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Editorial on the Research Topic

Pancreatic beta-cell dedifferentiation
The pathogenesis of both type 1 diabetes (T1D) and type 2 diabetes (T2D) involves a

decline in functional b-cell mass, which is essential for insulin secretion and glucose

regulation. Historically, apoptosis was considered the primary cause of b-cell loss (1).

However, recent evidence highlights a process called b-cell dedifferentiation, in which

mature b-cells lose their specialized insulin-secreting identity and revert to a progenitor-

like, non-functional state (2). The mechanisms driving this dedifferentiation remain

unclear due to the complex interplay between genetic factors and cellular stress. This

Research Topic explores key drivers of b-cell dedifferentiation and their role in both T1D

and T2D, with a focus on the implications for disease management and potential reversal.

b-cell dedifferentiation is marked by the loss of b-cell identity markers, such as Foxo1,

Pdx1, Nkx6.1, and MafA, which are critical for maintaining b-cell function (3, 4). At the

same time, there is an upregulation of “disallowed” genes, such as lactate dehydrogenase A

(Ldha) and monocarboxylate transporter-1 (Mct1), typically repressed in mature b-cells to
prevent inappropriate insulin secretion (5–7). Through dedifferentiation, a subset of

terminally differentiated b-cells begin to express lineage precursors such as Neurogenin3

(Ngn3), Oct4, and Nanog, suggesting b-cells regress to a more primitive, less specialized

state (2, 8). Furthermore, dedifferentiated beta-cells could begin to express alpha cell

signature genes, such as Arx and Gc, and undergo transdifferentiation (9, 10).

Environmental factors including chronic inflammation and oxidative stress have been

extensively studied in relation to these molecular changes, particularly in animal models

and human tissues (3, 11, 12).

In this Research Topic, Patel and Remedi provide a comprehensive review of genetic

and cellular stress factors, highlighting the possibility that b-cell dedifferentiation may be

reversible. They point out that dedifferentiated cells could potentially redifferentiate into

functional b-cells under the right conditions. For example, intensive insulin therapy alone,

or in combination with metformin, infusion of human umbilical cord-derived MSCs, as

well as ALDH1A3 inhibitors have shown promise in preventing b-cell dedifferentiation and

improving glucose tolerance. Moreover, calorie restriction and intermittent fasting have

been shown to protect against b-cell dedifferentiation in T2D mouse models, further

reinforcing that this process may be reversible.
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In addition to dedifferentiation, b-cells have been shown to

transdifferentiate into other pancreatic cell types, such as a-, d-, or
pancreatic polypeptide (PP) cells. Human studies of T2D reveal an

increased a/b-cell ratio, primarily due to a reduction in b-cell mass.

Ex vivo studies suggest that degranulated b-cells can

transdifferentiate into a-cells, and this process can be inhibited by

knocking down the a-cell marker, Arx. Mouse models also

demonstrate that the deletion of certain genes, such as Foxo1,

Nkx2.2, Dnmt1, and XBP1, can induce b-to-a or b-to-d cell

transdifferentiation. Conversely, manipulations including PAX4

overexpression or Arx inactivation have been shown to induce a-
to-b cell conversion, offering potential avenues for therapeutic

intervention. Together, these studies suggest that beta-cell

function could be restored by reversing dedifferentiation or

transdifferentiation, which opens exciting possibilities for

diabetes treatment.

Magnuson and Osipovich discuss that Ca2+ signaling is closely

linked to metabolic stress-induced b-cell failure. Markers of

dedifferentiation, such as Aldh1a3 and Bach2, are upregulated,

likely due to chronically elevated intracellular Ca2+. Achaete-scute

homolog 1 (Ascl1), a Ca2+-regulated gene, is activated by Ca2+

signaling and contributes to b-cell dysfunction by promoting

dedifferentiation while suppressing genes essential for insulin

secretion and cell innervation. Notably, removing Ascl1 improved

b-cell function under metabolic stress from a high-fat diet,

highlighting the importance of maintaining Ca2+ signaling

homeostasis for preserving b-cell identity.
Carroll et al. delve into the effects of maternal nutrition on the

metabolic health of offspring, particularly in relation to the altered

a/b-cell ratio and insulin hypersecretion. They underscore the

importance of mitochondrial morphology in b-cell maturation,

demonstrating how maternal diet-induced changes at the

mitochondrial level can affect b-cell function and influence the

offspring’s long-term risk of developing diabetes.

While b-cell dedifferentiation is extensively studied in the

context of T2D, its role in T1D remains less understood. T1D is

primarily an autoimmune disease in which b-cells are targeted and

destroyed by the immune system. Webster and Mirmira analyze

existing evidence which suggests that b-cell dedifferentiation may

also occur in T1D. Studies using pancreas from T1D donors reveal a

significant reduction in insulin-positive cells, yet some residual b-
cells persist, even years after disease onset. T1D islets show an

increase in non-beta endocrine cells, as well as cells that co-express
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glucagon and Pdx1, which indicates a potential identity transition

between b-cells and a-cells. Additionally, hormone-negative

endocrine cells are more prevalent in T1D islets, suggesting that

some b-cells may dedifferentiate into other cell types rather than

undergoing apoptosis. In T1D, chronic immune attacks may drive

b-cells to dedifferentiation as a survival mechanism to evade

immune detection, though this comes at the cost of losing insulin

secretion and further impairing glucose homeostasis.

In conclusion, b-cell dedifferentiation represents a critical

frontier in diabetes research, with the potential to reshape our

understanding of both T1D and T2D. The reversibility of this

process holds immense promise for developing therapies that

preserve or restore b-cell function. In both T2D, where metabolic

stress is the main driver of dedifferentiation, and in T1D, where

immune evasion plays a role, targeting b-cell dedifferentiation could
lead to significant advancements in diabetes treatment and disease

management. As research progresses, unraveling the molecular

mechanisms underlying b-cell dedifferentiation will be crucial in

unlocking new therapeutic strategies aimed at preserving and

enhancing b-cell function in diabetic patients.
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