
Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Xiaofang Wang,
Texas A&M University Baylor College of
Dentistry, United States

REVIEWED BY

Noriko Takegahara,
University of Pennsylvania, United States
Hiroshi Kajiya,
Fukuoka Dental College, Japan

*CORRESPONDENCE

Yue Zhu

zhuyuedr@163.com

Lin Tao

taolindr@163.com

†These authors have contributed equally to
this work and share first authorship

RECEIVED 18 October 2024
ACCEPTED 20 December 2024

PUBLISHED 16 January 2025

CITATION

Liu Q, Xue Y, Guo J, Tao L and Zhu Y (2025)
Citrate: a key signalling molecule
and therapeutic target for bone
remodeling disorder.
Front. Endocrinol. 15:1512398.
doi: 10.3389/fendo.2024.1512398

COPYRIGHT

© 2025 Liu, Xue, Guo, Tao and Zhu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 16 January 2025

DOI 10.3389/fendo.2024.1512398
Citrate: a key signalling molecule
and therapeutic target for bone
remodeling disorder
Qichang Liu †, Yuchuan Xue †, Junzhe Guo †,
Lin Tao* and Yue Zhu*

Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
Bone remodeling is a continuous cyclic process that maintains and regulates

bone structure and strength. The disturbance of bone remodeling leads to a

series of bone metabolic diseases. Recent studies have shown that citrate, an

intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important

role in bone remodeling. But the exact mechanism is still unclear. In this study,

we focused on the systemic regulatory mechanism of citrate on bone

remodeling, and found that citrate is involved in bone remodeling in multiple

ways. The participation of citrate in oxidative phosphorylation (OXPHOS)

facilitates the generation of ATP, thereby providing substantial energy for bone

formation and resorption. Osteoclast-mediated bone resorption releases citrate

from bone mineral salts, which is subsequently released as an energy source to

activate the osteogenic differentiation of stem cells. Finally, the differentiated

osteoblasts secrete into the bone matrix and participate in bone mineral salts

formation. As a substrate of histone acetylation, citrate regulates the expression

of genes related to bone formation and bone reabsorption. Citrate is also a key

intermediate in the metabolism and synthesis of glucose, fatty acids and amino

acids, which are threemajor nutrients in the organism. Citrate can also be used as

a biomarker to monitor bone mass transformation and plays an important role in

the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate

imbalance due to citrate transporter could result in the supression of osteoblast/

OC function through histone acetylation, thereby contributing to disorders in

bone remodeling. Therefore, designing drugs targeting citrate-related proteins

to regulate bone citrate content provides a new direction for the drug treatment

of diseases related to bone remodeling disorders.
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1 Introduction

1.1 Disorder of bone remodeling and
skeletal conditions

Bone remodeling is a continuous process that regulates the mass

and strength of bones. By means of this process, old bone is

substituted by new bone. In addition to supporting bone growth,

bone remodeling also functions as a reparative mechanism for

damaged bones following the rule of fractures and micro-injuries

(1). Bone remodeling involves the coordinated activity of

osteoblasts and osteoclasts (2). Bone tissue undergoes constant

remodeling. The imbalances in this process are closely associated

with various skeletal disorders (3), such as osteoporosis, a prevalent

degenerative bone disease characterized by decreased bone quality

and increased turnover resulting from an imbalance between

resorption and replacement during remodeling (4). Other skeletal

disorders, such as osteoarthritis and rheumatoid arthritis, involve

disruptions in both cartilage resorption and formation. Cancer-

associated bone diseases can lead to calcium loss in bones and

diffuse absorption due to hypercalcemia (5). Therefore, targeting

healthy and diseased bones through remodeling behavior represents

the fundamental approach to prevent and treating bone diseases (6).
1.2 Many factors systematically regulate
bone remodeling

Many factors systematically regulate bone remodeling. The

equilibrium of bone remodeling is dynamic and influenced by

numerous factors, including ATP as the core component of

energy supply, post-translational modification of proteins,

metabolic programming, immune and inflammatory factors,

among others indicating that the homeostasis of bone remodeling

is not only influenced by bone resorption but also by systemic

factors. ATP plays a crucial role in bone remodeling as it serves as

the central component for the energy supply. Osteoblasts are

essential in creating new bone mass and enhancing bone density

throughout the processes of bone growth, development, and

continuous remodeling; these processes require a substantial

amount of energy to which ATP significantly contributes (7).

Osteoclasts are responsible for bone resorption and also need to
Abbreviations: ACLY, ATP citrate lyase; ACO2, mitochondrial aconitase;

ASCT2, cysteine transporter 2; ATP, 5’-adenosine triphosphate; BMSC, bone

marrow mesenchymal stem cells; CaP, calcium phosphate; CIC/CTP,

mitochondrial citrate transporter; CII, mitochondrial complex II; CS, citrate

synthase; CTSK, cathepsin K; ESR1/2, estrogen receptors 1/2; GLut1-4, glucose

transporters1-4; HCA, Hydroxy-citrate; HDAC, histone deacetylase; IL-1b,

interleukin-1b; IL-6, interleukin-6; NaCT, Sodium-coupled citrate transporter;

NADC, Na+ dependent dicarboxylate cotransporte; OXPHOS, oxidative

phosphorylation; ROS, reactive oxygen species; SDHA, succinate

dehydrogenase complex A; SOD, superoxide dismutase; TCA, tricarboxylic

acid; TNF-a, tumor necrosis factor-a; V-ATPase, vacuolar H adenosine

triphosphatase; ZIP1, zinc finger protein 1; a-KG, a-ketoglutarate.
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generate significant quantities of ATP through glycolysis and

oxidative phosphorylation (OXPHOS) (8). Studies have indicated

impaired key enzymes for ATP production in patients with

osteoporosis (9), suggesting that disrupted ATP-facilitated energy

provision plays a crucial part in disturbed bone remodeling.

Metabolic reprogramming also plays an important role in

disorders related to bone remodeling. The metabolic

reprogramming of osteoblasts and osteoclasts has emerged as a

critical approach for promoting bone regeneration and managing

osteoporosis (10, 11). Bone remodeling is significantly influenced by

the immune system. Inflammation in the bone leads to a higher rate

of bone absorption compared to formation, resulting in overall bone

loss (inflammation-induced osteolysis) (12). The immune system

primarily relies on immune-inflammatory factors to regulate bone

remodeling; therefore, targeting these factors is crucial for treating

disorders related to bone remodeling. Additionally, histone

modification also plays a critical role in the process of bone

remodeling. Research has demonstrated that abnormalities in

histone modification are significant contributors to this process

(13), and targeting histone modification has become an important

approach for treating osteoporosis (14). In conclusion, multiple

factors systematically regulate bone remodeling. The fundamental

solution lies in exploring the systemic pathogenesis of bone

disorders, identifying key nodes within the system’s dysfunctions,

and implementing targeted treatments.
1.3 Citrate and bone remodeling

Among the numerous metabolic products, citrate is a very

unique metabolite. On the one hand, it can enter the TCA cycle

to participate in its functions; on the other hand, during this

process, the cleavage of citrate produces a large amount of ace-

CoA, which serves as the sole substrate for histone acetylation

modification (15). Therefore, citrate may be considered an essential

metabolite involved in the multi-level regulation of bone

remodeling. Citrate serves as a crucial substrate for cellular energy

metabolism, being generated in the mitochondria and utilized in the

Krebs cycle or transported into the cytoplasm by the dedicated

mitochondrial carrier CIC(mitochondrial citrate transporter).

Within the cytoplasm, citrate and its derivatives, such as acetyl-

CoA and oxaloacetate, are implicated in both regular and

pathological processes (16). In addition to its role as an energy

regulator, citrate also plays diverse roles including maintenance of

protein acetylation, lipid synthesis and breakdown, amino acid

production, and immune responses (17). Firstly, citrate acts as a

key metabolite in the TCA cycle to maintain OXPHOS, ultimately

leading to ATP production through complex V or ATP synthase

(18). Moreover, citrate derivatives like acetyl-CoA serve as

substrates for acetylation modifications that significantly

contribute to histone acetylation. Additionally, citrate is believed

to play a crucial role in metabolic reprogramming under various

physiological and pathological conditions such as inflammation,

Behcet’s syndrome, and heart development (19–21), while also

modulating the release of inflammatory factors by the immune

system (22). Abnormal levels of citrate can lead to an imbalance in
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bone remodeling, resulting in bone metabolism-related diseases,

which further underscores the importance of citrate in the process

of bone remodeling. In conclusion, citrate is now recognized not

only as a solitary energy metabolite but also as a pivotal component

contributing to systemic homeostasis. Furthermore, citrate holds

significance in regulating bone remodeling with disrupted levels

observed in bone tissue and plasma of individuals with osteoporosis

(23). Notably, citrate has demonstrated efficacy against osteoporosis

(24). However, the mechanisms underlying how citrate regulates

bone remodeling along with therapeutic effects on bone metabolic

disorders remain unclear.

In this review, we will explore the role of citrate in bone

remodeling, elucidate its molecular mechanisms, and discuss its

potential clinical applications. This review will introduce the

innovative concept that citrate regulates bone remodeling by

influencing ATP energy supply, histone acetylation, metabolic

programming, and immune-inflammatory factors.
2 Citrate in the circulation of the
human system

The balance between availability and elimination of citrate is

maintained by physiological requirements. Citrate in the human
Frontiers in Endocrinology 03
body exists as citrate ions and solid salts. Citrate ions are primarily

generated through two pathways: direct ingestion via the

gastrointestinal tract and cellular production through the

metabolism of various energy substances. Solid citrate is

predominantly stored in mineralized tissues, including bones and

teeth. Renal metabolism plays a crucial role in the clearance of

citrate to uphold body citrate homeostasis. In summary, nutrient

intake, renal clearance, cellular metabolism, and bone remodeling

collectively determine citrate homeostasis (Figure 1).
2.1 Citrate intake and clearance

The sources of citrate intake are diverse, including citrus fruits,

food and beverage additives, etc. Industrial-grade citrate serves

various functions such as preventing food spoilage and regulating

acidity (25–27). The typical daily nutritional intake of citrate is

approximately 4 grams (28). Over 95% of citrate is absorbed by the

small intestinal epithelial cells through the Na+dependent

dicarboxylate cotransporter (NaDC). The rapidly increasing levels

of citrate in plasma are promptly filtered by the kidneys, which also

rely on NaDC (27, 29–31). Around 99% of plasma citrate exists as a

tricarboxylate or dicarboxylate complexed with divalent ions like

calcium and magnesium. In summary, the balance of plasma citrate
FIGURE 1

The internal circulation of citrate relies on four factors: nutrient intake, renal clearance, cellular metabolism, and bone remodeling. Citrate is primarily
absorbed through dietary intake, enters the bloodstream via intestinal absorption, and is subsequently eliminated by the kidneys to maintain a
dynamic balance of citrate in the body. Intestinal absorption and renal reabsorption depend on NaDC. At the same time, citrate within bone tissue
serves as a crucial component of bone mineralization. It is stored in the bone matrix and released during osteoclast-mediated bone resorption. The
released citrate enters the blood circulation, with a portion being taken up by bone marrow stromal cells via NaCT to activate osteogenic
differentiation of stem cells. Subsequently, osteoblasts secrete citrate to participate in new bone formation.
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depends on its intake through the small intestine and renal

clearance, with an important role played by NaDC. However,

studies have shown that the intake and clearance of citrate salts

cannot fully maintain stable plasma concentrations. Therefore, it is

necessary to identify factors affecting the stability of plasma citrate

concentrations. Abundant amounts of citrate are also found in cells

and bone tissue (30, 31).
2.2 The citrate cycle in cells

Cellular metabolism has minimal impact on citrate availability, as

it is predominantly sequestered within the mitochondria and not

exchanged with the extracellular space. Citrate is synthesized in the

mitochondrial matrix through the enzymatic action of citrate

synthase (CS), which catalyzes the condensation of acetyl-CoA and

oxaloacetate to form citrate. This generated citrate then enters the

TCA cycle to provide cellular energy. To proceed further in the Krebs

cycle, citrate undergoes isomerization to isocitrate facilitated by

aconitase (ACO2). Abundant mitochondrial citrate can be

transported to the cytosol via the mitochondrial CIC. In the

cytosol, ACLY (ATP citrate lyase) cleaves citrate into acetyl-CoA

and oxaloacetate. A portion of acetyl-CoA is subsequently

carboxylated into malonyl-CoA, which participates directly in lipid

metabolism by condensing into long-chain fatty acids. The remaining

acetyl-CoA serves as a substrate for histone acetylation and provides

acetyl groups for protein modification under the influence of

acetyltransferase enzymes. Furthermore, intracellular citrate also

regulates glycolysis, gluconeogenesis, and fatty acid oxidation (16).

Only select cell types absorb or release extracellular citrate due to

various physiological reasons (17), such as osteocytes secreting

citrates involved in bone mineralization or intestinal epithelial cells

and renal tubules absorbing extracellular citrates through NaDC

family transporters.
2.3 Citrate in bone tissue

Studies indicate that approximately 90% of citrate in the human

body is stored in mineralized tissues, playing a crucial role in

regulating metabolic functions and maintaining the structural

integrity of bones (32). The primary constituents of bone tissue

consist of both organic and inorganic substances. The inorganic

component, referred to as bone salts, primarily comprises

hydroxyapatite, which aligns along the elongated axis of collagen

fibers and contains a high concentration of calcium and phosphorus

(33). Osteoblasts synthesize and secrete the organic portion, which

includes around 10% amorphous bone matrix and approximately

90% collagen. Collagen forms a gel-like substance rich in glycine,

alanine, proline, and hydroxyproline with neutral or weakly acidic

glycosaminoglycans predominantly composed of type I collagen

alongside a small amount of type V collagen. The amorphous bone

matrix mainly consists of proteoglycans, polysaccharide complexes,

as well as osteocalcin-like osteonectin (34). Within the organic

component lies about 1-5% citrate content while over 15% surface

area of apatite within bones is occupied by citrate molecules (35).
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These findings suggest that citrate not only plays an essential role in

cellular metabolism but also actively participates in vital processes

associated with bone matrix development and mineralization.
3 Citrate regulates
bone mineralization

The citrate-hydroxyapatite combination serves as the

fundamental constituent of bone mineral salt, with approximately

70% of bone mass primarily composed of nano-scale citrate-

hydroxyapatite crystals measuring 5 × 25 × 50 nm in diameter,

exhibiting a delicate plate-like structure (36). Citrate plays a crucial

role in the formation of plate-like structures within bone crystals

and is tightly bound to hydroxyapatite as an integral component

(37). This suggests that citrate cannot be substituted in the process

of apatite-based bone tissue formation.

In general, citrate plays four major roles in bone mineralization:

it slows down the deposition of calcium and phosphate, promotes

stable nucleation of calcium phosphate(CaP), maintains the

lamellar growth of apatite, and limits excessive formation of

apatite crystals to maintain optimal mechanical conditions. The

initiation of bone mineralization begins with the creation of

amorphous CaP within highly saturated solutions containing CaP

(38). During the initial phases, a limited number of citrate

molecules can adhere to the surface of small amorphous CaP

clusters, effectively impeding particle aggregation. Research has

demonstrated that citrate inhibits hydroxyapatite nucleation by

interacting with calcium ions and attaching to crystal surfaces

(39, 40). Recent studies suggest that citrate’s capacity to stabilize

CaP formations is essential in postponing the emergence of liquid

or solid phases required for the formation of the CaP liquid

precursor phase. Furthermore, by stabilizing early CaP precursors

including nucleating precursor material and the liquid precursor

phase, citrate significantly delays solid CaP nucleation (41). This

suggests that citrate plays a significant role in the formation of stable

CaP precursor materials with appropriate dimensions during initial

bone mineralization. In the subsequent stage, nucleation of CaP

precursors occurs and non-collagenous proteins secreted by bone

cells guide the attachment of CaP to collagen surfaces (42), while

citrate facilitates plate-like arrangement of CaP for normal bone

tissue formation (43). During the final stage, citrate salts completely

envelop the surface of CaP crystals, resulting in unique geometric

shapes of hydroxyapatite and forming nanocrystals as mentioned

earlier. Citrate coverage prevents further crystal growth and

contributes to optimal mechanical structure formation in bone

tissue (43).

Citrate has been used to explain changes observed in various

bone diseases. Sodium-coupled citrate transporter (NaCT) is

responsible for extracellular-to-cell transport of citrate. Research

indicates that SLC13A5(the gene encoding NaCT) deficiency leads

to decreased BMD and impaired bone formation in homozygous

and heterozygous knockout mice (44). A subsequent study revealed

that mice lacking SLC13A5 exhibited structural and biomechanical

properties indicative of abnormal mineralization. Additionally, the
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researchers observed excessive citrate accumulation in the bones of

SLC13A5 deficient mice, which may have contributed to reduced

cortical thickness and impaired cortical strength (45). This could be

attributed to citrate deposition affecting hydroxyapatite formation

and decreased citrate coverage impacting water-mineral integrity

bound to the bone surface. In brief, Citrate serves as a vital

component of hydroxyapatite, where its incorporation into bone

minerals and spatial arrangement within the mineral structure is

indispensable for preserving the biomechanical properties of bone,

including stability, strength, and fracture resistance.
4 Citrate circulates during
bone remodeling

As previously mentioned, bone remodeling represents the

dynamic balance between bone formation and resorption in

mature bone tissue, with citrate playing a crucial role in

mediating this interplay (Figure 1). Recently, research has shown

that osteoblasts are the primary origin of citrate in bone tissue. A

study by Costello et al. (2012) revealed the secretion of citrate by

osteoblasts in mice (46). While calcium citrate acts as an

intermediary for calcium exchange between bone and blood, the

exact origin of plasma citrate remains uncertain. Experiments

utilizing C13 isotope-labeled glucose tracers have suggested that

mitochondrial citrate derived from glucose deposition occurs

during the later stages of osteogenic differentiation in bone

marrow mesenchymal stem cells (BMSC) (47) Interestingly,

undifferentiated BMSCs do not possess the capacity to secrete

citrate (48). This suggests that citrate found in bone is derived

from differentiated BMSCs rather than plasma citrate. BMSCs have

the ability to differentiate into various cell types, including

osteoblasts within bone tissue (49). Research indicates that

osteoblasts are specifically responsible for producing citrate in

bone tissue (50), highlighting the significant role of citrate in

osteogenic differentiation. In vitro studies demonstrate an increase

in citrate production with osteoblast differentiation, accompanied

by changes in protein expression related to citrate secretion. The

deposition of citrate into the bone matrix relies on the net

production of citrate by osteoblasts and involves molecular

activities such as: Citrate synthetase CS, mitochondrial aconitase

(m-acon, which converts citrate to isocitrate), CIC and NaCT.

Citrates produced by osteoblasts during mineralization are

subsequently released upon breakdown by osteoclasts. Osteoclasts

originate from monocyte-macrophages and play a crucial role in

degrading the bone matrix. They are formed through fusion of

monocytic precursors belonging to monocyte/macrophage lineage

and serve as primary resorptive cells within bones (51, 52) Mature

osteoclasts adhere to the bone surface through avb integrin,

establishing an F-actin sealing zone for efficient absorption of the

bone matrix. The acidic microenvironment in the resorption area is

generated by carbonic anhydrase II, which produces HCO and H

ions that are transported by vacuolar H adenosine triphosphatase

(V-ATPase) within the folded structure of osteoclasts (53, 54). In

this acidic environment of the resorption lacuna, inorganic minerals
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dissolve while exposing the organic collagen matrix to enzymatic

degradation facilitated by proteolytic enzymes such as collagenase,

cathepsin K (CTSK), and matrix metalloproteinases (MMP) (54,

55). Subsequently, these enzymes proceed with degrading the

exposed collagen and other organic components (56–58),

meanwhile, citrate is also released during this process (59). To

summarize, within intact bone tissue, osteoblasts secrete citrate to

assist in bone matrix formation whereas osteoclasts break down

released citrate from the bone matrix, which further provides

energy for stem cells and supports their differentiation.
5 Citrate as a fuel for
bone remodeling

As mentioned above, citrate circulates among osteoblasts and

osteoclasts during bone remodeling to participate in the formation of

bone matrix and osteoblastic differentiation. During this process, bone

formation is highly energy-consuming, necessitating the substantial

production of ATP. Meanwhile, the differentiation process of

osteoclasts requires the rearrangement of the cytoskeleton from

mononuclear to multinuclear cells and cell fusion, which also

necessitates a significant amount of ATP (60). Moreover, the

migration of osteoclasts along the bone surface facilitates ongoing

bone resorption, involving dynamic rearrangements of the actin and

microtubule cytoskeleton, which necessitates significant ATP

consumption (61, 62). The TCA cycle is essential for supplying the

energy needed for numerous cellular functions, which requires the

involvement of cirtrate (63). Abnormal ATP synthesis could result in

imbalances in bone metabolism (64–66). Therefore, in addition to its

role in bone mineralization, citrate can enter the TCA cycle to provide

a substantial amount of ATP, suggesting that citrate may act as a fuel

in the process of bone remodeling (Figure 2).
5.1 Citrate participates in TCA cycle to
produce substantial ATP

In the TCA cycle, citrate plays a crucial role in sustaining

reduced FADH2 and NADH (nicotinamide adenine dinucleotide)

levels, which are utilized in the electron transport chain for

oxidative phosphorylation and ATP production through complex

V (67). Numerous proteins contribute to the regulation of citrate-

mediated ATP, and disturbances in these associated proteins can

lead to disorders in osteogenesis and osteoclast function, resulting

in various diseases.
5.2 Citrate as a fuel in bone remodeling

During this process, citrate acts as a key intermediate product in

the energy supply and plays a critical role as an energy source for

bone tissue. Upon initiation of osteogenic differentiation, there is an

increased demand for metabolic energy in MSCs leading to elevated
frontiersin.org

https://doi.org/10.3389/fendo.2024.1512398
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Liu et al. 10.3389/fendo.2024.1512398
production of citrate regulated by various enzymes related to citrate

metabolism (68).

5.2.1 Extracellular citrate as a fuel in early stage
of bone formation

Research has demonstrated that extracellular citrate

significantly influences the osteogenic differentiation of MSCs,

confirming its role as a fuel for stem cell differentiation (69). This

“metabolic” regulation begins with the absorption of citrate through

NaCT, activating the energy production pathway that enhances

cellular energy status. Consequently, this facilitates meeting high

metabolic demands during MSC differentiation into osteoblasts.

Notably, this effect appears to be both time- and dose-dependent;

however, the dose-dependent impact is more significant during

early stages of osteogenesis (69). Additionally, ATP generated from

exogenous citrate was found to promote the early stages of

osteogenic differentiation (70, 71).

However, the expression and functionality of NaCT following

the differentiation of MSCs into osteoblasts remain controversial,

suggesting that the demand for extracellular citrate may decrease

during the later stages of osteoblastic differentiation. In contrast to

the significant expression of various types of transporters in HepG2

cells, Costello et al. found that NaCT transporters are absent in

mature osteoblasts (50). On the contrary, studies have

demonstrated the presence of NaCT mRNA in bone and primary

osteoblasts. Furthermore, reduced bone mineral density and

impaired bone formation have been linked to diminished
Frontiers in Endocrinology 06
expression of SLC13A5 which codes NaCT in 13-week-old mice,

as well as overall growth retardation, shortened body length, and

reduced bone size (44). Additionally, Mantila Roosa SM et al.’s

study revealed that local mechanical loading stimulation can

upregulate bone NaCT expression (72), thereby increasing bone

tissue content. In summary, during early stages of osteogenic

differentiation, exogenous citrate intake provides a substantial

amount of ATP for BMSCs.

5.2.2 Intracellular citrate as a fuel in late stage of
bone formation

As BMSC activation occurs, intracellular glucose metabolism

generates citrate which eventually produces ATP - becoming the

main energy supply pathway. Intracellular citrate production is

reliant on the activity of citrate synthestase (CS) (73). Research

findings suggest that rats with postmenopausal osteoporosis exhibit

a decrease in CS activity (74). In our previous study, we observed a

reduction in citrate content in osteoporotic mice through energy

metabolism sequencing analysis (75). Moreover, the heightened

production of citrate is associated with diminished aconitase

(ACO2) activity, which facilitates the conversion of citrate to

isocitrate. ACO2 has not been extensively studied as a rate-

limiting enzyme in the TCA cycle. However, its function is

known to be inhibited by Zn2+, and zinc finger protein 1 (ZIP1)

aids in Zn2+ transportation (48, 76). Furthermore, knockdown of

ZIP1 resulted in the prevention of intracellular citrate

accumulation, demonstrating that ZIP1 could increase the
FIGURE 2

Citrate regulates bone remodeling through ATP production and histone acetylation. During the process of bone formation, NaCT-mediated uptake
of exogenous citrate by bone marrow stromal cells (BMSCs, indicated by a light pink cell) activates their differentiation into osteoblasts. Exogenous
citrate serves a dual role: it generates ATP via TCA cycle to fuel osteoblastic differentiation, while also being cleaved into acetyl-CoA to enhance the
expression of osteogenic genes. Once activated and differentiated into osteoblasts (indicated by a light blue cell), glucose metabolism becomes the
primary source of citrate production, as glucose undergoes OXPHOS to generate citrate that provides both ATP and acetyl-CoA for promoting
osteogenic gene expression and subsequent acetylation. In terms of bone resorption, glucose metabolism produces citrate that supplies ATP for
osteoclastic bone resorption. Moreover, citrate enhances acetylation to stimulate NFATC/NFkB expression and induce osteoclast (indicated by a dark
blue cell) differentiation. Simultaneously, it promotes oxidase expression to inhibit the pro-resorptive effect of ROS on bones. Overall, citrate plays a
crucial role in promoting bone remodeling.
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intracellular levels of citrate (50). Additionally, research on ZIP1

has also revealed that the expression of ZIP1 and intracellular zinc

levels increase during the late stages of osteoblastic differentiation,

as osteogenic precursors into bone-forming cells (50). Hence,

increased levels of intracellular citrate, rather than that

extracellular citrate, is required for the late stage of bone formation.

Meanwhile, intracellular citrates is also essential for the normal

function of mitochondria. With assistance from mitochondrial

complex II (CII), also known as succinate dehydrogenase-

ubiquinone oxidoreductase, ATP is generated to support the

osteogenic process. Research has identified mutations in succinate

dehydrogenase complex A (SDHA) within CII present in

osteoblasts from individuals with age-related osteoporosis,SDHA

which is nuclear-encoded is a subunit of CII and it is the marker of

CII (77), underscoring the significance of energy produced by

mitochondria. Abnormal mitochondrial function can adversely

affect ATP synthesis and consequently impact osteogenesis.

Furthermore, an in vitro study demonstrated that induction of

osteoblast differentiation progressively enhances the activity of

mitochondrial complexes I and II (78). In addition, the absence

of mitochondrial citrate may impair the energy supply within the

Krebs cycle, which could lead to a failure to meet the bioenergetic

energy demands of proliferating and differentiated cells, thereby

inhibiting their proliferation and differentiation (48). This suggests

that citrate also plays an essential role as a fuel in mitochondria and

thereby participates in the osteogenic differentiation of BMSCs.
5.2.3 Citrate as a fuel in bone absorption
Moreover, citrate also holds significance in providing energy for

osteoclasts. Mature osteoclasts, rich in mitochondrial DNA, transfer

ATP from mitochondria to the cytoplasm. A subsequent increase in

ATP levels results in enhanced bone resorption (79). Research has

also indicated that during RANKL-stimulated osteoclast

differentiation, there is upregulation of CS and other metabolic

enzymes to increase citrate synthesis, which is associated with

increased production of ATP (80). In another study, it was also

demonstrated that the addition of 1-2mM sodium citrate

significantly enhances osteoclastogenesis, highlighting the

essential role of citrate during osteoclastic differentiation (81).

However, there have been relatively few studies on how citrate is

involved in the osteoclastic differentiation. More studies are needed

to fully understand how energy is utilized during the process of

bone resorption.
6 Citrate regulates bone remodeling
through histone
acetylation modification

Citrate not only serves as an energy source but also regulates bone

remodeling through the modulation of histone acetylation. Histone

protein acetylation refers to the addition of an acetyl group (CH3CO-)

to specific amino acid residues, typically lysine, within a histone

molecule. This modification process is tightly controlled by enzymes

called acetyltransferases and deacetylases. Acetyltransferases transfer
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acetyl-CoA to amino acid residues, playing a crucial role in modulating

histone protein function. The production of acetyl-CoA occurs in

mitochondria and its transport to the cytosol heavily relies on the

citrate-malate-pyruvate shuttle (82). Mitochondrial citrate carrier

(CIC) facilitates the exchange of citrate from mitochondria to

cytoplasm with malate. Once in the cytoplasm, citrate is converted

into acetyl-CoA by ACLY enzyme, thereby participating in the process

of histone acetylation. Research has shown that additional application

of citrate promotes higher levels of acetylation (83). Hydroxy-citrate

(HCA), which competitively inhibits citrate, hinders this process (84).

Acetyl-CoAmodulates protein activity through acetylation, particularly

influencing histones involved in transcription maintenance during G1

phase and estrogen receptor proteins (ER) responsible for regulating

protein homeostasis (85). Unlike nonhistone proteins, histones

undergo lysine residue modification at their N-terminal tails through

acetylation, causing them to protrude from nucleosomes.

Consequently, negatively charged DNA is repelled leading to

chromatin relaxation. This open chromatin conformation facilitates

easier binding of transcription factors and subsequently influences gene

expression (86, 87) (Figure 2).
6.1 Citrate promotes osteogenic
differentiation of BMSC through
histone acetylation

Runx2, Sp7, and FoxO1 are crucial transcription factors

essential for osteoblast differentiation and maturation. They

stimulate the expression of key genes such as ALP, osteocalcin,

osteopontin, and COL-1, thereby promoting the maturation and

mineralization of osteoblasts. Research indicates that histone H3

acetylation plays a facilitative role in osteoblast differentiation and

maturation by enhancing Runx2 transcription (88, 89). Decreased

histone acetylation caused by HDAC leads to the suppression of

Runx2, SP7, and FoxO1 transcription, ultimately inhibiting

osteoblast differentiation and maturation. This suggests that

citrate may enhance osteogenic differentiation through

modulation of histone acetylation (90–93). In the aging process,

mitochondrial structural abnormalities result in reduced CIC levels.

Impaired transport of citrate frommitochondria to cytoplasm along

with decreased histone acetylation contributes to senile

osteoporosis. Exogenous supplementation of acetyl-CoA has been

shown to effectively treat osteoporosis; thus, highlighting the

importance of citrate decomposition into acetyl-CoA as a critical

pathway for regulating acetylation modification during osteogenic

differentiation (15).
6.2 Citrate promotes osteoclast
differentiation through histone acetylation

Citrate regulates histone acetylation to modulate osteoclasts,

serving as a crucial mediator of bone resorption. NFATc1 and NF-

kB govern osteoclast differentiation (94). Histone H3 acetylation by

CBP/p300 enhances the expression of NFATc1 and NF-kB, thereby
promoting osteoclast differentiation; conversely, HDAC-mediated
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H3 deacetylation inhibits this process (88, 89). Furthermore,

inhibition of ACLY suppresses osteoclast differentiation and

function through its influence on histone acetylation, suggesting

that citrate has the potential to enhance osteoclastogenesis via

modulation of histone acetylation (95). Osteoclasts’ ability to

resorb bone is influenced by their production of reactive oxygen

species (ROS). ROS plays a beneficial role in facilitating osteoclast

differentiation (96). The scavenging of ROS relies on the action of

antioxidant enzymes. One study demonstrated that histone

acetylation modification may promote the expression of

superoxide dismutase (SOD) (97), while another study showed

that histone acetylation can regulate the expression of antioxidant

enzyme genes SOD1 and SOD2 (98). Conversely, research suggests

that the SOD family contributes to maintaining bone homeostasis

by promoting osteoblast differentiation and inhibiting osteoclast

differentiation (99–101) This suggests that citrate may promote

osteoclast differentiation by modulating histone acetylation, up-

regulating transcription factors associated with osteoclastogenesis,

and potentially inducing the expression of antioxidants, thereby

attenuating oxidative stress and impeding osteoclast differentiation.

Overall, citrate significantly contributes to osteoclast formation;

however, its inhibition of ROS through histone acetylation may

restrict further enhancement of bone resorption. Nevertheless, as

mentioned earlier, citrate promotes osteoclast formation in vitro,

indicating its predominantly promoting effect on bone resorption.

In summary, citrate serves as a crucial energy source for ATP

production and a substrate for histone acetylation while playing a

role in bone remodeling processes mediated by both osteoblasts and

osteoclasts. The simultaneous impact on bone formation and

resorption poses challenges in assessing its influence on bone

mass. Nonetheless, research has demonstrated that exogenous

citrate can enhance bone mineral density and mitigate excessive

bone resorption in patients (102). Another study demonstrated that

exogenous citrate effectively reversed bone resorption in mice (102).

As previously mentioned, citrate promotes the proliferation of

osteoclasts, indicating its contrasting effects in both in vivo and in

vitro settings. In vitro, citrate enhances bone resorption, whereas in

vivo it suppresses this process. These findings suggest that the

primary impact of citrate on bone tissue lies within osteogenesis.
7 Citrate regulates disordered bone
remodeling through
energy reprogramming

7.1 Connection between bone remodeling
and energy metabolism

The skeletal system is influenced by systemic metabolic

processes, including glucose, lipid, and amino acid metabolism.

Among the body’s organs, bones rank fourth in terms of glucose

consumption, which plays a crucial role in bone development (103).

In the presence of oxygen, differentiated cells typically respond to

OXPHOS by metabolizing glucose into CO2 and maximizing 5’-

adenosine triphosphate (ATP) production (104) to provide energy
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for cellular activities. Lipid metabolism encompasses the biological

processes of fat digestion, absorption, synthesis, and decomposition

that are essential for maintaining cellular homeostasis (105).

Glutamine metabolism holds particular importance among amino

acid metabolisms due to its prevalence in plasma. Apart from

facilitating protein biosynthesis directly, glutamine also serves as a

vital carbon source and nitrogen donor for nucleotide synthesis,

amino acid synthesis, glutathione production, and other essential

compound formation (106). Cell metabolism forms the core of the

metabolic cycle; thus maintaining a balance between osteoblast and

osteoclast metabolism ensures metabolic homeostasis within bone

tissue. Any disruption to this balance will result in an imbalance of

bone metabolism.

7.1.1 Bone remodeling and glucose metabolism
The regulation of glucose metabolism primarily relies on

estrogen and glucose transporters. Estrogen plays a crucial role in

maintaining glucose homeostasis (107). Research has demonstrated

that osteoporotic rats exhibit decreased systemic glucose

metabolism (108). During menopause, estrogen-triggered cellular

pathways activate PI3K/AKT-mediated glucose uptake, leading to

glucose deprivation (109, 110), which is mediated by the estrogen

receptors ESR1 and ESR2 as well as the glucose transporter.

Furthermore, the function of transporting glucose into cells

cannot be separated from the role of glucose transporters.

Glucose is subsequently metabolized in the cytoplasm through

glycolysis to produce two molecules of pyruvate, two ATPs, and

two NADHs. Among significant glucose transporters facilitating

glucose uptake in osteoblast lineage cells are Glut-1, along with

Glut-3 and Glut4 (111, 112). Unlike muscle cells, both osteoblasts

and osteoclasts take up glucose independently of insulin (113).

Glut1 acts as a facilitator for insulin-independent uptake of glucose

by transporting it across a concentration gradient. Loss of Glut1 in

osteoblast precursors inhibits their differentiation into mature

osteoblasts both in vitro and in vivo (114). Interestingly, estrogen

can also regulate glycometabolism by activating AKT signaling

through its receptor ESR1 (115), directly enhancing transcription

of the SLC2A4 gene encoding Glut4 (116), while deficiency in ESR2

reduces AKT expression (117); thus estrogen deficiency may lead to

impaired intake disorder mainly due to reduced activation of the

AKT pathway mediated by ESR1 and ESR2.
7.1.2 Fatty acid metabolism and bone remodeling
Lipids, including fatty acids, cholesterol, triglycerides (TG), and

phospholipids, have increasingly been associated with bone

metabolism. Recent research suggests that lipids and their

derivatives are significant sources of energy for osteoblasts, shifting

the focus from glucose alone. Osteoblasts possess the necessary

receptors and catabolic enzymes to uptake and utilize circulating

lipids (118). Fatty acids and their derivatives play a crucial role in

maintaining bone health, with their levels in the bone

microenvironment being linked to osteoporosis (119). Furthermore,

fatty acids are known to significantly contribute to osteogenic

differentiation as previous studies have demonstrated the ability of

osteoblasts to oxidize fatty acids (120). In vitro studies have shown a
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substantial increase in fatty acid oxidation during osteoblast

maturation, with mineralized osteoblasts exhibiting three times

higher fatty acid catabolic activity compared to proliferating cells

This research highlights the crucial role of fatty acids in promoting

osteogenic differentiation and mineralization. The uptake and

utilization of fatty acids by osteoblasts are primarily facilitated by

specific receptors for fatty acid uptake and enzymes involved in fatty

acid catabolism. Osteoblasts express the CD36 receptor to facilitate

free fatty acid uptake, and studies conducted on mice have

demonstrated that depletion of CD36 leads to reduced bone mass

due to impaired osteoblast-mediated bone formation (121).

Furthermore, osteoblasts possess numerous metabolic enzymes

responsible for processing fatty acids. Upon cellular entry, fatty

acids are predominantly utilized through fat oxidation and b-
oxidation pathways. In the cytoplasm, they are converted into fatty

acyl-CoA, which then binds to CPT1—an enzyme located on the

outer mitochondrial membrane—to generate acylcarnitine that is

subsequently transported into the mitochondrial matrix. Once inside

the mitochondria, CPT2 converts acylcarnitine back into acyl-CoA

for b-oxidation. Research findings have revealed that knockout of

CPT2 results in impaired bone formation (122) Subsequently, acetyl-

CoA, NADH, and FADH2 undergo b-oxidation, leading to the

generation of fuel for various metabolic pathways. Research

findings have demonstrated that pharmacological inhibition of b-
oxidation in vitro impedes osteoblast differentiation (123). In

summary, the transportation and metabolism of fatty acids play a

significant role in osteoblasts, while disruptions in fatty acid

metabolism in osteoporosis impact the bone formation process

of osteoblasts.

7.1.3 Glutamine metabolism and
bone remodeling

The regulation of glutamine primarily relies on the cysteine

transporter 2 (ASCT2, also known as SLC1A5) and aminidase

(GLS). ASCT2 facilitates the transport of glutamine from the

bloodstream into cells to maintain cellular glutamine homeostasis,

while GLS deaminates glutamine to form glutamate, which further

undergoes deamination to produce aKG. Studies have indicated

that the absence of sodium-dependent amino acid exchanger

SLC1A5 affects the uptake of essential glutamine and asparagine

required for maintaining amino acid balance in osteoblasts (124).

Research has demonstrated that both glutamine metabolism and

GLS activity play a role in mediating osteoblast differentiation (125).

Genetic inactivation of GLS1 leads to the elimination of PTH-

induced osteoblast generation (126). Previous studies have

described age-related changes in glutamine metabolism in

osteoporosis, which may disrupt the balance between osteogenic

and adipocyte differentiation of BMSC due to impaired key

enzymes involved in glutamine metabolism or declining

mitochondrial function (127, 128). Recent research has

emphasized the potential impact of glutamine metabolism on

osteoblast development. Glutamine is crucial for matrix

mineralization in osteoblast calvaria cultures. It has been observed

that as BMSCs age, their uptake of glutamine significantly decreases,

leading to a reduction in osteoblast formation. Isotopic tracing
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studies have revealed that glutamine is converted into citrate

through the TCA cycle, thereby assisting osteoblasts in energy

production (129). Furthermore, glutamine exerts an inhibitory

effect on osteoclasts, and a- ketoglutarate(a-KG) serves as a

metabolite of glutamine. Administration of exogenous a-
ketoglutarate has been shown to significantly increase trabecular

bone mineral density, cortical bone mineral density, and bone

mechanical properties. Moreover, it has been observed to alleviate

symptoms associated with osteopenia and osteoporosis in animals

and postmenopausal women (130–133). A study discovered that

treatment with aKG reduced H3K9me3 levels, resulting in

chromatin opening. This subsequently led to decreased RANKL-

induced ROS production and inhibition of osteoclast

differentiation. These findings indicate the crucial role played by

glutamine in regulating osteoclast differentiation (134). In

summary, glutamine promotes bone remodeling by stimulating

both the proliferation and differentiation of osteoblasts while

suppressing the differentiation of osteoclasts through a-KG.
Impaired glutamine metabolism due to disorders in bone

remodeling can lead to abnormal functioning of both osteoblasts

and osteoclasts, thus influencing overall bone remodeling.
7.2 Citrate and energy metabolism

Ordinarily, the three metabolic types in normal individuals are

interconnected. However, osteoporosis-related bone remodeling

disorders can disrupt glucose, fatty acid, and glutamine

metabolism, resulting in a metabolic disorder known as

reprogramming. Reprogramming involves altering cellular or

tissue metabolic pathways that lead to changes in cell function

and physiological status. Citrate plays a critical role in this process

(19). Citrate-mediated metabolic reprogramming can treat bone

metabolic disorders by supplying essential intermediates for glucose

and fatty acid metabolism. In glucose metabolism, citrate serves as a

crucial intermediate in the TCA cycle while contributing to fatty

acid synthesis by transporting acetyl-CoA into the cytoplasm

through its involvement in the citrate-pyruvate cycle (135). In the

context of glutathione metabolism, citrate can participate in the

synthesis of glutamine despite being a crucial intermediate in

glutamine metabolism (136). Furthermore, citrate also exerts

regulatory control over metabolic reprogramming by modulating

estrogen receptors and key metabolic proteins (Figure 3).

7.2.1 Citrate regulates glucose metabolism to
mediate bone remodeling

Exogenous citrate has the potential to ameliorate glucose

metabolic disorders. As an intermediate in the TCA cycle, citrate

can partially compensate for energy metabolic disorders caused by

glucose deficiency. Moreover, it enhances glucose homeostasis by

augmenting glucose uptake. A study demonstrated that exogenous

chromium citrate significantly increased glucose intake in rats and

upregulated Glut4 expression and AMPK transcription, indicating

that citrate could enhance cellular glucose uptake and improve bone

homeostasis through increased expression of glucose transporters
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(137). Another study revealed that HDAC inhibitors promote

GLUT1 acetylation to facilitate glucose uptake, suggesting another

mechanism by which citrate directly promotes glucose uptake via

acetylation to enhance transporter expression (138). Additionally, a

separate study illustrated that estrogen receptor ESR undergoes

acetylation and histone H3 lysine 27 (H3K27ac) acetylation can

regulate promoter regions of ER pathway genes encoding ERa and

ESR1 (139). Therefore, the upregulation of ESR estrogen receptor

expression induced by exogenous citrate may also serve as a possible

mechanism through which it improves glucose uptake in

osteoporotic bone tissue.

7.2.2 Citrate-mediated fatty acid metabolism
regulates bone remodeling

Citrate is a crucial substrate for fatty acid synthesis and serves as

the initial component, acetyl-CoA, in the pathway. After being

transported out of the cell by CIC, citrate undergoes breakdown

into acetyl-CoA. Subsequently, through successive reactions involving

enzymes such as acetyl-CoA carboxylase, dehydratase, reductase, and

acylase (140), it can further synthesize long-chain fatty acids. CICs

have been proven to promote fatty acid biosynthesis (141).

Additionally, the expression of SLC25A1, a type of mitochondrial

citrate transporter, was found to be most prominent in adipogenic

tissues such as the liver, renal cortex, and pancreas (142). As fatty acids

are essential substrates for adipogenesis and CIC transports citrate

accordingly plays a significant role in fatty acid production.

Furthermore, citrate has the ability to influence histone acetylation

and thereby impact fatty acid transport and metabolism. A proteomic
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examination of lysine acetylation sites in mouse and rat tissues

identified CD36 as being acetylated at lysine 52, 166, 231, and 403

(143). Mass spectrometry analysis confirmed the acetylation of these

sites on human CD36 (144). This finding suggests that histone

acetylation-mediated upregulation of CD36 transcription may

contribute to the elevated intracellular fatty acid levels. Additionally,

another study demonstrated that enhanced acetylation of

mitochondrial fatty acid b-oxidase promotes fatty acid breakdown

(145). Moreover, it was observed that CPT-1, an enzyme responsible

for transporting fatty acids into mitochondria, is susceptible to

acetylation. These findings collectively indicate that citrate not only

serves as a precursor for fatty acid synthesis but also plays a crucial role

in regulating fatty acid uptake, breakdown, and b-oxidation to support
osteoblast differentiation and mineralization. In summary, citrate acts

as a modulator for proteins involved in fatty acid transport and

metabolism in osteoblasts, facilitating processes such as absorption,

synthesis, breakdown, and oxidation of fatty acids while maintaining

their homeostasis.

7.2.3 Citrate-mediated glutamine metabolism
regulates bone remodeling

Citrate can enhance the regulation of amino acid metabolism

disorder by modulating glutamine synthesis and transport. CIC

deficiency has been shown to impair glutamine synthesis,

indicating a positive correlation between cytoplasmic citrate

content and glutamine levels (142, 146). Additionally, SLC25A1

mutant mice with hydroxyglutaric aciduria exhibited altered

glutamine remodeling (147). In Huh7 cells deprived of glutamine,
FIGURE 3

Citrate regulates bone remodeling through energy reprogramming. On one hand, citrate acts as a crucial intermediate in glucose metabolism, while
on the other hand, it facilitates the synthesis of fatty acids and glutamine to compensate for deficiencies in glucose, fatty acids, and glutamine during
bone remodeling disorders. Citrate promotes the transcription of transporters for these three nutrients, including GLUT1, CD36, and ASCT-2,
thereby facilitating their uptake. Additionally, citrate enhances histone acetylation to promote the transcription of estrogen receptor ERa and
mitigate the impact of estrogen deficiency on glucose transporter GLUT4. Simultaneously, citrate upregulates CPT-1 transcription through histone
acetylation to enhance fatty acid metabolism and play a pivotal role in rescuing energy metabolism disorders.
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supplementation with exogenous citrate rescued cell viability that was

reduced by NaCT inhibition, suggesting that exogenous citrate could

restore depleted glutamine levels via NaCT (148). Furthermore,

studies have demonstrated that exogenous citrate generates

derivatives of both glutamine and glutamate as well as promotes

fatty acid synthesis (138), implying its potential in regulating the

content of glutamine to ameliorate amino acid metabolism disorders

in osteoporosis patients. Moreover, citrate can modulate ASCT2-

mediated uptake of glutamine; previous research indicated that

bortezomib (BTZ)-induced peripheral neuropathy led to decreased

histone acetylation which may silence SLC1A5 expression (149),

while another study suggested upregulation of ASCT2 in mice

subjected to chronic social defeat stress due to excessive histone

acetylation (150). These findings suggest that citrate can promote

ASCT2 expression and enhance the uptake of glutamine. Therefore,

citrate plays a regulatory role in bone remodeling by increasing the

content of intracellularly available glutamine and modulating its

intake as well as metabolism.
8 Citrate regulates bone remodeling
through the immune system

The link between bones and the immune system holds

significant importance. The immune system comprises immune

organs, immune cells, and immune factors, while bone homeostasis

involves osteoblasts and osteoclasts. Extensive descriptions have

been provided regarding the role of immune inflammation in bone

loss. In cases of pathological immune dysfunction, such as immune

deficiency or inflammatory response to infection/disease, the bone

is impacted by the immune response, potentially leading to

osteoporosis and an increased risk of fracture (151, 152).

Moreover, various prevalent inflammatory conditions exacerbate

bone loss including rheumatoid arthritis, periodontal infection, and

inflammatory bowel disease. Immune-inflammatory factors are

considered as the primary means through which the immune

system regulates bone remodeling. Postmenopausal women with

osteoporosis often exhibit a chronic mild inflammatory state

characterized by altered cytokine expression (153). Citrate plays a

crucial role in modulating the release of inflammatory factors; thus

suggesting that citrate’s impact on these factors may serve as a

mechanism for regulating bone remodeling.
8.1 Bone immune factors and
bone remodeling

The immunophenotyping clinical evidence in postmenopausal

patients indicates that women in the postmenopausal stage exhibit

elevated levels of inflammatory cytokines, specifically interleukin-

1b (IL-1b), IL-6, and tumor necrosis factor a (TNFa) (154–157).
This applies to both circulating blood cells and cells within the bone

microenvironment (158, 159). Previous experimental evidence

confirms the heightened presence of inflammatory mediators,

such as IL-1b, IL-6, and TNFa, in the bloodstream and bone
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marrow of ovariectomized rodents (160, 161). In summary,

postmenopausal women with osteoporosis exhibit a persistent

mild inflammatory state characterized by altered cytokine

expression. This suggests that estrogen-mediated immune cell-

induced changes in inflammatory cytokines play a crucial role in

bone formation.

The regulation of bone immunity primarily involves three

inflammatory factors, namely IL-1b, IL-6, and TNF-a. IL-1b, a
prominent member of the IL-1 ligand family, is recognized as a

primary therapeutic target for various inflammatory conditions

(162). Multiple studies have demonstrated that IL-1 directly

enhances osteoclast formation, multinucleation, pit-forming

activity, and survival (163). Additionally, IL-1 also affects

osteoblasts. In a study by Zhang YZ et al., downregulation of TLR4

reduced the levels of IL-1, TNF-a, and IL-6 in osteoblasts leading to

improved cell viability attributed to the suppression of inflammatory

pathways (164). Furthermore, IL-1b stimulates bone resorption and

inhibits bone formation while IL-6 promotes T cell growth and

differentiation and enhances the differentiation of osteoclasts,

macrophages, and megakaryocytes (165). Moreover, IL‐6 has dual

effects on osteoblast activity by promoting initial differentiation but

impeding subsequent differentiation at later stages (166–168) TNF-a,
an inflammatory factor, can be produced by various cell types such as

macrophages, NK cells, mast cells, and T and B lymphocytes (169).

The impact of TNF-a on osteogenic differentiation remains a subject

of debate. Some studies suggest that lower concentrations of TNFa
enhance the levels of Runx2, Osx, OCN, and ALP inMSCs (170, 171),

while higher concentrations of TNFa have been shown to decrease

these levels (170–173). In terms of the relationship between TNF-a
and osteoclasts, it is considered a crucial stimulator for osteoclast

differentiation (174). Treatment with TNFa alone (without RANKL)

has been found to increase the number of TRAP-positive osteoclasts

in WT mice by activating the NF-kB signaling pathway both locally

and systemically (175–177). Overall, inflammatory factors

predominantly regulate bone remodeling by inhibiting osteogenic

differentiation and promoting osteoclast differentiation.
8.2 Citrate regulates immune inflammatory
factors to regulate bone remodeling

Citrate plays a pivotal role in modulating immune factors.

Numerous studies have demonstrated that exogenous citrate

influences the secretion of IL-1, TNF-a, and IL-6 (Figure 4). A

study indicated that the introduction of exogenous citrate resulted

in elevated expression of proinflammatory cytokines TNF-a, IL-1b,
and IL-6 (178). Research conducted on gastric cancer epithelial cells

demonstrated that citrate could enhance the expression of IL-1b
and TNF-a (179). Furthermore, another study revealed a positive

correlation between increased plasma levels of ACLY and the

expression of IL-6, suggesting that citrate may promote the

expression of immune factors through ACLY. ACLY breaks down

citrate into acetyl-CoA, which serves as a substrate for acetylation -

a fundamental mechanism for regulating immune factors. In one

study, it was demonstrated that the absence of ACLY led to reduced

secretion of IL-6 and TNF-a in macrophages primarily due to
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decreased macrophage response to IL-4 stimulation caused by

reduced levels of histone acetylation-dependent genes targeted by

IL-4 (180, 181). Another study also demonstrated that silencing of

SLC25A1 suppressed the production of TNF-a induced by LPS

(182). The results indicated a positive correlation between

cytoplasmic citrate levels and the expression of IL-1b, TNF-a,
and IL-6. Ethanol-exposed monocyte-macrophages convert it to

acetate, which metabolizes into acetyl-CoA, leading to enhanced

histone acetylation and generation of proinflammatory cytokines

such as IL-6, IL-8, and TNF-a. These cytokines were influenced by

the downregulation of ACSS1 and ACSS2 from the short-chain

family members of acyl-CoA synthetase (183, 184). These findings

suggested that ACLY activity resulted in the synthesis of acetyl-CoA

from citrate, thereby facilitating the expression of inflammatory

factors while regulating bone formation and resorption. In brief,the

inhibition of bone formation is facilitated by citrate through the

upregulation of inflammatory factor expression.

9 Citrate as a basis for the diagnosis
and evaluation of therapeutic effect of
bone remodeling disorder

Due to its significant impact on bone remodeling and

resorption, citrate emerges as a potential molecular marker for
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various orthopedic-related disorders. Research has revealed a

marked reduction in citrate levels in the bones of mice or rats

experiencing bone loss induced by age-related ovariectomy or

retinoic acid, indicating an association between citrate and the

development and progression of diverse forms of osteoporosis. Our

previous energy metabolomics study also found that the citrate

content of bone tissue was weakened in postmenopausal

osteoporotic mice (23, 185). Currently, due to limited approaches

for acquiring bone tissue samples, research on bone tissue citrate is

primarily restricted to animal experiments, while studies on human

citrate and osteoporosis mainly focus on plasma and urine citrate

levels. A study revealed notable decreases in plasma citrate levels

among elderly osteoporotic men compared to younger healthy men,

suggesting that reduced citrate levels in osteoporotic patients may

not solely be attributed to estrogen (23). Simultaneously, research

has demonstrated a positive correlation between plasma citrate and

lumbar hip BMD (23). The findings suggest that serum citrate levels

have the potential to serve as a diagnostic marker for osteoporosis.

Although urine testing offers the advantages of noninvasiveness and

convenience compared to blood testing, a study has demonstrated

decreased citrate excretion in postmenopausal women and

individuals with low bone mass (186, 187). Additionally, there is

strong evidence linking urinary citrate excretion to prevalence of

fragility fractures in postmenopausal women (28), indicating a

potential association between urinary citrate levels and bone
FIGURE 4

Citrate regulates bone remodeling through the immune system. Citrate regulates histone acetylation in immune cells through ACLY and promotes
the secretion of immune inflammatory factors TNF-a, IL-1b and IL-6. The secreted immune inflammatory factors promote the differentiation of
osteoclast precursor cells into osteoclasts which mediate bone resorption. Meanwhile, the inflammatory cytokines TNF-a, IL-1b and IL-6 also play
an important role in bone formation. TNF-a promoted osteogenic differentiation at low concentrations and inhibited osteogenic differentiation at
high concentrations. IL-6 promoted early differentiation and inhibited late differentiation. IL-1b mainly inhibited osteogenic differentiation. In general,
increased immune-inflammatory factors enhance bone resorption and inhibit bone formation.
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mineral density. Importantly, the administration of potassium

citrate to increase urinary citrate excretion, typically used for

stone prevention purposes, resulted in a slight improvement in

lumbar bone mineral density - an intriguing finding (188). This

suggests that urine citrate could also be considered as a potential

diagnostic marker for osteoporosis. However, further research is

needed to determine whether plasma or urine citrate is superior and

if combining both blood and urine measurements can enhance the

accuracy of diagnosing osteoporosis.

Citrate may also serve as a biomarker for assessing the

therapeutic effect of osteoporosis. Numerous drug studies have

demonstrated that promoting citrate secretion can effectively treat

osteoporosis. Melatonin plays a pivotal role in the management of

osteoporosis, as evidenced by its ability to enhance citrate secretion

and increase citrate content in bone tissue when treating mouse

osteoblasts. This suggests that citrate could potentially serve as an

indicator for evaluating the prognosis of melatonin-treated

osteoporosis (189). Traditional Chinese medicine (TCM) is also

an important treatment modality for osteoporosis. One study

suggested that osthole regulates blood citrate concentration to

treat osteoporosis (185). Another study indicated that the citrate

cycle might be a crucial mechanism through which Chinese

medicine (Yigu decoction) regulates intestinal flora to address the

pathogenesis of osteoporosis, implying that citrate could be a vital

prognostic marker for its treatment (190). Previous studies

conducted by our group have found evidence supporting

melatonin’s ability to regulate intestinal flora and promote citrate

secretion, suggesting its potential role in treating osteoporosis. In

conclusion, while further confirmation is needed regarding its

accuracy, citrate holds promise as an indicator for evaluating the

efficacy of medical treatments targeting osteoporosis.
10 Citrate-based treatment of bone
remodeling disorders

10.1 Citrate diet corrects bone remodeling
and bone metabolism disorders

Since citrate production in the human body primarily relies on

dietary intake, consuming foods rich in citrate is the preferred

approach for correcting bone remodeling. Research suggests that

incorporating citrate-rich fruits and vegetables into one’s diet

promotes renal excretion of citrate (191). Interestingly, compared

to individuals with normal fruit intake, those with lower fruit

consumption exhibit reduced levels of endogenous citrate content

(192), indicating that exogenous sources of citrate compensate for

decreased renal excretion and play a role in correcting bone

remodeling. A study demonstrated that potassium citrate

significantly increased bone mass in postmenopausal women

(193). Another study revealed that supplementation with

potassium citrate reduced markers of bone resorption (194).
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However, a two-year clinical trial indicated that simply increasing

oral citrate dosage did not improve bone remodeling (195). This

inconsistency may arise from the fact that osteoblast secretion

primarily contributes to the presence of citrate in bones (23).

External sources of citrate are absorbed into the bloodstream and

eliminated by the kidneys, thereby maintaining serum citrate

homeostasis without affecting its levels within bone tissue.

Consequently, strategies aimed at enhancing bone formation

through elevated levels of intracellular or extracellular citrates

have become a focal point.
10.2 The important role of citrate scaffold
in the treatment of bone loss

Currently, orthopedic biomaterials developed for bone

regeneration lack the necessary biological and biochemical

compatibility required for effective and intricate bone healing.

However, bone regeneration plays a crucial role in clinical care for

various conditions such as nonunion defects, congenital anomalies,

traumatic injuries, and tumor removal (196). Citrate-based scaffolds

have been extensively utilized as orthopedic materials. Numerous

studies have demonstrated that the incorporation of citrate into

biomaterials enhances bone formation (197–199). Simultaneously,

with the advancement of research on bone regeneration materials,

researchers generally aim to provide not only physical filling but also

biological support for bone tissue regeneration through scaffolds.

Previous research has shown that citrate-based materials serve as an

energy source for human stem cells and stimulate their osteogenic

differentiation via metabolic control, which is dependent on NaCT

(69). The efficacy of heat-responsive citrate-based GO scaffolds in

promoting BMP9-stimulated bone regeneration in adipose-derived

MSCs has been demonstrated by another study (200). These findings

suggest that citrate scaffolds not only enhance osteogenesis by

promoting the differentiation of stem cells into osteoblasts but also

expedite mineralization through facilitating hydroxyapatite

deposition (201). Moreover, research has indicated that citrate

biomaterials possess inherent antibacterial properties, which can

inhibit bone regeneration during infection post bone defects. Many

biodegradable polymers based on citrate have shown notable

antibacterial activity against Gram-negative Escherichia coli and

Gram-positive Staphylococcus aureus (202, 203). Additionally,

blood circulation plays a crucial role in the healing process of bone

defects, and it has been found that citrate materials can improve

blood compatibility (204) Interestingly, the angiogenic impact of

citrate varies depending on the dosage. Research suggests that lower

doses of citrate material promote osteogenic differentiation while

higher doses further stimulate angiogenesis in vascular endothelial

cells (205). Furthermore, citrate provides an additional binding site

for biological conjugation (206) improving scaffold biocompatibility

(201) as well as enhancing hydrophilicity and cell adhesion. In

conclusion, through multiple biological pathways (207), citrate

enhances the functionality of filled scaffolds in bone formation.
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10.3 Targeting citrate transporters may be
a new direction for drug development of
bone remodeling in the future

For patients with bone defects, citrate scaffolds have demonstrated

satisfactory efficacy in promoting bone regeneration as fillings.

However, the utilization of citrate scaffolds is not applicable for

non-traumatic metabolic bone diseases such as osteoporosis.

Notably, the angiogenic impact of citrate has been found to be

dose-dependent. Research has shown that at low doses, citrate

materials induce osteogenic differentiation while at high doses they

enhance the angiogenic function of vascular endothelial cells. As

mentioned earlier, NaCT and CIC serve as transporters for citrate,

with NaCT responsible for cellular absorption and CIC facilitating

transportation from mitochondria to the nucleus. Consequently,

exploring potential medications targeting citrate transporters

presents a promising approach to address disorders related to bone

remodeling by regulating citrate levels in bone tissue. The current

drugs targeting citrate transporters primarily consist of transporter

inhibitors. PF-06649298 inhibits NaCT (208). By binding to NaCT

and inhibiting citrate uptake in human hepatocytes, PF-06649298

reduced plasma glucose levels and hepatic TG in mice fed a high-fat

diet (209). Slc25a1-specific inhibitors (CTPI-2) effectively hinders the

progression of nonalcoholic steatohepatitis by reversing significant

changes in steatosis, preventing its development into steatohepatitis,

reducing infiltration of inflammatory macrophages in liver and

adipose tissue, and notably mitigating obesity induced by a high-fat

diet (210, 211) Furthermore, studies have demonstrated that inhibitors

targeting the citrate transporter CIC exacerbate bone loss (15).

Targeting citrate transporters holds promise for the treatment of

osteoporosis. Moreover, research indicates that Paget’s Disease of

Bone involves abnormal proliferation of bone tissue, leading to

fragility and susceptibility to pain and fractures. Elevated plasma

citrate levels in patients with Paget’s Disease are associated with

increased citrate production (212). This suggests a potential

association between Paget’s Disease and excessive citrate

overproduction, indicating that inhibitors targeting citrate

transporters may be a viable option for drug treatment.

Additionally, it has been reported that elderly osteoporosis patients

exhibit decreased expression of CIC and NaCT. Therefore, developing

agonists for CIC and NaCT in osteoporosis patients could potentially

regulate bone resorption and remodeling disorders. Notably, NaCT

can enhance the uptake of citrate by osteoblasts. A study has also

revealed that reduced expression of CIC leads to mitochondrial

dysfunction in mice with senile osteoporosis (15) Therefore, the

development of CIC agonists can not only enhance cytosolic citrate

content but also ameliorate mitochondrial dysfunction and promote

metabolic reprogramming of osteoblasts. Consequently, CIC agonists

offer greater advantages over NaCT (17, 211).
11 Discussion

In this review, we suggest that citrate plays a critical role in bone

remodeling, serving as both a vital by product of the TCA cycle and
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an indispensable factor in bone mineralization. The role of this

substance extends beyond its function as a fuel for bone formation

and resorption. It also plays a systemic regulatory role in bone

remodeling through mechanisms such as histone acetylation,

metabolic reprogramming, and the modulation of pro-

inflammatory factors involved in bone immunity. Under

physiological conditions, citrate plays a crucial role in bone

remodeling by facilitating ATP production and ensuring active

transcription through histone acetylation. It also regulates glucose

metabolism, fatty acid metabolism, and glutamine utilization to

support the synthesis of various necessary substances via metabolic

reprogramming. Additionally, it maintains a stable mechanism for

bone formation and resorption while inhibiting excessive bone

remodeling through up-regulation of immune factors. Under the

pathological condition of osteoporosis, the reduction of citrate in

bone tissue leads to impaired bone mineralization, disrupted energy

metabolism, and decreased histone acetylation.

Interestingly, citrate plays a paradoxical role in bone

remodeling. As mentioned earlier, citrate levels significantly

impact the process of bone mineralization, with both deficiencies

and excesses having detrimental effects on the formation of bones,

which suggests that citrate plays a positive role in maintaining bone

remodeling.Exogenous citrate has been found to effectively enhance

bone density while inhibiting bone resorption. However, citrate can

also stimulate the release of immuno-inflammatory factors, which

impact bone health[. Recent studies suggest that the immune

system’s regulation of bone metabolism is highly complex, and

osteoimmunology is an emerging discipline that explores the

influence of the immune system on bone tissue (213). This article

proposes that circulating citrate may promote the release of

inflammatory factors through mechanisms such as histone

acetylation, indicating that citrate modulates the overall immune

level, which could be detrimental to bone tissue. This contradiction

might be explained by the differential functions of citrate within

bone tissue at different locations in the body: citrate within bone

tissues may help maintain bone remodeling, while circulating

citrate may upregulate systemic inflammation levels by

modulating the immune system. It seems that citrate within bone

tissues plays a more significant role than circulating citrate, as high

serum concentrations of citrate are often associated with excessive

osteogenesis rather than bone resorption caused by circulating

citrate-induced inflammatory factors. Therefore, future research

should focus on the differing roles of citric acid at various

locations. This will contribute to a deeper understanding of the

paradoxical role of citric acid in bone remodeling.

Currently, the assessment of citrate content in the human body

primarily focuses on serum citrate levels. Blood citrate level may

serve as an indicator of bone metabolic status. This reliance on

blood analysis stems from the challenges associated with obtaining

bone tissue samples for diagnosing osteoporosis. Additionally, renal

processes play a significant role in maintaining citrate homeostasis

as mentioned earlier, while urinary excretion of citrate decreases in

postmenopausal osteoporosis patients (186). Therefore, urine

citrate can also serve as an indicator for assessing bone

metabolism in humans (214). While citrate is crucial for

maintaining bone health, supplementing with citrate alone may
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not yield significant effects due to its renal metabolism. Recent

studies propose that targeting enzymes associated with citrate

metabolism could be a potential therapeutic approach for treating

osteoporosis by increasing the content of citrate in bones (15, 45).

However, it is important to note that citrate plays a pivotal role in

tumor metabolism (15), promoting tumor stemness and drug

resistance (211). Citrate assumes a prominent role as a promoter

of tumor growth, particularly in intraosseous metastatic tumors

where its influence is pronounced (215). Meanwhile, circulating

citrates might have negative effects on bone health as is mentioned

above. Hence, drugs targeting enzymes related to citrate must

specifically target BMSC or osteoblast cells to effectively treat

osteoporosis and avoiding any negative impact on bone and also

other tissues.

In conclusion, this research emphasizes the significance of

citrate in bone metabolism, illustrates the systemic regulation of

citrate in bone remodeling, and unveils its multifaceted role in

mineralization, energy provision, histone acetylation, and immune

response. Furthermore, it is suggested that citrate maintains

homeostasis during physiological conditions and prevents

excessive bone formation while intrinsic mechanisms prevent

further exacerbation of pathological bone resorption. The

determination of blood and urine citrate levels under different

physiological and pathological conditions may offer a novel

method for diagnosing osteoporosis and evaluating treatment

efficacy. Additionally, we demonstrate that targeting the citrate

transporter presents a promising approach for managing bone

remodeling disorders and introduces innovative concepts for

orthopedic diagnosis and management.
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149. Łuczkowska K, Rogińska D, Kulig P, Bielikowicz A, Baumert B, Machaliński B.
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