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Sirtuins in kidney homeostasis
and disease: where are we now?
Zhongyu Fan, Xuejiao Wei, Xiaoyu Zhu and Yujun Du*

Department of Nephrology, The First Hospital of Jilin University, Changchun, China
Sirtuins, identified as (NAD+)- dependent class III histone deacetylases, engage in

a spectrum of biological functions, encompassing DNA damage repair, oxidative

stress, immune modulation, mitochondrial homeostasis, apoptosis and

autophagy. Sirtuins play an apoptosis role in regulating cellular operations and

overall organism health. Mounting data indicate that dysregulated sirtuin

expression is linked to the onset of renal diseases. Effective modulation of

sirtuins expression and activity has been shown to improve renal function and

attenuate the advancement of kidney diseases. In this review, we present a

comprehensive overview of the biological impacts of sirtuins and their molecular

targets in regulating renal diseases. Additionally, we detail advancements in

elucidating sirtuin roles in the pathophysiology of both chronic and acute renal

disorders. We review compounds that modulate sirtuin activity through

activation or inhibition, potentially improving outcomes in renal disease. In

summary, strategic manipulation of sirtuin activity represents a prospective

therapeutic approach for renal diseases.
KEYWORDS

sirtuins, chronic kidney disease, acute kidney injury, mitochondria, inflammation,
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1 Introduction

Sirtuins (SIRTs) constitute a family of evolutionarily conserved (NAD+)- dependent

histone deacetylases, pivotal for their enzymatic functions. Sirtuins represent a class III

family of (NAD+)- dependent histone deacetylases intimately linked to physiological

health and disease development across organisms (1). Currently, seven distinct members

of the sirtuin family, Sirt1 through Sirt7, have been characterized in mammals. These

isoforms share a conserved core domain but exhibit unique active sites that confer

specific biological roles (2). Sirtuins are (NAD+)- dependent enzymes; their activity

converts NAD+ into nicotinamide (NAM). Subsequently, NAM is converted to

n i co t inamide mononuc l eo t ide (NMN) by in t r a c e l l u l a r n i co t inamide

phosphoribosyltransferase (iNAMPT). NMN is then enzymatically converted to NAD+

by nicotinamide mononucleotide adenylyltransferase (NMNAT), the key rate-limiting

enzyme in this regeneration cycle, thus perpetuating the sequence (3). NAD+

concentrations are intricately linked to disease evolution, with numerous studies
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demonstrating a decline in NAD+ levels concurrent with renal

disease advancement. Augmentation of NAD+ has been shown to

mitigate these effects. The administration of precursors like NAM

has been shown to alleviate mild ischemic AKI in both preclinical

models and patients (4). Nevertheless, the precise mechanisms

underlying the therapeutic benefits of NAD+ supplementation

remain incompletely understood.

Over the past two decades, the sirtuin family has garnered

significant interest due to their regulatory roles across a spectrum of

essential biological mechanisms observed in preclinical and clinical

models. These processes include inflammation, oxidative stress,

autophagy, mitochondrial homeostasis, deoxyribonucleic acid

(DNA) repair, and other crucial functions vital for sustaining

cellular and systemic homeostasis (5).

Sirtuin activation has been shown to decelerate the

advancement of various renal pathologies, such as acute kidney

injury (AKI), diabetic nephropathy (DN), fibrosis and aging.

While numerous investigations have established sirtuins as

modulators in renal pathology, their precise functions continue

to be elucidated. Sirtuins have been identified as potential

therapeutic targets across multiple disease states, with small

molecules and natural compounds that modulate sirtuin activity

emerging as promising candidates for therapy (6). Ongoing

investigations into the sirtuin family have facilitated the creation

of specific modulators, including curcumin and resveratrol, that

enhance kidney health by effecting Sirt1 and Sirt3. Conversely,

synthetic inhibitors like AK-1 target sirtuins, specifically

inhibiting Sirt2 activity, which has been shown to mitigate the

progression of renal diseases (7). This review consolidates

research on sirtuin-mediated regulation within renal cells,

emphasizing the diverse roles of sirtuin family members and

underscoring the therapeutic promise of sirtuin modulators in

kidney disease management (6).
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2 Search strategy

A thorough literature review was conducted across multiple

databases, including Embase, PubMed and Web of Science

databases, utilizing the following search terms: “SIRT,” “Sirtuins,”

“chronic kidney disease,” “acute kidney injury,” and “kidney

disease,”. Boolean operators, including OR and AND, were

applied in conjunction with the selected search terms to refine the

query. Searching for articles from the last ten years. Only English-

language articles were included in this review, without restrictions

on geographic location.
3 The sirtuin family: evolutionary
origins and biological functions

Sirtuins represent a highly conserved family of (NAD+)-

dependent class III histone deacetylases, extensively distributed

across both prokaryotic and eukaryotic organisms. The sirtuin

family comprises seven homologous proteins, designated as Sirt1

through Sirt7. The members of the sirtuin family are localized to

distinct cellular compartments. Sirt1 and Sirt2 are present in both

the cytoplasm and nucleus, Sirt6 is confined to the nucleus, Sirt7 is

localized to the nucleolus, Sirt3, Sirt4, and Sirt5 are situated within

the mitochondria (8) (Figure 1). Sirtuins exhibit diverse biological

roles that stem from their varied binding affinities and subcellular

localizations. Sirtuins such as Sirt1, Sirt2, Sirt3, Sirt5, Sirt6, and Sirt7

demonstrate (NAD+)-dependent deacetylase activity, facilitating

the deacetylation of both histone and non-histone proteins. In

contrast, Sirt4 (9) and Sirt6 possess mono-ADP-ribosyltransferase

capabilities (10), whereas Sirt5 functions primarily as a

desuccinylase (11). Sirtuins necessitate NAD+ as a catalytic

cofactor and can consequently be inhibited by NADH; thus, they
FIGURE 1

Location and distribution of sirtuins.
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exhibit significant sensitivity to the intracellular NAD+/NADH

balance (12). Sirtuins are fundamental to diverse metabolic and

biological processes, including apoptosis, cell survival, proliferation,

stress responses, cellular senescence, inflammation.
3.1 Nuclear sirtuins

The nuclear sirtuins, specifically SIRT1, SIRT6, and SIRT7,

exert a wide range of beneficial effects. In addition to targeting

histones, these sirtuins are known to deacetylate a variety of non-

histone protein substrates, thereby orchestrating multiple

physiological processes.

3.1.1 Sirt1
SIRT1, the most extensively researched member of the sirtuin

family, predominantly localizes in the nucleus. It modulates

nucleosome histone acetylation and regulates the functionality of

various transcription factors (13). Sirt1 is predominantly localized

within the nucleus; however, under specific stimuli, it translocates

to the cytoplasm. This protein serves a crucial function in regulating

diverse biological processes, including mitochondrial metabolic

dysfunction (14), inflammation (15), oxidative stress (16),

telomere integrity (17), DNA damage response (18), and

autophagy (19).

Systemic Sirt1 knockout mice exhibit markedly elevated

mitochondrial dysfunction and increased mortality following AKI

compared to their wild-type counterparts (20). SIRT1 mediates the

deacetylation of both histone and non-histone proteins, performing

a key role in preserving cellular homeostasis. Cytoplasmic cortactin

plays a crucial role in the stabilization of the actin cytoskeleton (21).

SIRT1 safeguards podocytes and facilitates glomerular repair by

promoting the deacetylation of cortactin within the nucleus. This

deacetylation process is essential for the translocation of acetylated

cortactin to the cytoplasm, thereby preserving the integrity of the

actin cytoskeleton. SIRT1 enhances high glucose (HG)-induced

epithelial-mesenchymal transition (EMT) by deacetylating the

transcription factor Yin Yang 1 (YY1) (22). The acetylation of

high-mobility group box 1 (HMGB1) is a pivotal step required for

its nuclear export, cytoplasmic translocation, and subsequent

extracellular secretion in renal cells, a process that exacerbates the

progression of renal diseases. SIRT1 deacetylates lysine residues on

HMGB1, attenuating subsequent inflammatory signaling pathways

(23). In a model of renal fibrosis, both acetylation and p53

expression were elevated; however, SIRT1 mitigated the

advancement of ferroptosis by promoting the deacetylation of p53

(24). In aged mice, SIRT1 expression was significantly reduced

compared to young mice (5 weeks old), resulting in increased ECM

deposition. SIRT1 overexpression, by deacetylating hypoxia-

inducible factor-1a (HIF-1a), effectively mitigated hypoxia-

induced reactive oxygen species (ROS) production, mitochondrial

dysfunction, and ECM protein accumulation, exerting a protective

impact on the tubulointerstitial compartment of aged kidneys (25).

SIRT1 alleviates renal inflammation through the deacetylation

of nuclear factor-kB (NF-kB) (26), and enhances renal energy
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metabolism and oxidative stress response by deacetylating

forkhead box protein (FOXO) (27) and peroxisome proliferator-

activated receptor gamma coactivator-1a (PGC-1a). SIRT1

attenuates renal fibrosis through the deacetylation of Smad3 (28),

enhances renal hypoxia tolerance through the deacetylation of HIF-

1a (25), and protects against apoptosis in resident kidney cells by

deacetylating p53 (29). Moreover, recent studies have demonstrated

that SIRT1 enhances renal autophagy through the deacetylation of

Beclin1 (19), and cooperates with SIRT3 by activating RelB to

enhance mitochondrial biogenesis (30). Consistent with these

findings, podocyte-specific Sirt1 knockout mice develop renal

fibrosis (31), accompanied by disruption of the actin cytoskeleton

(21), activation of the NOD-like Receptor Pyrin Domain

Containing 3 (NLRP3) inflammasome (32), and mitochondrial

dysfunction in podocytes (33). These pathological changes are

notably ameliorated in transgenic mice overexpressing SIRT1 in

podocytes (34). Notably, several studies have revealed that claudin-

1 expression in podocytes is upregulated and correlates with

worsened phenotypes in a mouse model of proteinuric

nephropathy with proximal tubule-specific SIRT1 knockout,

suggesting that SIRT1 plays a role in the crosstalk between

glomerular endothelial cells and tubular epithelial cells.

Furthermore, evidence indicates that SIRT1 is intimately

connected to endocrine signaling pathways (35). Melatonin, a key

hormone produced by the pineal gland, is crucial for regulating

redox homeostasis, immune responses, and mitochondrial function.

Nevertheless, these effects are partially mediated through the

activation of SIRT1 (36). SIRT1 plays a multifaceted role beyond

deacetylation, encompassing involvement in ubiquitination,

phosphorylation and other critical physiological and pathological

mechanisms. Specifically, SIRT1 mediates the dephosphorylation

and deacetylation of p65 NF-kB and STAT3, thereby attenuating

inflammation, oxidative stress, and EMT in diabetic kidney disease

(DKD) (37). In a murine model of unilateral ureteral obstruction

(UUO), the activation of SIRT1 signaling was correlated with

elevated levels of phosphorylated endothelial nitric oxide synthase

(eNOS). Furthermore, SIRT1’s interaction with eNOS contributed

to ameliorating renal fibrosis, as assessed by fibrosis scoring in the

UUO model (38). In diabetic kidney disease, oxidative stress

induces SIRT1 ubiquitination, facilitating its degradation.

Conversely, inhibiting SIRT1 ubiquitination enhances FoxO3a

nuclear translocation and mitigates oxidative stress-induced renal

injury in DKD murine models (39).

3.1.2 Sirt6
SIRT6 is a versatile protein that modulates a diverse range of

cellular processes. Early studies of its enzymatic activity identified

SIRT6 as a mono-ADP-ribosyltransferase and a deacetylase, capable

of removing acetyl groups from histone and non-histone substrates

alike (40). SIRT6 is defined by its deacetylase activity that is

approximately 1000-fold slower than that of other SIRT family

members, distinguishing it from its counterparts (41). Notably, the

unique structural configuration of SIRT6 facilitates high-affinity

binding to NAD+ even without the presence of an acetylated

substrate. This unique characteristic arises from its diverged zinc-
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binding domain and a robust single helix that facilitates NAD+

binding (41). Characterized by numerous interaction partners and

the capacity to catalyze the removal of diverse post-translational

modifications, SIRT6 has a critical impact on essential cellular

processes, consisting of DNA repair, gene regulation, telomere

maintenance, and cell division (42).

SIRT6 also works in synergy with SIRT1, which deacetylates

SIRT6 at lysine 33. This deacetylated form of SIRT6 is then

anchored to gH2AX, facilitating its retention within the local

chromatin and enabling chromatin remodeling (43). SIRT6

possesses three catalytic activities: deacylation, deacetylation and

mono-ADP-ribosylation. Among its histone substrates, SIRT6

commonly deacetylates histone H3 at 56 (H3K56) and lysines 9

(H3K9) (44). Sirt6 is essential for telomere integrity, functioning

through the deacetylation of histone H3K9, which mitigates

telomeric DNA damage and delays the onset of cellular

senescence (45). The deacetylation of histone H3K56 modulates

the expression of b-catenin target genes, suppresses transcription of

genes associated with fibrosis, and influences renal interstitial

fibrosis (46). Additionally, Sirt6 extends its deacetylase activity to

non-histone substrates within both the nucleus and cytoplasm,

targeting proteins such as members of the p53, FOXO family,

NAMPT and Smad (47). SIRT6 regulates renal interstitial fibrosis

through the deacetylation of runt-related transcription factor 2

(Runx2), facilitating its nuclear export, and triggering the

activation of the ubiquitin-proteasome pathway, which results in

Runx2 degradation. This process ultimately suppresses vascular

calcification in chronic kidney disease (CKD) (48). Moreover, Sirt6

undergoes acetylation by Sirt1, and the two proteins function in

concert to preserve organismal homeostasis (49). In the glomeruli of

individuals with hypertensive nephropathy, elevated DNA double-

strand breaks (DSBs) are associated with reduced Sirt6 expression.

Conversely, Sirt6 overexpression, which upregulates nuclear factor-

erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1),

suppresses angiotensin II(Ang II)-induced ROS production and

DNA DSBs, thereby playing a crucial role in mitigating oxidative

DNA damage triggered by Ang II stimulation (50). Renal interstitial

fibrosis represents a prevalent pathological feature of CKD.

Overexpression of Sirt6 mitigates the progression of this

condition in CKD by targeting homeodomain-interacting protein

kinase 2, as demonstrated by decreased collagen deposition and

downregulation ofa-smooth muscle actin and collagen I (51).

Progressive epithelial-mesenchymal transition in the kidneys of

db/db mice is linked to the downregulation of Sirt6, with

diminished Sirt6 levels contributing to worsening renal pathology,

including tubular injury. Further investigations have shown that

Sirt6 directly interacts with Smad3, where it deacetylates Smad3,

thereby inhibiting its transcriptional activity and nuclear

accumulation, offering protection against renal injury in diabetic

kidney disease (52). Sirt6 also interacts with saturated fatty acids,

particularly palmitic acid, facilitating their export from the nucleus.

It induces the deacetylation of acyl-CoA synthetase long-chain 5,

thereby enhancing FAO. These findings suggest that Sirt6 extends

its metabolic regulatory functions beyond the nucleus, offering new

insights into its role in kidney disease (53).
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3.1.3 Sirt7
SIRT7 is the sole sirtuin localized within the nucleolus, where its

deacetylase activity is essential for the transcription of ribosomal

DNA. Sirt7 associates with and deacetylates HMGB1, prompting its

translocation to the nucleus and enhancing its role in DNA damage

repair. Additionally, Nucleophosmin (NPM), another substrate of

Sirt7, undergoes deacetylation by Sirt7, which facilitates its

relocation from the nucleolus to the nucleoplasm. In the

nucleoplasm, deacetylated NPM associates with ubiquitin ligase,

thereby inhibiting p53 ubiquitination and degradation, leading to

cell cycle arrest and the preservation of DNA damage repair

mechanisms (47). Following DNA damage, ataxia-telangiectasia

mutated (ATM) is activated by autophosphorylation; evidence

suggests that ATM deacetylation is necessary for its subsequent

dephosphorylation. Sirt7 has been shown to deacetylate ATM,

thereby limiting its persistent phosphorylation and activation, and

consequently facilitating DNA damage repair (54). Conversely, the

absence of Sirt7 suppresses NF-kB phosphorylation, diminishes p53

nuclear translocation, and mitigates renal inflammation and tubular

damage (55). Sirt7 directly downregulates NF-kB expression,

reducing cisplatin-induced acute kidney injury and attenuating

apoptosis in renal tubular epithelial cells (56). Overexpression of

Sirt7, which counters the observed reduction in Sirt7 levels during

hypertensive kidney injury, enhances Krüppel-like factor 15/Nrf2

signaling and significantly mitigates Ang II-induced ferroptosis,

renal dysfunction, interstitial fibrosis, and epithelial-mesenchymal

transition in mice with hypertensive. These findings suggest that

Sirt7 represents a potential therapeutic target for treating

hypertensive kidney injury (57). Furthermore, Sirt7-deficient mice

exhibit protection against AKI, characterized by phosphorylation of

p65 and decreased nuclear translocation, along with diminished

inflammatory infiltration of renal cells. This protective impact is

further substantiated by diminished proteinuria and decreased

markers of renal tubular damage (58).
3.2 Cytoplasmic sirtuins

3.2.1 Sirt2
SIRT2 is primarily localized in the cytoplasm, exhibiting

deacetylase and demyristoylase activities. It holds significant

importance in regulating NF-kB signaling, microtubule dynamics,

and adipocyte differentiation through the deacetylation of specific

substrates, including p65, alpha-tubulin and the transcription factor

FOXO1, respectively (59). Moreover, various proteins, including

homeobox transcription factor 10 and 14-3-3 b/g, are recognized as

binding partners of SIRT2, though they are not substrates for its

deacetylase activity (60). Additionally, SIRT2 has been implicated in

the suppression of basal autophagy through its interaction with

autophagy-related gene 7 (61). The diversity of SIRT2 substrates

and conjugates highlights its multifaceted role in cellular function.

SIRT2 influences metabolic processes within the cytoplasm by

responding to NAD levels and regulating proteins integral to

metabolic homeostasis, including phosphoglycerate kinase and

aldolase. Initially identified as a tubulin deacetylase, SIRT2 has
frontiersin.org

https://doi.org/10.3389/fendo.2024.1524674
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fan et al. 10.3389/fendo.2024.1524674
since been shown to interact with and regulate a wide array of both

non-histone and histone protein substrates (62). Sirt2 modulates

the acetylation of p53 at lysine 382, stabilizing p53 within the

nucleus, promoting its transcriptional activity, and exerting a

crucial function in the DNA damage response (63). Sirt2 is

suggested to associate with the BRCA1-BARD1 complex,

deacetylating a conserved lysine residue within the complex to

facilitate BRCA1-BARD1 heterodimerization. This modification

enhances the complex’s localization to regions of DNA damage,

thereby promoting efficient homologous recombination (64). Sirt2

plays a critical role in modulating proinflammatory responses. Its

overexpression intensifies cisplatin-induced cellular apoptosis, renal

injury, and inflammation, while also enhancing the activation of c-

Jun N-terminal kinase (JNK) phosphorylation and p38 (65).

Conversely, Sirt2 deficiency mitigates lipopolysaccharide-induced

neutrophil and macrophage infiltration, leading to improved renal

function (66). During renal ischemia/reperfusion, Sirt2 activation

leads to the binding and deacetylation of FOXO3a, facilitating its

translocation to the nucleus, which in turn activates caspase-3 and

caspase-8, thereby initiating apoptosis. Conversely, inhibition of

Sirt2 effectively reverses these processes (67). Sirt2 activity is

implicated in the induction and expansion of renal fibroblast

activity, in contrast, suppression of Sirt2 attenuates renal fibrosis

progression and presents a promising therapeutic strategy for

managing CKD (68).
3.3 Mitochondrial sirtuins

3.3.1 Sirt3
SIRT3 is predominantly localized within the mitochondrial

matrix and serves as the principal regulator of the mitochondrial

acetylome, distinguishing it from other mitochondrial sirtuins

including SIRT4 and SIRT5 (69). As a representative member of

the SIRT family, SIRT3 possesses a conserved enzymatic core

(amino acids 126-399) that mediates deacetylation in a (NAD+)-

dependent manner (70). During the initial stages of renal fibrosis,

diminished Sirt3 expression is associated with increased

mitochondrial acetylation, and Sirt3-knockout mice display a

susceptibility to mitochondrial protein hyperacetylation, leading

to exacerbated renal fibrosis (71). Impairment of fatty acid

oxidation (FAO) is a key contributor to the progression of renal

fibrosis. AKI mice display marked FAO disruption and lipid

accumulation, accompanied by elevated ROS production.

Moreover, Sirt3 deletion exacerbates FAO dysfunction and renal

injury in AKI mice. Further mechanistic investigations suggest that

Sirt3 may regulate FAO, facilitate repair, and attenuate renal

damage through Adenosine 5 ’-monophosphate (AMPK)

activation (72). Evidence shows that even under normal

conditions, SIRT3 knockout mice display pronounced

hyperacetylation of various mitochondrial proteins (47). In the

context of kidney disease, SIRT3 serves a pivotal function in

regulating fatty acid oxidation, deacetylating p53 and superoxide

dismutase 2 (SOD2), and mitigating renal damage caused by

oxidative stress (73). SIRT3 also deacetylates key proteins such as

liver kinase B1(LKB1), SOD2, Cyclophilin D(CypD), Mitochondrial
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Fusion Protein 2(Mfn2), and PGC-1a to inhibit the opening of the

mitochondrial permeability transition pore (mPTP), thereby

enhancing mitochondrial function and dynamics (74). Notably,

SIRT3 has been implicated in the regulation of early renal

development. Studies have shown, in AKI mouse models, SIRT3

knockout exacerbates mitochondrial dysfunction (75), oxidative

stress (74), renal impairment, apoptosis, and fibrosis (76). SIRT3

deficiency has been reported to facilitate the mesenchymal

transition of tubular epithelial cells, contributing to fibrosis in

diabetic kidney disease (77). Additionally, like SIRT1, melatonin

has been shown in some studies to activate SIRT3 and ameliorate

AKI (78). Recent research has also identified sex-related differences

in SIRT3’s susceptibility to ischemia-reperfusion injury (79).

Moreover, SIRT3 deficiency can enhance abnormal glycolysis,

with glycolytic metabolites downregulating SIRT3 and triggering

EMT, thereby exacerbating kidney fibrosis (80). Notably, SIRT3 has

also been found to mitigate fibrosis in diabetic kidney disease

through the Fibroblast Growth Factor Receptor 1 pathway (81).
3.3.2 Sirt4
Sirt4 modulates the posttranslational modifications of diverse

proteins through aliphatic amidase activity, deacetylation and

Adenosine Diphosphate (ADP)-ribosylation/nucleotidyltransferase

functions, influencing a wide range of biological processes (82).

Sirt4 promotes ADP ribosylation and inhibits glutamate

dehydrogenase activity, subsequently blocking the conversion of

glutamate to a-ketoglutarate in the tricarboxylic acid cycle (83).

Furthermore, Sirt4 deficiency results in reduced expression and

functionality of the glutamate transporter (84), a factor that may

play a more critical role than Sirt4’s deacetylation activity. Sirt4 plays

an essential role in preserving mitochondrial function and has been

implicated in the development of metabolic disorders, such as

diabetic kidney disease. In DKD, Sirt4 mRNA and protein

expression are significantly diminished in podocytes exposed to

glucose stimulation, with the reduction occurring in a

concentration-dependent fashion. Sirt4 deficiency triggers the

NLRP3 inflammasome and activation of NF-kB signaling, thereby

worsening renal injury (85). Elevated FOXO1 levels and reduced Sirt4

expression have been observed in db/db mice, with FOXO1

overexpression further suppressing Sirt4 and aggravating

mitochondrial damage. In contrast, FOXO1 gene silencing

enhanced Sirt4 expression and partially recovered mitochondrial

function (82).
3.3.3 Sirt5
Sirt5 shows a high affinity for negatively charged acyl groups,

including glutarate, succinate, and malonate. It primarily catalyzes

lysine acylation but exhibits desuccinylase and deglutarylase

activities, with limited deacetylase activity (86). The regulation of

Sirt5 is influenced by two key molecules: PGC-1a overexpression

increases Sirt5 levels, while AMPK activation decreases its

expression (87). Ribose-5-phosphate is essential for nucleotide

biosynthesis, and studies have shown that Sirt5 knockdown

impairs ribose-5-phosphate production, resulting in persistent

and irreversible DNA damage (88). P53 plays an essential role in
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maintaining genomic stability. Following DNA damage, Sirt5

facilitates the desuccinylation of p53 at lysine 120, consequently

inhibiting its activity (89). Increased Sirt5 expression mitigates

mitochondrial dysfunction by promoting AMPK phosphorylation,

as demonstrated by the preservation of mitochondrial structure,

restoration of ATP levels, and deceleration of AKI progression (90).

Moreover, Sirt5 plays a crucial role in preserving FAO homeostasis

in mitochondria and peroxisomes of renal tubular epithelial cells

(RTECs), thereby conferring protection AKI-induced damage (91).
4 Sirtuins in renal physiology

The kidney ranks among the most metabolically active organs

in the human body, mainly due to its continuous responsibilities in

blood filtration, electrolyte and acid–blood pressure regulation,

nutrient reabsorption and base equilibrium maintenance. Due to

their function as key regulators of cellular metabolism, renal sirtuins

play a crucial role in these physiological processes, ensuring

adequate energy production across various tubular and

glomerular regions. The proximal tubules, responsible for

reabsorbing over 80% of the glomerular filtrate, are heavily reliant

on active transport processes, which necessitate a higher

mitochondrial density compared to collecting ducts and distal

tubules (92). Within the kidney, SIRT1 is extensively expressed in

podocytes and tubular cells. Its substantial expression in aquaporin

2-positive cells within the rat distal nephron suggests a potential

role regulating of homeostasis water and sodium. SIRT1 reduces

ep i the l i a l sod ium reabsorp t ion by assoc i a t ing wi th

methyltransferase and the disruptor of telomeric silencing-1,

leading to the suppression of a-subunit transcription of the

epithelial sodium channel (ENaC) in duct cells. Importantly, this

repressive effect of SIRT1 on the ENaC promoter is not contingent

on its deacetylase activity. The repressive action of SIRT1 on the

ENaC promoter is independent of its deacetylase function. SIRT1’s

ability to modulate water handling and sodium in the kidney may

have downstream implications for blood pressure regulation (43).

SIRT3 is poised to play a pivotal role in renal function. Strong

evidence links SIRT3 activity to the preservation of mitochondrial

energy balance and the enhancement of antioxidant defense

mechanisms within both distal tubule compartments and

proximal. Mitochondria can dynamically alter their size, quantity,

and distribution in response to the specific energy demands of the

kidney (82, 93). Mitochondria are highly motile organelles

operating within a dynamic network, where their functionality

depends on intricate molecular machinery that precisely balances

the fission and fusion processes (94). The role of SIRT6 in

maintaining renal homeostasis has been recently highlighted in

Sirt6-deficient mice, which exhibit significant glomerular damage,

particularly in podocytes. This damage includes reduced slit

diaphragm protein expression and the effacement of foot

processes (95). Evidence further supports that SIRT6 is crucial for

preserving glomerular permselectivity to plasma proteins and

maintaining podocyte function, as Sirt6 deletion has been shown

to exacerbate renal hypertrophy and accelerate the progression of

proteinuria (96). Taken together, these results highlight the pivotal
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role of SIRTs in regulating kidney homeostasis, with profound

implications for the initiation and progression of renal

diseases (Figure 1).
5 Sirtuins in kidney disease

Considering the essential roles of SIRTs in renal diseases, a

growing body of research has concentrated on unraveling their

influence across a wide range of renal disorders. These discoveries

have opened new avenues for identifying innovative therapeutic

strategies to slow the progression of renal diseases. Considering the

expression of sirtuins in tubular cells and their influence on

oxidative stress, inflammation, and mitochondrial dysfunction,

they are poised to play a key role in the pathogenesis of AKI

(97)(Figure 2).
5.1 Acute kidney injury

Given their expression in renal tubules and their regulatory

influence on oxidative stress, inflammation, and mitochondrial

dysfunction, sirtuins are likely fundamental to the development

and progression of AKI (97).

5.1.1 Ischemia reperfusion injury
The increased vulnerability of aging kidneys to ischemia/

reperfusion (I/R) injury suggests that sirtuins may contribute to

the pathogenesis of I/R-induced renal damage. Overexpression of

SIRT1 has been linked to increased resistance against kidney injury

induced by I/R, whereas the loss of a single SIRT1 allele exacerbated

renal damage following I/R (98). SIRT1 mitigated kidney injury

caused by I/R by activating antioxidant pathways, including the

nuclear factor erythroid Nrf2/HO-1 signaling (99), while also

reducing p53 expression and inhibiting apoptosis (98). SIRT1

further mitigated ischemia/reperfusion-induced kidney injury by

promoting mitochondrial biogenesis. In the kidney, Ischemia/

reperfusion (I/R) injury was observed to upregulate SIRT3

expression. Considering SIRT3’s primary localization within the

mitochondrial matrix, it is likely that SIRT3 influences the

progression of I/R-induced kidney injury, particularly through its

impact on mitochondrial dysfunction. Overexpression of SIRT3 has

been demonstrated to offer renal protection by inhibiting

superoxide production (100). Diminished SIRT3 expression

correlated with heightened severity of I/R-induced renal injury;

however, reestablishing SIRT3 levels mitigated this damage by

regulating mitochondrial homeostasis via the AMPK/PGC-1a
signaling pathway (101). A recent study revealed elevated SIRT5

expression in both peroxisomes and mitochondria of proximal

tubular cells. However, unlike other sirtuins, SIRT5 exhibited a

divergent role in I/R-induced kidney injury, where its loss conferred

renoprotective effects. The proposed mechanism involved the shift

of fatty acid oxidation from mitochondria to peroxisomes, regulated

by SIRT5. Conversely, SIRT6 expression exhibited an inverse

correlation with the severity of hypoxia-induced damage and

inflammation in tubular cells (102). The distinct roles of each
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sirtuin in I/R-induced renal injury warrant further investigation to

elucidate their mechanisms and therapeutic potential. In an IRI

model of AKI, the deacetylation of PGC1a by SIRT1 was essential

for promoting mitochondrial biogenesis and oxidative respiration,

thereby sustaining the energy supply necessary for tubular injury

after repair (103). Correspondingly, silencing SIRT1 markedly

worsened kidney IRI (98).

5.1.2 Cisplatin induced acute kidney injury
Cisplatin-induced renal injury results in decreased

mitochondrial quantity and functionality, coupled with increased

ROS production. Due to the pivotal role of sirtuins in mitochondrial

biogenesis and maintenance, their function has been more

thoroughly investigated in the context of cisplatin-induced AKI

compared to other etiologies of AKI. Transgenic mice with renal

tubule-specific overexpression of SIRT1 exhibited reduced

functional and histological indicators of kidney injury following

cisplatin administration. This protection was linked to a decrease in

cisplatin-induced apoptosis and oxidative stress (104). Recent

studies have highlighted the renoprotective function of SIRT3 in

cisplatin-induced acute kidney injury through its regulation of

mitochondrial dysfunction. In mice models, the absence of SIRT3

function exacerbated renal impairment following cisplatin
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administration. Conversely, pharmacological activation of SIRT3

alleviated cisplatin-induced renal injury in wild-type mice, but

failed to yield the same protective effects in SIRT3-deficient mice.

Cisplatin-induced downregulation of SIRT3 led to mitochondrial

fragmentation in tubular cells, whereas the restoration of SIRT3

activity counteracted the damage and maintained mitochondrial

structural integrity (74). Further studies have reinforced the

renoprotective effects of SIRT3 in alleviating cisplatin-induced

AKI by modulating mitochondrial dysfunction (105, 106). Among

the nuclear sirtuins, SIRT6-deficient mice demonstrated

exacerbated cisplatin-induced renal injury. Conversely, SIRT6

mitigates renal apoptosis and inflammation through the

deacetylation of H3K9 and the suppression of extracellular signal-

regulated kinase (ERK)-1/2 signaling (107).

Contrary to SIRT1, SIRT3, and SIRT6, the deficiency of SIRT2

and SIRT7, rather than their overexpression, notably alleviated

cisplatin-induced AKI. This protective effect was achieved by

reducing apoptosis and inflammation by modulating JNK and

p38 pathways (65, 108). Conflicting evidence exists concerning

the function of SIRT5 in cisplatin-induced AKI. One investigation

involving renal tubular cells demonstrated that SIRT5

overexpression mitigated cisplatin-induced apoptosis and

mitochondrial damage by modulating the B-cell lymphoma 2
FIGURE 2

Key molecular targets and cellular mechanisms modulated by sirtuins in renal diseases. HMGB1, high-mobility group box 1; HIF-1a, hypoxia-
inducible factor-1; STAT3, signal transducer and activator of transcription 3; YY1, Yin yang 1; eNOS, endothelial nitric oxide synthase; AMPK, AMP-
activated protein kinase; mTOR, mammalian target of rapamycin; PINK1, PTEN-induced kinase 1; H3K56, histones3 lysine56; Nrf2, nuclear factor-
erythroid 2-related factor 2; HO-1, heme oxygenase-1; ERK, extracellular signal-regulated kinase; NF-kB, nuclear factor kappa B; SOD, superoxide
dismutase; PGC-1a, peroxisome proliferator-activated receptor-gamma coactivator 1-alpha; NLRP3, NOD-like Receptor Pyrin Domain Containing 3;
DRP1, dynamin-related protein 1; OPA1, optic atrophy 1; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase.
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(Bcl-2) expression and Nrf2/HO-1 pathway (109). Conversely,

another investigation revealed that the absence of SIRT5 function

in murine models markedly enhanced renal function and reduced

tubular injury in cisplatin-induced AKI via the promotion of

peroxisomal fatty acid oxidation in proximal renal tubules (91).

The precise function of SIRT5 in cisplatin-induced AKI remains to

be fully elucidated.

5.1.3 Other types of acute kidney injury
The protective effects of sirtuins in mitigating sepsis-induced

AKI were linked to diminished inflammasome activation and

augmented autophagic processes. Nevertheless, in line with

observations in cisplatin-induced AKI, the deficiency of SIRT2 in

murine models led to enhanced renal function and reduced tubular

damage following lipopolysaccharide exposure (65). The role of

sirtuins has been further clarified in contrast-induced nephropathy

(CIN) (110), which is the third leading cause of hospital-acquired

AKI. Reports indicate that oxidative stress, driven by superoxide

generation and associated pathways, contributes to the pathogenesis

of CIN, with its effects regulated by the expression levels of sirtuins.
5.1.3.1 Hypertensive nephropathy

Growing evidence highlights that SIRTs serve as crucial

modulators of renal injury induced by hypertension. Several studies

have identified dysregulated expression and activity of SIRTs in

models of hypertensive renal damage. In particular, animal models

of hypertensive renal injury demonstrated a downregulation of both

SIRT1 and SIRT3. An in vivo study demonstrated that Ang II

administration exacerbates oxidative stress-induced renal damage

in aged mice, concomitantly reducing the expression and activity of

SIRT1 and SIRT3 (111). Lin et al. additionally observed reduced

SIRT3 expression in a murine model of hypertension. Additionally,

the single nucleotide polymorphism (SNP) within the regulatory

region of the hAT1R gene generates two distinct haplotypes,

heteroaryldihydropyrimidine I (Hap-I) and Hap-II (112). Jain et al.

demonstrated that transgenic (TG) mice overexpressing the Hap-I

variant of the hAT1R gene exhibited enhanced transcriptional

activity relative to the Hap-II variant, exacerbating hypertension

and chronic renal injury (113). Subsequent investigations revealed

that SIRT3 expression was reduced in the renal tissues of aged TG

mice expressing the Hap-I variant, implicating SIRT3 in the renal

damage associated with hypertension (114).
5.1.3.2 Obesity or hyperlipidemia

Renal lipotoxicity arises from the excessive accumulation of

lipids within the kidney (115). Significantly, prior research has

indicated that SIRT activation may be crucial in regulating lipid

metabolism in AKIs and CKDs. Moreover, restoring lipid

metabolism through the modulation of SIRTs could potentially

mitigate the progression of these diseases (116). SIRT1 and SIRT3

exert protective functions in preventing disruptions to cellular

processes caused by lipotoxicity in renal cells. For example, Wang

et al. proposed that SIRT1 restoration can directly counteract

apoptosis and mitochondrial dysfunction, as well as lipotoxicity

induced by free fatty acids in tubular epithelial cells (TECs) (117).
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Moreover, overexpression of SIRT3 was shown to mitigate ROS

accumulation in the kidney and reduce lipotoxicity-induced

inflammation by suppressing the expression of the pro-

inflammatory cytokine monocyte chemoattractant protein-1

(MCP-1) (118). Additionally, SIRTs have the potential to regulate

fatty acid oxidation in renal cells, thereby protecting against renal

damage. For example, rhein has been shown to mitigate renal

fibrosis and correct FAO dysfunction by modulating the SIRT1/

STAT3/Twist1 axis (119). Activation of SIRT3 has been shown to

restore FAO function in tubular epithelial cells and prevent renal

fibrosis through the deacetylation of pyruvate dehydrogenase E1a
(71). In addition, SIRT5 has been shown to protect against AKI by

preserving the equilibrium between mitochondria and FAO in

tubular epithelial cells (91). The involvement of SIRTs in lipid

metabolism, a contributing factor to kidney diseases, suggests their

potential impact on renal injury related to obesity or

hyperlipidemia. Moreover, recent research has highlighted the

renoprotective role of SIRT3 in mitigating oxidative stress and

mitochondrial dysfunction associated with kidney injury induced

by a high-fat diet (HFD). Following a high-fat diet (HFD), SIRT3-

knockout mice exhibited a greater degree of oxidative stress in the

kidneys compared to wild-type mice. This led to significant

ultrastructural mitochondrial damage in tubular epithelial cells,

decreased energy production and mitochondrial mass, and

worsened kidney disease severity (120).
5.2 Diabetic nephropathy

Diabetes represents a major public health challenge. It is worth

noting that 30–40% of patients with diabetes develop renal

complications, such as hyperfiltration, microalbuminuria, diabetic

nephropathy, macroalbuminuria, and, eventually, end-stage renal

disease (ESRD) (121, 122). However, the pathogenesis of DN is

intricate, and the precise molecular mechanisms remain

incompletely elucidated. Growing evidence suggests that

metabolic oxidative stress, dysregulation, apoptosis, impaired

autophagy, and inflammation may contribute to renal pathology

and play critical roles in the progression of DN. Recent research has

demonstrated that SIRTs are capable of regulating these biological

pathways in renal cells, exerting a significant influence on the onset

and progression of DN (123, 124). SIRT1 is broadly expressed in

human kidneys, and its expression is notably reduced in serum and

renal tissues of patients with DN (125). This suppression suggests a

strong correlation between SIRT1 levels and renal function.

Compelling evidence indicates that SIRT1 plays a renoprotective

role in the onset and development of DN (37, 126, 127). In vivo

studies have also demonstrated that podocyte-specific

overexpression of SIRT1 significantly mitigates the progression of

DN by reducing diabetes-induced podocyte injury (34). Conversely,

conditional knockout of SIRT1 in podocytes led to pronounced

proteinuria and severe renal damage in animal models (31). The

renoprotective role of SIRT1 has been further validated by in vitro

studies. For instance, the SIRT1 activator resveratrol has been

shown to safeguard podocytes against mitochondrial damage

caused by HG concentrations (128). This protective effect is
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abrogated by the administration of the SIRT1-specific inhibitor EX-

527 or by silencing SIRT1 expression (129). Evidence indicates that

reduced SIRT1 expression and elevated acetylation of NF-kB p65

may be closely associated with an increased fibrosis index in

glomerular mesangial cells (130). In tubular epithelial cells (HK-

2) incubated under HG conditions, inhibition of SIRT1 leads to

heightened NF-kB activity, resulting in Dynamin-related protein 1

(Keap1) overexpression. This process promotes the ubiquitination

and subsequent degradation of Nrf2, contributing to renal tubular

epithelial injury (131). Upregulation of SIRT1 diminishes HIF-1a
expression and activity, leading to the attenuation of renal EMT,

fibrosis, and oxidative stress in DN (132, 133). Mounting evidence

indicates that the expression of SIRT3, SIRT4, and SIRT7 is reduced

in renal cells and tissues affected by DN, implicating their potential

renoprotective roles in mammalian kidneys (134).

SIRT3 mitigates HG-induced apoptosis and ROS generation,

thereby reducing renal damage in DN by inhibiting Bnip3 (135).

Basal autophagy plays a critical role in maintaining homeostasis and

biological function in renal cells (136). SIRT3 exerts protective

effects against the progression of DN by promoting mitochondrial

autophagy (137). As a potential therapeutic approach for DN,

SIRT3 was shown to mitigate DN in a diabetic mouse model by

facilitating amniotic fluid stem cell-induced protection of

mitochondrial homeostasis through the regulation of mitophagy

(137). Elevated SIRT3 levels in renal tubular cells have been

demonstrated to counteract hyperglycemia-induced apoptosis by

reducing ROS accumulation through the activation of the Akt-

FoxO signaling pathway (138). Notably, SIRT3 expression is

diminished in the kidneys of both mice and patients with DKD

(139, 140). Conversely, Sirt3 deficiency has been linked to

exacerbated kidney disease in mice subjected to a high-fat diet, a

condition that mimics metabolic syndrome in humans (120). Under

these conditions, Sirt3 deficiency resulted in lipid accumulation and

mitochondrial damage within tubular cells. Ectopic lipid deposition

in renal tubules is a prominent pathological hallmark in patients

with DKD, arising due to decreased levels of meteorin-like protein

(Metrnl), a hormone secreted by skeletal muscle and adipose tissue

(141). Under these circumstances, the absence of Sirt3 led to lipid

buildup and mitochondrial impairment in tubular cells. This

abnormal lipid buildup in renal tubules represents a key

pathological characteristic in patients with DKD, arising from

reduced levels of meteoric-like protein (Metrnl), a hormone

secreted by adipose tissue and skeletal muscle (141).

Previous research demonstrated that SIRT4 mitigates apoptosis

via the mitochondrial pathway and suppresses the inflammatory

response in DN (142). Overexpression of SIRT4 inhibits podocyte

apoptosis by reducing mitochondrial ROS production (142).

Additionally, SIRT4 overexpression inhibited the NF-kB signaling

pathway by reducing the expression of proinflammatory cytokines

and downregulating the NLRP3 inflammasome in podocytes

subjected to glucose stimulation (85).

Recent research on the involvement of SIRT2 and SIRT6 in DN

has yielded conflicting results. One study reported a reduction in SIRT2

and SIRT6 expression levels under hyperglycemic conditions (125).

Conversely, findings from hyperglycemic murine renal podocytes

indicate an upregulation of SIRT2 at the mRNA level (143).
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Nevertheless, SIRT2 mRNA expression declined as the aging process

accelerated under hyperglycemic conditions (125). Therefore, the exact

biological mechanism of SIRT2 in DN remains to be elucidated.

Some research indicates that SIRT6 may play a pathogenic role

in DN. For example, SIRT6 expression has been positively

correlated with TNF-a levels, a cytokine linked to systemic

inflammation, implying that SIRT6 may exacerbate the

inflammatory process in DN (125, 144). Conversely, SIRT6

overexpression may confer protective benefits in DN by

modulating mitochondrial dysfunction, glucose metabolism,

apoptosis, and the fibrotic phenotype (52, 145). NAD+

metabolism is crucial for maintaining kidney function. In mice

with proximal renal tubular cell-specific deletion of nicotinamide

phosphoribosyltransferase, there is a marked reduction in sirtuin

levels, especially Sirt6 (22). Earlier research has demonstrated that

FOXO3a safeguards the kidneys against diabetic damage by

upregulating Sirt6 expression via the Sirt6/Smad3 signaling

pathway (146). The deletion of SIRT6 intensified podocyte

damage in diabetic mice, whereas SIRT6 overexpression under

high glucose conditions provided protection against podocyte

injury by epigenetically regulating the transcription of Notch1

and Notch4 through H3K9 deacetylation (147). SIRT6 has also

modulated the immune response by promoting the activation of M2

macrophages, which play a protective role against podocyte damage

in STZ-induced diabetic mice (148). A recent investigation revealed

that the selective deletion of Nampt in proximal tubular cells of

STZ-induced diabetic mice led to decreased SIRT6 expression,

which correlated with tubular basement membrane thickening,

elevated type IV collagen deposition, aggravated renal fibrosis,

and the development of albuminuria (149).
5.3 Fibrosis and aging

Renal fibrosis arises from the excessive accumulation of ECM, a

progressive condition characterized by tubulointerstitial fibrosis

and glomerulosclerosis, which ultimately culminates in end-stage

renal disease (150). Renal tubular fibrosis is a key pathological

hallmark in CKD, with sirtuins being shown to act as a central

factor in its development (151). In a UUO model, SIRT1 knockout

mice exhibited marked tubular fibrosis (152). Additionally, the

downregulation of SIRT1 in renal medullary interstitial cells

significantly diminished their resistance to oxidative stress (153).

SIRT1 expression has been identified as a contributing factor in the

development of chronic renal allograft dysfunction and chronic

cyclosporine A (CsA) nephropathy. In rat kidneys affected by

chronic allograft dysfunction, reduced SIRT1 levels are associated

with monocyte infiltration and interstitial fibrosis, attributed to the

up-regulation of inflammatory cytokines (154). Various

mechanisms have been suggested to elucidate the pathogenetic

relationship between SIRT1 and the initiation of renal fibrosis.

Endothelial SIRT1 expression appears to be critical, as mice with

endothelial-specific SIRT1 deletion developed spontaneous

interstitial fibrosis, notably in the absence of glomerular

involvement, even at an early age. Additionally, after prolonged

folic acid treatment, mice with endothelium-specific SIRT1 deletion
frontiersin.org

https://doi.org/10.3389/fendo.2024.1524674
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fan et al. 10.3389/fendo.2024.1524674
exhibited exacerbated tubulointerstitial fibrosis (155). Sirtuins have

also been implicated in the EMT, a critical mechanism in the

advancement of renal fibrosis (156). In alignment with

observations from AKI, pharmacological inhibition of SIRT2 led

to a reduction in renal interstitial fibrosis in UUO models (68, 157).

This effect was accompanied by decreased expression of platelet-

derived growth factor receptor-b (PDGFR-b), the E3-ubiquitin

ligase murine double-minute 2 (MDM2) (157), epidermal growth

factor receptor (EGFR) and signal transducers and activators of

transcription 3(STAT3) (68).

Mitochondria are essential in the progression of fibrosis across

various organs, including the kidneys. SIRT3 has demonstrated

anti-fibrotic properties in cardiac tissue, however, its role in kidney

fibrosis remains less well understood (158). Age-related fibrosis was

exacerbated in the kidney, likely due to enhanced transforming

growth factor-b(TGF-b) signaling and hyperacetylation of glycogen

synthase kinase-3b(GSK3b), culminating in the activation of Smad3

in Sirt3-deficient mice (158). Sirt3-deficient mice displayed reduced

expression of Opa1 and Mfn1, alongside elevated levels of Drp1,

shifting the balance towards mitochondrial fission. This imbalance

is linked to renal dysfunction and fibrosis. Additionally, another

study revealed that reduced SIRT3 expression is correlated with

elevated acetylation in mitochondrial tubular cells during the early

stages of renal fibrosis (71).

SIRT3 has been demonstrated to deacetylate kruppel-like factor

15(KLF15), an inhibitor of extracellular matrix protein synthesis, in

podocytes. Moreover, in mice with a fibrogenic phenotype, SIRT3

overexpression in endothelial cells provided protection against

diabetes-induced renal fibrosis (77). In contrast, Sirt3 deficiency

in endothelial cells has been shown to trigger metabolic

reprogramming that promotes TGF-b/Smad3-dependent

mesenchymal transition in renal tubular epithelial cells (77).

The kidneys are particularly vulnerable to the aging process,

which increases their susceptibility to both acute and chronic

injuries over time. Preclinical studies have shown that renal

SIRT1 activity declines with age, coinciding with a reduction in

the intracellular NAD+ poo (4), leading to enhanced mitochondrial

swelling and disruption of cristae architecture (159). Caloric

restriction alleviated mitochondrial abnormalities in aged mice

with intact Sirt1, while this benefit was absent in Sirt1-deficient

mice (159). Additionally, podocyte-specific deletion of Sirt1

aggravated renal damage and increased cellular senescence in

aged mice (27). Similarly, Sirt1 knockout has been linked to the

premature onset of endothelial cell senescence (160). Conversely,

treatment with a SIRT1 activator or the NAD+ precursor

nicotinamide mononucleotide has been shown to enhance renal

resilience during the aging process in mice (161). Experimental

evidence indicates that SIRT1 is pivotal in mediating age-associated

pathological alterations, including kidney damage related to aging

(162). Prior research has demonstrated a reduction in SIRT1

activity within aging rodent kidneys (163). SIRT1 serves a

protective role against apoptosis and senescence triggered by

oxidative stress during the aging process (164). It modulates the

activity of various FOXO proteins, including FOXO1, FOXO3, and

FOXO4, by promoting their deacetylation in response to oxidative

stress. Studies have indicated that the PI3K-Akt pathway, which
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acts as an upstream regulator of FOXO proteins, is downregulated

in the aging kidney. The aging process is closely linked to systemic

hypoxia, leading to apoptosis, metabolic dysregulation, and cell

cycle anomalies. Hypoxia-induced downregulation of SIRT1

expression facilitates FOXO3 acetylation, thereby suppressing the

expression of key FOXO3 target genes, including Bnip3 and

p27Kip1. Moreover, hypoxia triggers apoptosis and impairs

autophagic processes in senescent cells, resulting in the

accumulation of these aged cells. In the kidney, SIRT1 safeguards

renal cells from apoptosis by preventing Smad7 acetylation through

p300 mediation (164). Collectively, these observations underscore

the pivotal role of SIRT1 in the progression of age-associated CKD.

Calorie restriction has also been demonstrated to upregulate SIRT6

expression, mitigate NF-kB signaling, and enhance renal function

in aged mice (114). Research has revealed that the acetylation of

nucleophosmin (NPM1) is significantly elevated in senescent cells,

accompanied by a pronounced downregulation of SIRT6 and

SIRT7, suggesting that these sirtuins may play crucial roles in the

aging process via the deacetylation of NPM1. Proteomic analyses of

the interaction networks of SIRT6 and SIRT7 have further

uncovered potential mechanistic links to aging through their

associated protein interaction pathways (165).
5.4 Sirtuin regulators

Given the involvement of sirtuins in numerous cellular

biological processes within the kidney, they represent promising

therapeutic targets for the prevention and treatment of age-

associated diseases, including renal disorders. Below is a detailed

overview of key sirtuin modulators with the most significant

implications for kidney disease (Table 1, Figure 3).
5.4.1 Natural sirtuin agonists
5.4.1.1 Resveratrol

Resveratrol mitigates proteinuria and decreases malondialdehyde

concentrations in diabetic mice, while simultaneously enhancing

renal cortical Mn-SOD activity, preventing apoptosis in glomerular

podocytes and renal tubular epithelial cells, ameliorating

histopathological alterations, and restoring the expression of Sirt1

and PGC-1a in renal tissues of DKD models. Moreover, resveratrol

directly attenuates mitochondrial reactive oxygen species (ROS)

generation, enhances the functionality of respiratory chain

complexes I and III, elevates mitochondrial membrane potential,

and suppresses the translocation of cytochrome C frommitochondria

into the cytoplasm (128).
5.4.1.2 Curcumin

Curcumin, a polyphenolic compound derived from turmeric,

modulates oxidative stress and mitigates mitochondrial injury,

thereby delaying the initiation and progression of aristolochic

acid-induced nephropathy through the activation of the SIRT1/

Nrf2/HO-1 signaling cascade (166). Curcumin further mitigates

oxidative damage in renal tubular epithelial cells (RTECs) via the

Sirt1/FOXO1 pathway. Theaflavin also displays significant
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renoprotective properties, preventing CaOx-induced renal damage

by restoring the antioxidant defense mechanisms mediated through

the miR-128–3p/Sirt1 axis (175).

5.4.1.3 Silymarin

Silymarin, a pharmacological Sirt3 activator, confers protection

against cisplatin-induced apoptosis in TECs and AKI by enhancing

mitochondrial function (106).

5.4.1.4 Honokiol

Honokiol, a small-molecule polyphenol, restores Sirt3

expression and enhances AMPK activity in RTECs exposed to

cisplatin. Additionally, it preserves DRP1 phosphorylation at

Ser637, preventing its mitochondrial translocation, thereby

averting mitochondrial fragmentation and subsequent cellular

damage and apoptosis (167).

5.4.1.5 Quercetin

Quercetin, a flavonoid with potent anti-inflammatory and anti-

fibrotic effects, has markedly enhanced renal function in murine
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models and mitigated lipopolysaccharide-induced damage in

RTECs. Cellular and murine models demonstrated that quercetin

decreased the phosphorylation of IkBa and p65 following

lipopolysaccharide exposure. Further investigations revealed that

quercetin exerts protective effects against sepsis-induced AKI by

upregulating Sirt1 expression and suppressing NF-kB activation

(176). Quercetin has been observed to attenuate senescence in

RTECs and mitigate renal fibrosis through the activation of Sirt1/

PINK1/Parkin-mediated mitophagy (168).
5.4.1.6 Isoliquiritigenin

Isoliquiritigenin, a naturally occurring flavonoid, exerts

protective effects against DKD by mitigating inflammation and

oxidative stress in a Sirt1-dependent manner. Molecular docking

studies have revealed that isoliquiritigenin directly interacts with

Sirt1, modulating the MAPK and Nrf-2 signaling pathways to

counteract inflammatory responses and oxidative damage, thereby

preventing the progression of renal dysfunction and fibrosis (169).

Isoliquiritigenin mitigates inflammatory responses by upregulating

Sirt-1 activity and modulating the NF-kB and NLRP3 pathways,
TABLE 1 Treatment of kidney disease related to sirtuins.

Drug/
Target

SIRT
family

Model (s) Disease
Genes and
pathways

Mechanism
of protection

Reference

Resveratrol Sirt1 DKD/podocyte cells DKD Sirt1/PGC-1a
Attenuate mitochondrial
oxidative stress

(128)

Curcumin Sirt1
Aristolochic acid nephropathy/
NRK-52E cells

Aristolochic
acid nephropathy

Sirt1/Nrf2/HO-1
Activate the body’s antioxidant
capacity and reduce tubular
epithelial cell apoptosis

(166)

Silymarin
Sirt3

Cisplatin-induced AKI/
HK2 cells

Cisplatin-
induced AKI

/
Attenuate mitochondrial
dysfunction and apoptosis

(106)

Honokiol Sirt3 Cisplatin-induced/HK2 cells
Cisplatin-
induced AKI

Sirt3/AMPK
Remodeled
mitochondrial dynamics

(167)

Quercetin Sirt1 UUO/NRK-52E cells
Senescence and
renal fibrosis

Sirt1/PINK1/Parkin Attenuate mitophagy (168)

Isoliquiritigenin Sirt1
STZ-induced DKD/NRK-
52E cells

DKD
Sirt1/MAPKs,
Sirt1/Nrf2

Alleviate inflammation and
oxidative stress

(169)

Sirt1 STZ-induced DKD DKD
Sirt1/NF-kB;
Sirt1/NLRP3

Reduce inflammation (170)

Poricoic acid A Sirt3 UUO/NRK-49F cells UUO Sirt3/Wnt/b-catenin Ameliorate fibrosis (171)

SRT1720 Sirt1 DKD/podocyte cells DKD Sirt1/NF-kB p65 Anti-autophagy response (172)

SRT3025 Sirt1
Senescence and renal/NRK-
49F cells

Senescence and
renal fibrosis

Sirt1/TGF-b Restrain fibrogenesis (173)

MDL-800 Sirt6 UUO/HK2 cells UUO
Sirt6/b-Catenin;
TGF-b1/Smad

Reduce inflammation
and fibrosis

(174)

SRT2183 Sirt1 UUO/RMIC cells UUO Sirt1/COX2
Reduce oxidative stress,
apoptosis and fibrosis

(153)

AGK2 Sirt2 IRI/RTECs cells AKI Sirt2/FOXO3a Inhibited apoptosis (67)

Sirt2 UUO/NRK-49F cells UUO Sirt2/EGFR/PDGFRb Ameliorate fibrosis (68)
NMN, nicotinamide mononucleotide; NR, nicotinamide riboside; RTECs, renal tubular epithelial cells; DKD, diabetic kidney disease; AKI acute kidney injury, STZ streptozotocin, UUO
unilateral ureteral obstruction, CKD chronic kidney diseases, HK2 Human Kidney-2, PGC-1a peroxisome proliferator-activated receptor-gamma coactivator 1-alpha, PINK1 PTEN-induced
kinase 1, Nrf2 nuclear factor-erythroid 2-related factor 2, HO-1 heme oxygenase-1, AMPK AMP-activated protein kinase, MAPK mitogen-activated protein kinase, NLRP3 NOD-like Receptor
Pyrin Domain Containing 3, NF-kB nuclear factor kappa B, TGF-b transforming growth factor beta, COX2 cyclooxygenase-2, NRK-49F cultured renal interstitial fibroblasts, EGFR epidermal
growth factor receptor, PDGFRb platelet-derived growth factor receptor-b, RMIC medullary interstitial.
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leading to reduced collagen accumulation in diabetic kidney disease

and safeguarding renal architecture and functionality (170).

5.4.1.7 Poricoic acid A

Poricoic acid A, an anti-fibrotic compound derived from Poria

cocos, has been demonstrated to suppress renal fibroblast activation

and interstitial fibrosis by enhancing SIRT3 expression and promoting

b-catenin K49 deacetylation (171). Uncoupling protein 1, a nuclear-

encoded protein situated in the inner mitochondrial membrane, has

been demonstrated to mitigate oxidative stress by stabilizing SIRT3.

This stabilization reduces EMT and ECM deposition, ultimately

alleviating renal interstitial fibrosis (177).

5.4.2 Synthetic sirtuin agonists
Considering the pivotal involvement of sirtuin activation in

aging-associated pathologies, particularly renal disorders, numerous

sirtuin-targeting compounds with high binding affinities have been

developed. Notable examples include SRT1720, SRT3025, and MDL-

800. SRT1720, a Sirt1 activator, has been shown to decrease p65

acetylation, promote autophagic processes in high glucose-induced

podocyte EMT, alleviate renal fibrosis, and restore kidney function

(172). SRT3025, another Sirt1 activator, has been documented to

counteract the elevation of collagen synthesis induced by TGF-b1,
mitigate glomerulosclerosis and tubulointerstitial fibrosis, and

ameliorate both the decline in glomerular filtration rate and the

severity of proteinuria (173). SRT2183, another Sirt1 activator, has

been shown to enhance the resilience of renal medullary interstitial
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cells to oxidative stress, while reducing apoptosis and fibrosis in a

murine model of UUO-induced kidney injury. This effect is mediated

by Sirt1-driven upregulation of cyclooxygenase-2 (COX2) expression

in renal medullary interstitial cells (153). MDL-800, a Sirt6 activator,

has been reported to alleviate tubulointerstitial inflammation and

fibrosis in UUO-induced models. In vitro studies demonstrated that

MDL-800 suppresses TGF-b1-induced myofibroblast activation and

ECM production by modulating Sirt6-dependent b-catenin
acetylation and regulating the TGF-b1/Smad signaling

pathway (174).
5.4.3 Sirtuins inhibitors
Apart from sirtuin activators, a range of sirtuin inhibitors has

been developed to treat various renal pathologies. Research has

established the role of Sirt2 in driving inflammation and renal

fibrosis, leading to the development of Sirt2 inhibitors, including

AK-1 and AGK2. Pre-administration of the Sirt2 inhibitor AGK2

before renal ischemia-reperfusion notably diminished the incidence

of apoptotic renal tubular cells and alleviated associated

ultrastructural damage (67). Sirt2 activity appears to play a role in

the activation and proliferation of renal fibroblasts. The Sirt2

inhibitor AGK2 effectively suppressed fibroblast activation and, to

a reduced extent, cell proliferation in a dose- and time-dependent

manner, as indicated by decreased expression levels of collagen I, a-
smooth muscle actin, and fibronectin (68). AK-1, another Sirt2

inhibitor, enhances Nrf2 activity while suppressing JNK signaling,

thereby mitigating oxidative stress (178).
FIGURE 3

Therapeutic strategies to enhance sirtuin expression and functionality in kidney disease. NLRP3, NOD-like Receptor Pyrin Domain Containing 3; NF-
kB, nuclear factor kappa B; HIF-1a, hypoxia-inducible factor-1alpha; AMPK, AMP-activated protein kinase; PGC-1a, peroxisome proliferator-
activated receptor-gamma coactivator 1-alpha; SOD, superoxide dismutase; Nrf2, nuclear factor-erythroid 2-related factor 2; LKB1, liver kinase B1;
FOXO, forkhead box protein.
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6 Perspective

The kidney is a complex organ composed of diverse cell types with

intricate intercellular signaling pathways that are highly

interconnected and mutually regulatory. Investigating and

harnessing this cellular crosstalk could provide deeper insights into

the underlying mechanisms of renal disease pathogenesis. Since the

discovery of sirtuins, our understanding of this protein family has

significantly expanded. Initial studies primarily focused on uncovering

critical substrates of SIRT enzymatic function. However, subsequent

findings indicate that sirtuins modulate functional networks of target

proteins, orchestrating a coordinated physiological response across

diverse cellular processes such as oxidative stress, metabolism,

genomic stability, and cell survival. Emerging evidence suggests that

sirtuins are pivotal in alleviating various stressors in metabolically

active organs, such as the kidney, thereby influencing physiological

and pathological processes. Regrettably, despite extensive efforts in

preclinical research, these endeavors have yielded only a limited

number of small-molecule candidates progressing to clinical trials.

The application of SIRT modulators from laboratory research to

clinical application has been impeded by the scarcity of selective

compounds targeting specific SIRT isoforms, as well as the moderate

efficacy, restricted bioavailability, alongside suboptimal

pharmacokinetic and pharmacodynamic properties of current

candidates. Considering sirtuins as promising therapeutic targets for

the prevention and treatment of age-related disorders, including renal

diseases, and potentially extending the human lifespan, validating the

clinical benefits of sirtuin activators would have a profound impact on

both clinical practice and public health.

Over the past decade, significant advancements have been

achieved in the development of effective and safe sirtuin modulators.

Several sirtuin agonists have transitioned from preclinical research to

clinical trials, opening new avenues for small-molecule therapeutics

targeting sirtuins. While sirtuin activators and NAD+ enhancers have

demonstrated promising outcomes in preclinical studies, including the

improvement of pathological markers in podocytes and renal tubular

epithelial cells (RTECs), there is currently no robust evidence to

support their efficacy in slowing the progression of human kidney

disease or in preventing its onset. Crucially, the pharmacokinetic

profiles and therapeutic efficacies of sirtuin-targeting agents in renal

pathologies are yet to be defined. Additionally, the molecular

mechanisms underlying sirtuin-mediated effects require further

clarification, and the long-term safety of these therapeutic agents

necessitates comprehensive assessment through extended clinical

trials. Renal cell communication, mediated through a complex
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interplay of small molecules, exosomes, and cytokines, is pivotal in

the acute biological responses observed during the initiation and

progression of renal pathologies. However, the potential of sirtuins

as modulators of these signaling interactions merit more

comprehensive investigation to enhance therapeutic strategies.
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NAM nicotinamide
Frontiers in Endocrino
NMN nicotinamide mononucleotide
iNAMPT intracellular nicotinamide phosphoribosyltransferase
NMNAT nicotinamide mononucleotide adenylyltransferase
AKI acute kidney injury
DN diabetic nephropathy
YY1 Yin Yang 1
HMGB1 high-mobility group box 1
ECM extracellular matrix
HIF-1a hypoxia-inducible factor-1a
ROS reactive oxygen species
NF-kB nuclear factor-kB
FOXO forkhead box protein
PGC-1a peroxisome proliferator-activated receptor gamma

coactivator-1a
DKD diabetic kidney disease
UUO unilateral ureteral obstruction
eNOS endothelial nitric oxide synthase
H3K56 histone H3 lysine 56
H3K9 histone H3 lysine 9
Runx2 runt-related transcription factor 2
CKD chronic kidney disease
DSBs double-strand breaks
Nrf2 nuclear factor-erythroid 2-related factor 2
HO-1 heme oxygenase-1
FAO fatty acid oxidation
NPM nucleophosmin
ATM ataxia-telangiectasia mutated
ATG7 autophagy-related gene 7
JNK c-Jun N-terminal kinase
SOD2 superoxide dismutase 2
LKB1 liver kinase B1
CypD Cyclophilin D
logy 18
Mfn2 Mitochondrial Fusion Protein 2
mPTP mitochondrial permeability transition pore
IRI ischemia-reperfusion injury
RTECs renal tubular epithelial cells
ENaC epithelial sodium channel
CIN contrast-induced nephropathy
Ang II angiotensin I
Hap-I heteroaryldihydropyrimidine I
Hap-II heteroaryldihydropyrimidine II
SNP single nucleotide polymorphism
TG transgenic
MCP-1 monocyte chemoattractant protein-1
HFD high-fat diet
DN diabetic nephropathy
ESRD end-stage renal disease
HG high glucose
Keap1 Kelch-like ECH-associated protein 1
CsA cyclosporine A
PDGFR-b platelet-derived growth factor receptor-b
MDM2 murine double-minute 2
EGFR epidermal growth factor receptor
STAT3 signal transducers and activators of transcription 3
TGFb transforming growth factor-b
GSK3b glycogen synthase kinase-3b
Drp1 Dynamin-related protein 1
KLF15 kruppel-like factor 15
AT1AR Anti-AT1 receptor antibody
ROS reactive oxygen species
COX2 cyclooxygenase-2
ECM extracellular matrix
NPM1 nucleophosmin
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