npm1, Jkamp, Get4,
FIGURE 2

Identification and functional annotation analysis of ERDEGs. (A) Venn diagram illustrating the overlap region between DEGs and ERGs in DC.
(B) Heatmap demonstrating the expression levels of ERDEGs in each sample. (C-E) Dot plots of the top 10 highest enrichment levels for biological
processes, cellular components, and molecular functions. (F) Dot plots of the top 10 pathway terms with the highest enrichment levels identified by
KEGG analysis.
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and Lpcat3 are signature genes common to LASSO and

RandomForest (Figure 3D). Among them, Jkamp was down-

regulated in DC (Figure 3E) and all other genes were up-

regulated (Figures 3F–H). Significant positive correlations were

observed between Lpcat3 or Get4 and Npm1, and between Lpcat3

and Get4, whereas significant negative correlations were observed

between Jkamp and the other three genes (Figure 3I). ROC-AUCs

of the four signature genes in the combined dataset were all greater

than 0.75, indicating excellent diagnostic capability (Figure 3J).
Frontiers in Endocrinology 05
Correlation of signature genes with
infiltrating immune cells

Cumulative histograms showed the relative proportions of 22

immune cells in DC and control samples, with B cells naive,

Macrophages M2, T cells CD4 memory resting, and Plasma cells

accounting for the majority (Figure 4A). Boxplots of differences in

immune cell infiltration showed significantly more B cells naive in

the DC group than in the control group (P < 0.05; Figure 4B). The
FIGURE 3

Selection of signature genes by machine learning algorithms. (A) Schematic diagram of the LASSO regression diagnostic model for ERDEGs.
(B) Trajectory diagram describing the LASSO selection variables in the diagnostic model for ERDEGs. (C) Dotplot of relative importance ranking by
RandomForest. (D) Venn diagram of common signature genes. (E-H) Boxplots depicting the expression levels of four signature genes in the
constructed features. **P < 0.01, ***P < 0.001, ****P < 0.0001. (I) Chord plot illustrating the correlation of the characterized genes. (J) ROC analysis
of the four characterized genes.
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heatmap displayed the correlation between the 22 immune cell

types (Figure 4C). The correlation of Jkamp and Lpcat3 with 22

immune cell types was not statistically significant (Figures 4D, F).

Npm1 showed a significant negative correlation with Plasma cells,

natural killer cells activated, or Mast cells resting (Figure 4E). Get4

showed a significant positive correlation with natural killer cells

resting and a significant negative correlation with natural killer cells

activated (Figure 4G).
Frontiers in Endocrinology 06
Validation of the expression and diagnostic
ability of the signature genes

In the validation dataset, the expression trends of the four signature

genes were consistent with those in the training set (Figures 5A–D). All

four ROC-AUCs in the validation dataset were greater than 0.75

(Figures 5E–H). Overall, these results suggest that ERS-related

signature genes have a predictive ability in the diagnosis of DC.
FIGURE 4

Correlation of signature genes with infiltrating immune cells. (A) Cumulative histograms of the distribution of 22 immune cells in the DC and control
groups. (B) Box plots of immune cell expression in control and DC groups. *P < 0.05. (C) Heatmap of correlation between immune cells. (D-G)
Lollipop plots of correlation between immune cells and signature genes.
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Validation of four signature genes in a
mouse model of type 1 DC

As shown in Figure 6A, the myocardium was significantly

damaged in the DC group compared with the control group, as

evidenced by disorganized cardiomyocyte arrangement, edema, and

inflammatory cell infiltration. As shown in Figure 6B, there were

more apoptotic cells in the DC group compared with the control

group. As shown in Figures 6C and D, there were obvious fibrotic

areas in the cardiac tissue in the DC group compared with the control

group. As shown in Figures 6E–H, RT-qPCR was employed to verify

the expression levels of the four signature genes in cardiac tissues,

which was consistent with the results of bioinformatics analysis.
Discussion

Diabetic cardiomyopathy represents a significant complication of

diabetes, with affected patients being 2 to 4 times more likely to develop

heart failureor succumb tomortality compared to thegeneral population

(23, 32). Given that diabetes is recognized as the most prevalent disease

globally, alongside the aging population and shifts in contemporary

dietary patterns, the incidence of diabetic cardiomyopathy has shown a

concerning upward trend (7, 23, 24, 33, 34). Consequently, it is

imperative to investigate early diagnosis and prevention strategies for
Frontiers in Endocrinology 07
this condition. In this study,DCsamples andERGsobtained frompublic

datasets identified65ERDEGs, fromwhich four signature genesof type 1

DC, including Jkamp, Npm1, Lpcat3, and Get4, were identified by

LASSO and Random Forest analyses. Four characteristic genes of

diagnostic significance have been discovered to be closely associated

with immune cells. Although the four genes we screened currently lack

relevant literature confirming directly their relationship with DC, they

are significant in the progression or repair of various complications

associated with diabetes and cardiovascular disease. This indicates their

considerable researchpotential in the context ofDCprogression.Wewill

discuss each gene in detail below.

JNK1/mapk8-associated membrane protein (JKAMP/JAMP) is

a seven-transmembrane protein situated in the cytoplasmic

membrane. It interacts with JNK1 via its C-terminal domain,

enhancing and prolonging JNK1 activity, which in turn increases

the incidence of JNK-dependent apoptosis (35). This apoptotic

process has been established as a critical factor in DC and is

recognized as a consequence of ERS (36–39). Furthermore,

studies examining other systemic complications of diabetes, such

as diabetic osteoporosis, have confirmed that the overexpression of

JKAMP appears to mitigate the adverse effects of hyperglycemia

through the activation of the Wnt signaling pathway (40). These

phenomena suggest that JKAMP may influence the progression of

DC by modulating ERS. Nucleophosmin 1 (NPM1) is a

multifunctional nucleophosmin with shuttling properties involved
FIGURE 5

Validation of the expression and diagnostic ability of the signature genes. (A-D) Box plots showing the expression levels of the four signature genes.
(E-H) ROC curves of the four signature genes. *P < 0.05, **P < 0.01.
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in a variety of cellular functions, including participation in liquid-

liquid phase separation, ribosome biogenesis, and histone

chaperoning and transcriptional regulation (41). Although a

direct link between NPM1 and DC has not yet been established,

existing evidence suggests that NPM1 can significantly influence

macrophage polarization, thereby impacting the repair processes of

cardiomyocytes (42). During the progression of DC, which is

characterized as a typical metabolic and immune-related

cardiovascular disease, the polarization of macrophages by NPM1

may represent a critical mechanism (43). LPCAT3, a gene widely

expressed in key metabolic tissues such as the liver, small intestine,

skeletal muscle, macrophages, and adipocytes, has been shown to

directly enhance the activation of IRE1a and PERK by altering the

phospholipid composition of the endoplasmic reticulum

membrane, thereby triggering ERS (44, 45). These processes are

regarded as potential targets for the treatment of metabolic diseases

(46, 47). Interestingly, several studies have indicated that lpcat3 can

significantly influence the expression levels of GPX4, thereby

regulating the extent of ferroptosis and ultimately impacting the

progression of DC (48, 49). Golgi to ER traffic protein 4 (GET4) and

Get5 form a complex that competitively binds ribosomes with SRP

and directs tail-anchored proteolytic delivery to the endoplasmic

reticulum (50). Mutants with GET dysfunction are more susceptible

to ERS (51). DC, whether its rate of progression is believed to be

significantly influenced by ERS (36–39) or regarded as a classic

metabolic disease (23, 43), appears to be inextricably linked to the

four aforementioned molecules. Unfortunately, there are currently

no definitive studies confirming the relationship between these four
Frontiers in Endocrinology 08
molecules and DC; however, this also suggests the research

potential of these molecules.

The present study further analyzed immune cell infiltration and

revealed that there were significantly more B cells naive in the DC

group than in the control group, so it was hypothesized that DC was

associated with abnormalities in the immune system. Inhibited

activation of the NF-kB signaling pathway in activated B cells

decelerated the progression of type 1 DC (52). In addition, this

study demonstrated the correlation of Npm1 and Get4 with immune

cells, suggesting that they may influence the development of DC by

affecting immune cells. Therefore, ameliorating the abnormal

immune status may also be a promising therapeutic strategy for DC.

Numerous prior studies on DC have sought to identify potential

biomarkers and therapeutic targets for intervention. These

investigations frequently emphasize aspects such as immune

metabolism, with some specifically addressing the regulation of

the immune microenvironment (53–56). ERS is the earliest

pathophysiological process to be fully activated in DC (36–38,

57). Molecular markers derived from related molecules appear to

possess superior properties for early diagnosis. Furthermore, ERS

and the consequent apoptosis of cardiomyocytes represent critical

factors influencing the progression rate of DC (36–38, 57).

Consequently, the molecular markers identified from these related

molecules are more effective as therapeutic targets. However, some

existing studies utilize high-throughput technical methods, such as

metabolomics and liquid chromatography-mass spectrometry (LC-

MS), which appear to play a more significant role in identifying key

pathways and molecules involved in DC (58).
FIGURE 6

Validation of signature genes in a mouse model of type 1 DC. (A) Representative HE staining images to assess myocardial injury. The scale bar
represents 200 and 100 mm.(n=3) (B) Representative Tunel staining to assess apoptosis. The scale bar represents 100 mm. (n=3) (C, D) Representative
Masson staining images and Sirius red staining images to assess collagen fiber area. The scale bar represents 200 mm. (n=3) (E-H) Relative expression
levels of mRNA of four signature genes in cardiac tissues by RT-qPCR. The data was presented as mean ± SD, ****P < 0.0001, n = 6.
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Additionally, there are some limitations of this study. Although

some studies have indicated that mice are the only mammals that can

provide such a rich resource of genetic diversity while also allowing for

extensive genome manipulation, making them a powerful tool for

modeling human cardiovascular diseases, particularly diabetic

cardiomyopathy (23, 59–61). In these models, the trends of various

physiological indicators in mice, such as left ventricular contractility

and left ventricular ejection fraction, align with those observed in

humans, establishing the mouse diabetic cardiomyopathy model as a

primary technology for studying this disease (23, 60, 62). However, it is

important to note that numerous studies have highlighted significant

deviations in conclusions derived from mouse models when translated

to clinical and technical applications (23, 63). Furthermore,

intervention methods used in humans cannot be fully replicated in

diabetic mice (23, 62). Therefore, our study requires further

supplementation and validation through clinically relevant research

in the future. In addition to this limitation, we also face several

shortcomings, including the need for further investigation into the

expression and diagnostic value of these four genes at the protein level,

as well as the absence of additional experiments to validate the effects of

these characteristic genes on immune cells and heart function.
Methods

Data collection

The Gene Ontology (GO) knowledgebase (http://geneontology.org/

) was searched to collect ERGs, including regulation of response to

endoplasmic reticulum stress (GO:1905897), unfolded protein

binding (GO:0051082), response to endoplasmic reticulum stress

(GO:0034976), and endoplasmic reticulum unfolded protein

response (GO:0030968), and 345 ERGs were obtained after

removing duplicates. Gene expression profiling of type 1 DC was

obtained from the GEO (http://www.ncbi.nlm.nih.gov/geo)

database, including GSE210611, GSE155377, GSE123975, and

GSE215979, working according to the flowchart in Figure 7.

Among them, GSE210611 (3 CON and 3 DC), GSE155377 (4

CON and 4 DC), and GSE123975 (4 CON and 4 DC) were

constructed as a multichip dataset containing 13 CON and 13 DC

by R (version 4.3.1) software, and the remove batch effect function

of the limma (version 3.60.2) package could be applied to remove

batch effects. Principal Component Analysis (PCA) was applied to

assess whether the batch effect had been removed. GSE215979 (3

CON and 3 DC) was set as the external validation dataset.
Identification of differentially
expressed genes

DEGs were analyzed between the DC and control groups using

the R package “limma” (version 3.60.2) for the multi-chip dataset.

Genes filtered according to the threshold |log2fold change(FC)|> 0

and P < 0.05 were selected as DEGs, and volcano plots were

generated to visualize the results. In addition, gene set enrichment
Frontiers in Endocrinology 09
analysis was utilized to identify the most significant functional

terms between the DC and control groups (64).
Screening and functional enrichment
analysis of ERDEGs

Draw Venn Diagram (https://bioinformatics.psb.ugent.be/

webtools/Venn/) intersected ERGs with DEGs in the multichip

dataset to obtain ERDEGs, whose gene expression was

demonstrated by heatmaps created with the “pheatmap” package

(version 1.0.12). To further elucidate the biological functions of

ERDEGs, GO enrichment analysis and KEGG pathway analysis

were performed via “ClusterProfiler” (version 4.12.0), whose results

were plotted using the “ggplot2” package (version 3.5.1). Screening

for BP, CC, MF, and KEGG pathways with P <0.05 (65, 66).
Identification and ROC analysis of ERS-
related signature genes by
LASSO algorithm

The R package “glmnet” (version 4.1.8) was applied to obtain ERS-

related signature genes by the LASSO algorithm with 10-fold cross-

validation to determine the optimal value of the penalty parameter l.
LASSO algorithms are often interpreted by cross-validation graphs and

regression coefficient path graphs. First, the cross-validation curve is

applied to select the optimal lambda value. The X-axis is the logl of the
penalty coefficient, and the Y-axis is the likelihood deviation. The

smaller the Y-axis is, the better the fitting effect of the equation is. The

top number is the number of variables left in the equation for different

l. There are usually two dotted lines, the lambda with the smallest

deviation but the highest model fit (lambda. min) on the left, and the

lambda value with the smallest deviation but the more concise model

(lambda.1se) on the right. Based on the best prediction performance

and feature selection capability, lambda. min is selected in this paper.

Second, regression coefficient path graph, each line in the graph

represents a variable, the ordinate is the coefficient, and the upper

abscissa is the number of non-zero coefficients in the model under

different regularization parameters. The lower horizontal coordinate is

the normalized normalized parameter. The figure shows the variation

trajectories of variable coefficients under different regularization

parameters. When the regularization is larger, the complexity of the

model is lower, so most parameters will approach 0. We can know

which features contribute more or less to the prediction of the model

through this figure, and we can initially use the features with greater

contributions in subsequent analysis.

Random Forest is an integrated learning method based on

decision trees, where multiple decision trees are constructed and

their predictions are aggregated for classification or regression tasks

to improve overall accuracy and stability (67). One of the most

important results of Random Forests in machine learning is the

assessment of significance based on the Gini index and the final

identification of the featured genes, which can be done with the

“RandomForest” (version 4.7.1.1) package of the R software and
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visualized by drawing dotplots with varImpPlot. The crossover genes

of LASSO and Random Forest were then identified as the optimal

ERS-associated signature genes for the next step of the study.

ROC analysis was performed to determine the diagnostic

validity of the four signature genes with the “pROC” package

(version 1.18.5). ROC curve is a curve obtained by plotting the

true positive rate and false positive rate, which can reflect the

relationship between sensitivity and specificity. The horizontal
Frontiers in Endocrinology 10
axis represents the false positive rate (1- specificity) and the

vertical axis represents the true positive rate (sensitivity). ROC-

AUC reflects the value of diagnostic tests. The larger the area, the

closer to 1.0, the higher the diagnostic authenticity. The closer it

is to 0.5, the lower the accuracy of the diagnosis. When it is equal

to 0.5, it has no diagnostic value. ROC-AUC was applied to

estimate the diagnostic ability to differentiate DC from the

control group.
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validation set judges the diagnostic performance of the signature genes.
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Immune cell infiltration analysis

Immune cell subtypes in the multichip dataset were evaluated

by the CIBERSORT algorithm with the LM22 gene feature matrix,

and values with P < 0.05 were considered statistically different (68).

Correlations between immune cells and between immune cells and

ERS-related signature genes were analyzed using Spearson analysis.
Construction of a mouse model of type
1 DC

C57BL/6j male mice (20-25 g) were raised in the standard barrier

environment of the Animal Experiment Center at Renmin Hospital of

Wuhan University, maintained at a temperature of 21-24°C and a

humidity of 50-60%, with a light and dark cycle of 12 hours. This

experiment received approval from the Wuhan University Committee

on Animal Care and Utilization (IACUC Issue No. 20230805C). Upon

reaching 6 to 8 weeks of age, the mice were randomly assigned to either

a control group or a diabetes group, with aminimum of six mice in each

group. The diabetic group received intraperitoneal injections of

streptozotocin (STZ, Boagang, China) dissolved in a citric acid buffer

(pH 4.2-4.5) at a dose of 50 mg/kg for five consecutive days. In contrast,

the control group was administered an equal volume of STZ-free citrate

buffer. Fasting blood glucose levels were measured on days three and

seven following the injections; mice exhibiting fasting blood glucose

levels of 11.1 mM or higher were classified as diabetic. Subsequently, the

mice were maintained on a continuous feeding regimen for 12 weeks,

during which blood glucose levels were assessed every four weeks to

confirm that the blood glucose levels of the diabetic mice remained

consistently above 11.1 mM. At the conclusion of the 12th week, the

mice were euthanized in accordance with ethical guidelines, and their

hearts were excised. Some hearts were designated for immediate mRNA

extraction, while others were fixed in 4% paraformaldehyde for

subsequent pathological analysis. This allocation was performed

randomly. Mice that did not develop the disease model were

euthanized following the protocols outlined in the ethics manual.
Cardiac histomorphometry

The fixed heart tissues were embedded in paraffin and cut into 4

mm thick sections. They were then stained with hematoxylin and

eosin (HE), Tunel, Masson, and Sirius red which are shown below.
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Hematoxylin-eosin

The paraffin sections were dewaxed in a series of solutions:

Dewaxing Clear Solution I for 20 minutes, Dewaxing Clear

Solution II for 20 minutes, Absolute Ethanol I for 5 minutes,

Absolute Ethanol II for 5 minutes, and 75% Alcohol for 5 minutes.

Subsequently, the sections were immersed in a hematoxylin staining

solution for 5 minutes, followed by a wash with double-distilled

water. The sections were then differentiated using hematoxylin

differentiation solution for a few seconds, rinsed with double-

distilled water, and treated with hematoxylin blue-returning

solution to restore the blue color, followed by another rinse with

double-distilled water. Next, the sections were dehydrated in 85%

Alcohol and 95% Alcohol for 5 minutes each, stained with eosin stain

for 5 minutes, and then dehydrated and clarified in absolute ethanol

and dewaxing clear solution. Finally, the sections were sealed with

neutral gum. The structure and morphology of the myocardial fibers

were observed using optical microscopes.
Terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling

Terminal deoxynucleotidyl transferase-mediated dUTP nick-

end labeling (TUNEL) was used to examine the myocardial cell

apoptosis with an in situ cell death detection kit (Nanjing Jiancheng

Bioengineering Institute, China) according to the manufacturer’s

instructions. Briefly, the heart tissues of each group were embedded

in paraffin and cut into 5 mm thick sections. Then the sections were

stained with TUNEL reaction mixture for 60 min and immersed

into 4’,6-diamidino2-phenylindole (DAPI) to stain nuclei for 30

min. Apoptotic cells were observed under a light microscope with

an excitation wavelength of 585–600 nm.
Masson’s trichrome stain

After dewaxing the paraffin sections to water using the

aforementioned method, perform the following steps in sequence:

(1) Immerse in potassium dichromate (Servicebio, G3326, China)

overnight; (2) Stain with iron hematoxylin (Servicebio, G3326,

China) for 10 minutes, followed by thorough washing with water;

(3) Return to blue using Masson blue solution (Servicebio, G3326,

China) for 5 minutes, and wash well with water; (4) Stain with
TABLE 1 Primes used for RT-qPCR analysis.

Gene Forward primer Reverse primer

Npm1 AGGACGATGATGAGGACGATGAG CCCTTTGATCTCGGTGTTGATGG

Jkamp CACGATGCTCTACAACCCAAGTC CATGCGATCTTCTTCACCAGGAG

Get4 CCGAGGCTTCCGAAGTGAGG CAGCAGCAGAAACCAGATGAAATTG

Lpcat3 CACCGTCACTGCCGTTATTACTAC TCCCGTCTTTGCCTCCATCG

b-actin GTGACGTTGACATCCGTAAAGA GTAACAGTCCGCCTAGAAGCAC
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Ponceau magenta (Servicebio, G3326, China) for 10 minutes; (5)

Wash with phosphomolybdic acid solution (Servicebio, G3326,

China) for 2 minutes; (6) Wash with weak acid working solution

for 1 minute; (7) Stain with aniline blue dyeing solution (Servicebio,

G3326, China) for 1 minute; (8) Wash with weak acid working

solution for 1 minute; (9) Sequentially immerse in 95% alcohol,

100% alcohol, and xylene to dehydrate and render the sections

transparent; (10) Seal the slide with neutral gum. Finally, use an

optical microscope to observe the deposition of collagen fibers in

the myocardium, where collagen fibers appear blue, while muscle

fibers, cytoplasm, and cutin are red.
Sirius Red

After removing the paraffin sections and dewaxing them in

water, proceed with the following steps in sequence: (1) stain with

Sirius scarlet for 8 minutes; (2) dehydrate using absolute ethanol for

5 minutes; (3) seal with neutral gum. Utilize a 400× optical

microscope to observe the deposition of collagen fibers in the

myocardium, where collagen fibers appear red and other tissue

components are displayed in yellow.
Real-time fluorescence quantitative PCR

Total RNA was extracted from cardiac tissues using an RNA

extraction kit (RC113-01; Vazyme, China). Reverse transcription

and quantification were performed using SweScript All-in-One

RT SuperMix for qPCR (One-Step gDNA Remover) (Servicebio,

G3337, China) and 2×Universal Blue SYBR Green qPCR Master

Mix (Servicebio, G3326, China). Finally, RT-qPCR was performed

on a Lightcycler 480II Real-Time Fluorescence Quantitative PCR

System (Roche, Germany). b-actin was used for expression

normalization. The primers are shown in Table 1, and the

relative expression of the genes was determined by the

2-DDCT method.
Statistical analysis

All statistical analyses were performed by R software (version

4.3.1). Student’s t-test or one-way ANOVA was applied to assess

differences between the two groups. P < 0.05 indicated

statistical significance.
Conclusion

In summary, four signature genes (Npm1, Jkamp, Get4, and

Lpcat3) have been tentatively identified as potential diagnostic

markers of type 1 DC, which may be influenced by controlling

ERS and immune cells. The results of this study provide new

insights into the development of new targets for the diagnosis and

treatment of DC.
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