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Trained innate immunity as a
potential link between
preeclampsia and future
cardiovascular disease
Ivo Carrasco-Wong, Javiera M. Sanchez, Jaime A. Gutierrez*

and Delia I. Chiarello*

Escuela de Tecnologı́a Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián,
Santiago, Chile
Preeclampsia (PE) is a complex pregnancy syndrome characterized by

hypertension with or without proteinuria, affecting 2–6% of pregnancies

globally. PE is characterized by excessive release of damage-associated

molecular patterns (DAMPs) into the maternal circulation. This DAMP-rich

milieu acts on innate immune cells, inducing a proinflammatory state

characterized by elevated cytokines such as IL-1b and IL-18. This

proinflammatory state in the mother and placenta results in the endothelial

dysfunction strongly associated with cardiovascular disorders. While the

immediate maternal and fetal risks of PE are well-documented, accumulating

evidence indicates that PE also confers long-term cardiovascular risks to the

mother, including hypertension, coronary heart disease, stroke, and heart failure.

The underlying mechanisms connecting PE to these chronic cardiovascular

conditions remain unclear. This article explores the potential role of trained

innate immunity (TRIM) as a mechanistic link between PE and increased long-

term cardiovascular risk. We propose that the persistent exposure to DAMPs

during PE may epigenetically reprogram maternal innate immune cells and their

progenitors, leading to TRIM. This reprogramming enhances the inflammatory

response to subsequent stimuli, potentially contributing to endothelial

dysfunction and chronic inflammation that predispose women to

cardiovascular diseases later in life. Understanding the role of TRIM in PE could

provide novel insights into the pathophysiology of PE-related cardiovascular

complications and identify potential targets for therapeutic intervention. Further

research is warranted to investigate the epigenetic and metabolic alterations in

innate immune cells induced by PE and to determine how these changes may

influence long-term maternal cardiovascular health.
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Preeclampsia and maternal long-
lasting effects

Preeclampsia (PE) is a serious syndrome of pregnancy,

characterized by hypertension with or without proteinuria, which

can lead to the severe condition of eclampsia (1). In patients without

signs of proteinuria, the diagnosis of the syndrome considers the

presence of thrombocytopenia or elevated liver transaminase levels

(2). It is estimated that in general population the prevalence of

preeclampsia is 2–6% (3). The syndrome is subclassified into either

early-onset PE (EOPE) or late-onset PE (LOPE) (1), with the onset

of pathological signs falling into <34th and >34th week of gestation,

respectively, being EOPE the syndrome which presents the most

severe additional symptoms and signs, such as proteinuria, hepatic

damage or pulmonary edema, among others (1).

Increasing evidence shows that the syndrome has a long-lasting

deleterious effect on their cardiovascular health. Thus, four meta-

analysis made on 22 (4), 43 (5), 15 (6) and 21 studies (7) showed

that in short-, medium- and long-term (i.e. follow-up from 1 month

to 34 years (4–7)), women who had preeclampsia have increased

risk of I) heart failure (adjusted risk ratio [aRR], 4.19; 95%

confidence interval [CI], 2.09–8.38) (4); II) coronary heart disease

(aRR, 2.50; 95% CI, 1.43–4.37) (4); III) coronary heart death (aRR,

2.10; 95% CI, 1.25–3.51) (4); IV) CV disease (aRR, 1.85; 95% CI,

0.80–4.29 (4) and odds ratio (OR), 2.28; 95% CI 1.87–2.77) (5); V)

CV disease death [aRR, 2.21; 95% CI, 1.83–2.66 (4), OR, 2.89, 95%

CI 1.71–4.89 (5) and RR, 2.29; 95% CI, 1.73-3.04) (6)]; VI) stroke

(aRR, 1.81; 95% CI, 1.29–2.55) (4); VII) stroke death (aRR, 1.97;

95% CI, 0.80–4.88) (4); VIII) cerebrovascular disease (RR, 2.03; 95%

CI, 1.54-2.67) (6); IX) peripheral arterial disease (RR, 1.87; 95% CI,

0.94-3.73) (6); and, X) hypertension [RR, 3.13, 95% CI 2.51–3.89)

(5) and OR, 3.19, 95% CI, 1.52–6.70 (7)]. Thus, the effects of

preeclampsia not only impact maternal health during the pregnancy

but also induce subclinical alteration which can remain silent for

years, increasing her cardiovascular risk. In this regard, increased

microalbuminuria, a was found in association whit high

hypertension risk in mothers who had PE 7 (8) and 10 (9) years

before. Although, the pathophysiological mechanism of the findings

is unknown, this slight alteration of the glomerular filtration is

independently associated with high stroke (10) and coronary heart

disease (11) risks. Nowadays, there is no knowledge about the

pathophysiological mechanisms underlying the cardiovascular risk

in mothers who had PE.

It has been agreed that the most likely etiology of PE is a poor

remodeling of the spiral arteries and veins during early

placentation. Meanwhile, LOPE appears to be linked to maternal

factors, such as the inability of the cardiovascular system to meet the

increasing metabolic needs of the fetoplacental unit, rather than

issues with the placentation process (12). The PE condition

maintains a pernicious low blood flow in a condition of high

pressure (Jet-type), generating vascular mechanical stress, hypoxia

(13), and syncytiotrophoblast (STB) dysfunction (14). STB is a

multinucleated cell layer of fetal origin that covers the chorionic villi

and is in direct contact with maternal blood (15). Thus, it has been
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reported that STB stress induced by the Jet-type blood flow can be

characterized by: 1) STB damage markers, such as increased

mitochondrial dysfunction, apoptotic markers, reticulum stress,

oxidative stress, and inflammation; 2) An excessive release of

microvesicles, exosomes, and cell fragments (16); and, 3) an

increased release of ‘Damage-associated molecular patterns’

(DAMPs) (17). In PE, increased DAMPs activate the NOD-,

LRR- and pyrin domain-containing protein 3 (NLRP3)

inflammasome, which promotes IL-1b and IL-18 maturation (18).

DAMPs are host to intracellular molecules that are not usually

found in cell-free form. They can activate ‘Pattern Recognition

Receptors’ (PRRs) mainly in innate immune cells, which are

responsible for recognizing pattern molecules of microorganisms

(19). PRRs are classified into several classes, including Toll-like

receptors (TLR), nucleotide-binding oligomerization domain,

Leucine-rich repeats, nucleotide-binding domain leucine-rich repeat

containing receptors, retinoic acid-inducible gene 1 (RIG-1) -like

receptors, and the C-type lectin receptors (20). PRRs are found in

various cell types including monocytes/macrophages (21),

neutrophils (22), and endothelial cells (23). The innate immune

cells activated by DAMPs via TLR, switch from a tolerogenic, anti-

inflammatory phenotype to a cytotoxic, pro-inflammatory phenotype

(24). The activation of PRRs favors the proinflammatory status by

inducing the secretion of proinflammatory cytokines (25). Under

conditions of hypoxia and oxidative (17), reticulum (26), and

mitochondrial (27) stress, all of them found in STB stress (16), the

STB increases the releasing of several DAMPs, such as HMGB1 or

cell-free fetal DNA (17). In this sense, the SBT stress contribute to the

maternal pro-inflammatory milieu, which includes several increment

level of circulating DAMPs and cytokines (28), are part of the

pathophysiological signs of the syndrome and could activate and

maintain the proinflammatory profile of innate immune cells and

endothelial cell dysfunction observed in the syndrome (29). Both

early-onset and late-onset preeclampsia appear to share systemic and

placental inflammation as a common pathophysiological feature.
Proinflammatory status
in preeclampsia

The immunological mechanisms underlying preeclampsia have

been extensively explored (24, 30), highlighting the role of adaptive

and innate immune pathways in the development of this condition.

During the physiological pregnancy, the inflammatory profile of the

maternal immune system changes, being proinflammatory during

placentation. This is proposed as a requirement for an effective

invasion of the placenta and remodeling of the spiral arteries (31).

In the 2nd gestation trimester, the profile changes to anti-

inflammatory which is the basis of tolerance toward the fetal-

placental unit. At the time of delivery, the profile becomes

proinflammatory contributing to labor (31). Therefore, a large

part of the pregnancy takes place with strong maternal

immunomodulation, which is manifested by: I) high levels of

anti-inflammatory cytokines (e.g. IL-10), immunosuppressants
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(e.g. progesterone), suppressive (e.g. HLA-G), and tolerogenic

molecules (e.g. TGF-b) (32); and by II) an increase of anti-

inflammatory immune cells that including macrophages with the

anti-inflammatory phenotype (M2), and a reduction ratio of helper

T lymphocytes, Th1:Th2 and Th17:Tregs (33). In general, the

placenta favors immunotolerance, either through the expression

of human leukocyte antigen G (HLA-G) that reduces the reactivity

of natural killer lymphocytes (34), or by releasing extracellular

vesicles, which induce the secretion of anti-inflammatory cytokines

from the macrophages that engulf them (35). Contrarily, PE is

characterized by presenting a proinflammatory state in the mother

and placenta (36), which includes an increment of circulating

proinflammatory mediators (e.g. TNF-a and IL-6), diminishing

of anti-inflammatory cytokines (e.g. IL-10) (36), decreased

circulating levels of progesterone (37), decreased HLA-G

expression (38), higher ratio lymphocytes Th1:Th2 and Th17:

Tregs (36), and increased activation of monocytes, neutrophils,

and macrophages (39). In PE, the unbalance toward the

proinflammatory status is associated with endothelial activation,

leading to endothelial dysfunction and high blood pressure (40).
Cardiovascular disorders and
endothelial dysfunction/activation

Preeclampsia has been associated with microvascular

dysfunction, which may contribute to the increased risk of

obstructive coronary artery stenosis observed in women with a

history of this condition, especially when preeclampsia is associated

with preterm delivery or stillbirth (41). In physiological status, the

endothelium shows a balance between vasodilator and vascular

constrictor molecules, such as nitric oxide and Endothelin,

respectively, which helps to maintain an anti-inflammatory and

antithrombotic function (42). Cardiovascular disorders are

strongly associated with endothelial dysfunction (43), characterized

by an alteration in endothelium-dependent vascular relaxation,

oxidative stress, and the inflammatory activation of endothelial

cells (44). During endothelial activation, an overexpression of

proinflammatory cytokines, chemokines, and adhesion molecules

has been described in endothelial cells (43). Thus, systemic

inflammation is associated with vascular diseases (45) and

hypertension (46). Increasing evidence indicates that immune cells

are directly involved in the onset of hypertension. In IFN-g KOmice,

a murine model of hypertension (DOCA+salt model) did not show

the characteristic increment of the blood pressure of the model (47),

being observed only when CD8+ T lymphocytes from hypertensive

WT mice were transferred to knock-out (KO) individuals (47).

However, not only are T cells implicated in the onset of

hypertension but also innate immune cells, such as dendritic cells,

monocytes/macrophages, natural killer cells, and neutrophils (48).

Although adaptive immune cells have an important role in the onset

of cardiovascular disorders, recently, innate cells have become

relevant in the phenomenon due to the persistent activation of

PRRs. It is proposed that cardiovascular diseases are related to a

maladaptive inflammatory response of innate cells (49). In this sense,
Frontiers in Endocrinology 03
it was reported that circulating monocytes isolated from patients with

coronary artery disease have increased NLRP3 and caspase-1

expression, both related to inflammasome formation and the

elevated production of the downstream cytokines, such as IL-1b
and IL-18 (50). Classically, it is described that inflammasome

formation triggers pyroptosis (51). However, the neutrophils in a

DAMP-rich inflammatory milieu are resistant to this type of cell

death, becoming a permanent producer of IL-1b (52).
Monocytes and neutrophils and their
association with
cardiovascular pathologies

Meta-analysis of 27 studies evidenced that intermediate- and

non-classical monocytes are increased in persons with

cardiometabolic disorders and cardiovascular disease (53). On the

other hand, a high neutrophil-to-lymphocyte ratio is associated

with several cardiovascular conditions, as evidenced by a meta-

analysis of 38 studies (54), being proposed as a biomarker of

cardiovascular health. These innate immune cells are tightly

involved in the magnitude of cardiovascular lesions or alterations.

In the case of animals subjected to myocardial infarction and

reperfusion, the depletion of neutrophils prior to the infarct

showed a significant reduction in infarct size (55). During

atherogenesis, neutrophils in the intima release reactive oxygen

species and proteases, which alter the endothelium integrity,

allowing the recruitment and extravasation of monocytes and its

further differentiation to macrophages (Reviewed in (56)). The

myeloperoxidase released by neutrophils oxidates LDL, enhancing

the amount of oxLDL, which together with activated macrophages

generates the foam cells (56). However, despite the pro-

inflammatory profile of the cardiovascular event, high basal levels

of pro-inflammatory cytokines precede the occurrence of

cardiovascular pathologies. Thus, a meta-analysis showed that

high levels of IL-6, IL-18, and TNFa increase the risk of non-fatal

myocardial infarction or coronary heart disease death (57). All

those cytokines can induce endothelial dysfunction (58, 59). The

activated neutrophils secrete the pro-inflammatory cytokines

TNFa, IL-1b and IL-12 (60), and activated monocytes secrete IL-

1b, IL-6, TNFa (61). The latter suggests that chronic activation of

monocytes and neutrophils can impact endothelial function

increasing the risk of cardiovascular pathologies.

In the context of preeclampsia, the pro-inflammatory

environment includes activated monocytes, showing increased

expression of CD11b, ICAM-1, CD14, and TLR4, an overproduction

of reactive-oxygen-species (ROS), and altered secretion of cytokines

(62). In the same way, neutrophil concentration is increased in

maternal blood (63) along with an increment of the neutrophil

activation markers CD11b and CD62L (64). Considering that a

proinflammatory milieu is shared characteristic between

preeclampsia and cardiovascular disorder, then an alteration of the

performance of the immune system could be part of the mechanisms

that increase the long-lasting cardiovascular risk in women who had

preeclampsia. In this sense, ‘Trained Innate Immunity’ (65) could be
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the mechanism since it has recently been involved as a player in the

onset of cardiometabolic diseases (65, 66).
‘Trained Innate Immunity’ (TRIM)

TRIM is defined as ‘the long-term functional reprogramming of

innate immune cells, which is evoked by exogenous or endogenous

insults leading to an altered response toward a heterologous second

challenge after the return to a non-activated state’ (67). TRIM can

be triggered by DAMPs, including oxidized low-density lipoprotein

(oxLDL) (66), lipoprotein(A) (68), catecholamines (69), aldosterone

(70), heme (71), vimentin (72), uric acid (73), S100-alarmin (74)

and HMGB1 (75). DAMPs can induce TRIM by signaling through

PRRs, including the receptor for advanced glycation end products

(RAGE) (76), CD36 (77), and the five types of PRRs (77). Even

though there is no report about TRIM in preeclampsia, it is possible

to propose that it could occur since several DAMP levels are

increased in maternal blood (17, 78).

The effects of TRIM induction mediated by DAMPs trigger

metabolic and epigenetic modification that will lead to memory. For

instance, cellular metabolic changes are necessary for epigenetic

reprogramming (79), including an overexpression of glycolytic

enzymes after the first stimulus (80) and an increment of lactate

due to higher glucose consumption (81). Fumarate and succinate

are produced as intermediates in the tricarboxylic acid cycle and

glycolysis, and those intermediate are increased in trained

macrophages (82). Additionally, oxidative phosphorylation also in

enriched in trained cells (83). The influence of cellular metabolism

on epigenetic mechanisms is already known. In TRIM, the

accumulation of fumarate inhibits the demethylase activity of

KDM5, a lysine demethylase of histones (84).

There is no report about TRIM being induced in preeclampsia.

However, in maternal preeclamptic monocytes showed basal

intracellular reactive-oxygen-species and increased oxidative burst

after stimulation, which is indicative of a potentiated oxidative

phosphorylation (85), similar to the observation made in

monocytes trained with oxLDL (83). Noteworthy, mothers with

PE, exhibited an increased percentage of classical monocytes-2

(CD14++, CD16-, HLA-DR-) and a decreased percentage of non-

classical monocytes (CD14+, CD16++) prior to delivery (86, 87).

Since classical monocytes-2 are considered as pro-tolerogenic (88)

while non-classical monocytes are associated with pro-

inflammatory responses (88), the altered levels observed in PE-

pregnancies are proposed to reflect a compensatory mechanism

aimed at counterbalancing low-grade chronic inflammation (87).

Interestingly, although monocyte-2, considered as monocyte-

myeloid derived suppressive cell (89), mainly by its capacity of

differentiate naïve CD4+ T cells to CD4+, CD25+, Foxp3+

regulatory T-cell (Treg) (90), in Psoriasis, the induced-Treg

differentiated by monocytes-2 showed a deficient suppressive

activity (91). The latter suggest that in preeclampsia, a similar

phenomenon could be occurring, since circulatory Treg in

preeclampsia shows reduced function, with reduced expression of

FOXP3 and reduced IL-10 and TGF-b secretion (92). However,
Frontiers in Endocrinology 04
there is no data on the role of monocyte subpopulations in PE or

their frequency during the postpartum period. Consequently, the

potential permanent programming of monocyte subpopulations

remains unknown.

Resident natural killer cells (NK) in decidua (dNK) is an essential

cell type during the placentation due to its activity that include the

induction of the remodeling of spiral arteries by the disruption of its

vascular smooth muscle cells (93) and by the interaction with

extravillous trophoblast cells (94) promoting its invasion activity an

arterial remodeling through INF-g and VEGFa secretion (95).

Noteworthy, the dNK from multiparous mothers showed a higher

response to trophoblast interaction characterized by enhanced INF-g
and VEGFa secretion, in association with an open state of chromatin

of their locus, among other loci (95). Thus, it is proposed that the

physiological pregnancy can promote epigenetically a tolerance to

future pregnancies (95). In preeclampsia, dNK are increased in

decidua but showing reduced activity (e.g. reduced INF-y secretion)

(96), which impact in the spiral arteries remodeling. In this scenario,

also, it is possible to propose a memory in dNK in PE, since the

mothers that have a prior pregnancy with preeclampsia have the

greatest relative risk (RR) of PE in a new pregnancy, with a RR of 8.4

(7.1 to 9.9, 95% CI) (97). Also, other conditions increase the risk of

PE, such as chronic hypertension with a 5.1 of RR (4.0 to 6.5, 95%

CI); pregestational diabetes with a RR of 3.7 (3.2 to 4.3, 95% CI); and,

pre-pregnancy BMI>30 with a RR of 2.8 (2.6 to 3.1, 95% CI) (97). In

all this pathologies the activity of NK is reduced (98–100). It is

proposed that NK exhaustion can be produced by chronic

inflammation (101) which is found in chronic hypertension (102),

diabetes (103), obesity (104), and preeclampsia (described above).

Then, chronic inflammation observed in several pathologies with

high risk of PEmay generate a pro-exhaustion memory in circulatory

and decidual NKs favoring the onset of PE.

TRIM is associated with cardiovascular disorders (105), making

it possible that PE-induced long-term TRIM could impact

endothelial homeostasis. Then, as shows the Figure 1, we

proposed the proinflammatory status of preeclampsia constituted

at least by high concentration of pro-inflammatory cytokines and

increased levels of several DAMPs (compiled in Table 1) is

associated with the activation of innate cells, including monocytes

and neutrophils. This context, as was discussed above, could be

conducive to TRIM acquisition during the syndrome. Then, in a

short-medium or long-term, the maternal trained innate cells could

over respond to new challenges and generate a strong and fast

proinflammatory status disturbing the cardiovascular physiology of

women (see Figure 1). Regarding the moment during the pregnancy

at which DAMPs could initiate in PE the challenge in innate

immune cells is not clear. However, DAMPs seem to have

permanent participation in the pathophysiology of the syndrome.
DAMPs and the pathophysiology
of preeclampsia

There is no clue as to whether DAMPs could be involved in the

origin of PE, however it is possible to propose that DAMPs
frontiersin.org
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could maintain and even amplify the pro-inflammatory status of the

syndrome. Exposure of control placental explants to PE serum

increased HMGB1 release (133). Ex vivo induction of oxidative

stress and hypoxia to control placenta increased liberation of several

DAMPs, including HMGB1, HSP70, S100A8, S100A12 and Cell

free-fetal DNA (18). The latter together with the findings that the

receptors TLR-2,-3, -4, and -9 are increased in syncytiotrophoblast in

PE (134) suggest a self-maintaining of the DAMP-induced

proinflammatory status of the placenta.

DAMPs may enter maternal circulation, as several with high

maternal plasma levels in PE are listed in Table 1, including cell-free

DNA, crystals, and proteins. Although most of them can be released

by the placenta it is not possible to determine the original source of

them. However, DAMPs could induce alteration in endothelium.

Thus, microvascular endothelial cells HMEC-1 treated with

recombinant HMGB1 elevated the expression of the adhesion

molecule ICAM-1 favoring the arrest of the monocyte cell line

U937 on them (133). Cell-free mitochondrial DNA (cfmtDNA) also

generated a similar effect, in this case cfmtDNA could increase

macrovascular endothelial cell EA.hy926 permeability, together

with the rising of ICAM and E-selectin expression which favored

the arrest of primary polymorphonuclear leukocyte (135). In the

other hand, the cfmtDNA released by hypoxic murine trophoblast

reduced the endothelial-dependent vasodilation in abdominal aorta,

partially mediated by NLRP3 since the effect on cfmtDNA

diminished in NLRP3 -/- animals (136). The latter together with

the fact that preeclampsia curses along endothelial dysfunction
Frontiers in Endocrinology 05
(137) suggests that elevated circulating DAMPs may be part of

the syndrome.

Maternal plasma in PE shows elevated levels of the anti-

angiogenic protein soluble fms-like tyrosine kinase 1 (sFLT-1)

(138). sFLT-1 is proposed to be one of the responsible for

endothelial dysfunction in PE by the sequestration of VEGF

resulting in the endothelial expression of the adhesion proteins

ICAM and VCAM and the vasoconstrictor peptide endothelin-1

(139). sFLT-1 can be released by THP-1-derived macrophages

followed by the activation of inflammasome in a GSDMD

dependent manner (140). In this sense the DAMPs hyaluronan

and HSP70 (141), and uric Acid (142) generated a strong

inflammasome activation in primary monocytes from mothers

with PE probably contributing to the high levels of IL-1b and IL-

18 found in PE-maternal plasma (142). The activation of

inflammasomes also participates in the releasing of DAMPs since

the induction of pyroptosis led to the liberation of HMGB1 (143).

In the most severe cases of preeclampsia, mothers have a higher

risk of thrombotic events during pregnancy (144). In fact, the

plasma from mothers with PE had fast and strong thrombin

generation compared to control pregnancy plasma (122). The

same study showed that plasma from preeclampsia patients

strongly induced NETosis in neutrophils from healthy donors

(122). NETosis is a neutrophil-specific activation characterized by

the release of neutrophil extracellular traps (NETs), which consist of

chromatin and antimicrobial proteins (145). In PE high levels of

NETs were found in maternal circulation (146). The link between
FIGURE 1

Graphical abstract. Preeclampsia is associated with an increased cardiovascular risk in the mother, observed months to years after the syndrome
with no possible cure proposed yet. A characteristic of preeclampsia is a maternal systemic proinflammatory status with, among others, elevated
levels of circulating cytokines and damage-associated molecular patterns (DAMPs). These molecules can activate innate immune cells and
endothelial cells, inducing endothelial dysfunction, which is the basis of hypertension, the pathognomonic sign of Preeclampsia. Monocytes and
neutrophils activated by DAMPs can result in a phenomenon called trained innate immunity (TRIM) by epigenetic mechanisms, characterized by a
hyper-responsiveness of these cells to a second heterologous challenge. This memory can be maintained in myeloid precursors, for several cell
generations. This project proposes that the proinflammatory state of EOPE can induce TRIM in monocytes and neutrophils during pregnancy. Then,
in the maternal future, these trained monocytes will be hyper-responsive against new molecules associated with metabolic risk factors. This hyper-
responsive phenotype could then activate endothelial cells generating endothelial dysfunction in the mother, favoring the appearance of
cardiovascular disorders.
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NETs thrombosis is based on the capacity of human nuclear-DNA

and histones for inducing thrombin generation (147). Interestingly,

intact-NETs or assembled histones are unable to induce thrombin

generation, indicating that NETs must be dissembled to have

coagulatory activity. Based on the latter, DAMPs may favor the
Frontiers in Endocrinology 06
elevated risk of thrombotic events in mothers-with-PE due to the

high levels of circulatory histones (see Table 1), and to the induction

of NETosis by HMGB1 (148).

In the context of PE, as Table 1 and Figure 2 show, several

DAMPs have increased maternal circulatory concentration in PE,
TABLE 1 Maternal circulatory DAMPs with increased levels in Preeclampsia.

DAMP
Level in control and

preeclamptic
pregnancy

Ref.
Physiological sub-
cellular distribution

Physiological
function

Receptor that
sense DAMP

Cell-free fetal
DNA (cffDNA)

Control: 46.9 [20.8-78.2]

(106) Nucleus
Source of all intrinsic

genetic information (107)
TLR-9 (108)PE: 594.8 [240-1090.4]

GE/mL. Median [IQR]

Cell-free mitochondrial
DNA (cfmtDNA)

Control: 239.3 [197.4-297.1]

(109) Mitochondrial matrix

Encodes 13 crucial proteins
that are part of the

oxidative phosphorylation
system (110)

TLR-9 (111)
PE: 271.5 [220.2-335.1]

Copy number.
Median [IQR]

Cell-free heme (cfHeme)

Control: 1.63 ± 0.22

(112) Cytosol

Component of several
proteins contributes to
vasodilation, cellular

signaling, iron balance, and
provides antioxidant and
cellular protection (113)

TLR-4 (114)
PE: 3.18 ± 0.35

µM. Mean ± SD

Cyclophilin A (CypA)

Control: 8.71 (5.03–54.12)

(115) cytosol

Crucial for protein folding,
modulates immune

response by activating T
cells and producing
cytokines (116)

CD147 (integrin b2) (117)PE: 48.35 (8.12–58.91)

ng/mL. Median (min–max)

Heat Shock Protein
70 (HSP70)

Control: 643.4
[12.7–1084.9]

(78)
Cytosol, nucleus, ER,
and mitochondria

Assists in the correct
protein folding, prevents
aggregation, participates in
the degradation of damaged

proteins (118)

TLR-2 and TLR-4 (119)
PE: 901.1 [401.6–1263.8]

pg/mL. Median [IQR]

High Mobility Group
Box 1 (HMGB1)

Control: 2.1 [1.5–4.7]

(120) Nucleus

Organizes DNA and
nucleosomes in the nucleus,

facilitating gene
transcription (121)

RAGE and TLR-4 (76)PE: 5.5 [2.3–78.1]

ng/mL. Median [IQR]

Histones (Hs)

Control: 1.31 ± 0.54

(122) Nucleus

Compact DNA into
nucleosomes and regulate
gene expression through its

post-translational
modifications (123)

TLR-4 (124) Clec2d (125)PE: 4 ± 0.85

Fold change. Mean ± SD

Hyaluronan (HA)

Control: 58.9 [2.5–180.7]

(78) Extracellular matrix

Provide structural support,
and promoting healing by
facilitating cell migration
and proliferation (126)

CD44 (127)PE: 127.5 [20.7–287.6]

ng/mL. Median [IQR]

Myeloid-related protein
8, MRP8 (S100A8) and

MRP14 (S100A9).
Heterodimer
Calprotectin
(S100A8/A9)

Control: 552 (471–651)

(128) Cytosol

Myelomonocytes metal-
chelating antimicrobial
protein of the innate

immune response (129)

TLR-4 (130)
PE: 1081 (865–1569)

µg/L. Median (95% CI)

Uric Acid (UA)

Control: 4.2 [2.8–4.8]

(78) Cytosol

Uric acid is the end product
of exogenous and
endogenous purine
metabolism (131)

P2X7 (132)PE: 6.1 [4.5–10.1]

ng/dL. Median [IQR]
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suggesting that TRIM could be induced in innate cells during the

syndrome. The latter is supported by the evidenced ability of cell-

free heme (151) and HMGB1 (75) to induce TRIM. In the case of

S100A8/A9, the evidence indicates a possible dual role as pro-

inflammatory molecules (153) but also as an immune modulator

(152). The latter indicates that it will be necessary to evaluate not

only if individual DAMPs with high levels in PE can induce TRIM

but also how collectively high levels of different DAMPs affect

TRIM acquisition.
TRIM on myeloid progenitors

The fact that mature innate immune cells are short-lived (i.e.

Half-life 5-7 days (154, 155)), raise the unanswered question about

how PE-induced TRIM could last years. In this scenario, it would be

necessary that the precursors of innate cells also be involved. In this

sense, human hematopoietic stem and progenitors cells (HSPCs)

showed permanent alterations after in vivo Bacille Calmette-Guérin

(BCG) vaccination (150), a classic TRIM inducer (156). The latter

included, a permanent (i.e. at least 90 days post-vaccination)

transcriptional reprogramming in HSPCs, leading to an

upregulation of genes associated with myeloid and granulocytic

cell lineage priming, generating a myeloid differentiation bias

within HSPCs, and enhanced proinflammatory response to

various stimuli of mature peripheral blood mononuclear cells

(150). Regarding DAMPs, TRIM induced by heme in mice

showed an increase in myeloid-biased long-term hematopoietic

stem cells and multipotent progenitors with an expansion of

myeloid-biased, associated to elevated chromatin accessibility in

genes associated with myeloid differentiation of HSPCs, also there
Frontiers in Endocrinology 07
was a significant and permanent increase in mature myeloid cells

(i.e. neutrophils and monocytes), with an enhanced phagocytic

activity (151). HSPCs express TLR-2, - 4, and -9, and their

activation induces the differentiation and expansion to

macrophages (157) suggesting that DAMPs may reach bone

marrow and promote TRIM-associated permanent modifications.
Conclusions

Preeclampsia is a severe multisystemic syndrome which

manifest with different pathological characteristics (i.e. EOPE and

LOPE). Additionally, it remains unclear what are the mechanisms

that induce the syndrome. However, one fact is clear: mothers who

had PE were at higher cardiovascular risk. Thus, mothers not only

face a serious pregnancy pathology, but this syndrome will probably

also affect their future health. Therefore, an understanding of the

mechanisms that underlie higher cardiovascular risk is crucial.

Trained innate immunity has recently changed the paradigm that

adjudicated the immune memory only to T/B cells from adaptive

immunity, and this type of epigenetic memory is a mechanism with

a clear potential to impact cardiovascular physiology. This

epigenetic memory could explain the increased cardiovascular

risk observed in women who have experienced PE, potentially

triggered by future health challenges throughout their lives.

However, further research is required to explore this hypothesis,

as no study has directly examined this possibility to date. If PE-

related sterile inflammation can induce TRIM, testing seems to be

mandatory since several research groups are focused on TRIM

modulation (149). Thus, this offers a certain possibility to improve

the future maternal health of women who have preeclampsia.
FIGURE 2

DAMPs elevated in maternal circulation in preeclampsia and its receptors in innate immune cells. Several DAMPs have high plasmatic concentration
in mothers with preeclampsia, each of them can be sensed by pattern recognition receptors in cell membrane of innate immune cells (represented
as monocyte). The DAMPs/Receptor are: High Mobility Group Box 1 (HMGB1) (120)/RAGE and TLR4 (114); Cyclophilin A/CD147 (117); Hyaluronan
(78)/CD44 (127); Uric Acid (UA) (78)/P2X7 (132); Heat Shock Protein 70 (HSP70) (78)/TLR2 and TLR4 (119); Cell-free heme (CFH) (112)/TLR-4 (149);
Histones (122)/TLR-4 (124) and Clec2d (125); Calprotectin (S100A8/A9) (128)/TLR-4 (123); Cell-free fetal DNA (cffDNA) (106)/TLR-9 (108); Cell-free
mitochondrial DNA (cfmtDNA) (109)/TLR-9 (150). Among them, only HMBG1 (75), cell-free heme (151), and S100A8/9 (152) have been showed as
TRIM inducers. However, the circulatory DAMPs in PE may act collectively to promote TRIM acquisition in innate immune cells during the syndrome.
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et al. Innate immune receptors, key actors in cardiovascular diseases. JACC Basic to
Transl Sci. (2020) 5:735. doi: 10.1016/J.JACBTS.2020.03.015

50. Wang L, Qu P, Zhao J, Chang Y. NLRP3 and downstream cytokine expression
elevated in the monocytes of patients with coronary artery disease. ArchMed Sci. (2014)
10:791–800. doi: 10.5114/aoms.2014.44871

51. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature. (2015) 526:660–5.
doi: 10.1038/nature15514

52. Son S, Yoon SH, Chae BJ, Hwang I, Shim DW, Choe YH, et al. Neutrophils
facilitate prolonged inflammasome response in the DAMP-rich inflammatory milieu.
Front Immunol. (2021) 12:746032. doi: 10.3389/fimmu.2021.746032

53. Oh ES, Na M, Rogers CJ. The association between monocyte subsets and
cardiometabolic disorders/cardiovascular disease: A systematic review and meta-
analysis. Front Cardiovasc Med . (2021) 8:640124/FULL. doi: 10.3389/
FCVM.2021.640124/FULL

54. Angkananard T, Anothaisintawee T, McEvoy M, Attia J, Thakkinstian A.
Neutrophil lymphocyte ratio and cardiovascular disease risk: A systematic review
and meta-analysis. BioMed Res Int. (2018) 2018. doi: 10.1155/2018/2703518

55. Romson JL, Hook BG, Kunkel SL, Abrams GD, Schork MA, Lucchesi BR.
Reduction of the extent of ischemic myocardial injury by neutrophil depletion in the
dog. Circulation. (1983) 67:1016–23. doi: 10.1161/01.CIR.67.5.1016

56. Silvestre-Roig C, Braster Q, Ortega-Gomez A, Soehnlein O. Neutrophils as
regulators of cardiovascular inflammation. Nat Rev Cardiol. (2020) 17:327–40.
doi: 10.1038/s41569-019-0326-7

57. Kaptoge S, Seshasai SRK, Gao P, Freitag DF, Butterworth AS, Borglykke A, et al.
Inflammatory cytokines and risk of coronary heart disease: new prospective study and
updated meta-analysis. Eur Heart J. (2014) 35:578–89. doi: 10.1093/EURHEARTJ/
EHT367
Frontiers in Endocrinology 09
58. Cheng M, Li Y, Wu J, Nie Y, Li L, Liu X, et al. IL-8 induces imbalances between
nitric oxide and endothelin-1, and also between plasminogen activator inhibitor-1 and
tissue-type plasminogen activator in cultured endothelial cells. Cytokine. (2008) 41:9–
15. doi: 10.1016/j.cyto.2007.10.006

59. Bhagat K, Vallance P. Inflammatory cytokines impair endothelium-dependent
dilatation in human veins. vivo. Circ. (1997) 96:3042–7. doi: 10.1161/01.CIR.96.9.3042

60. Tsioumpekou M, Krijgsman D, Leusen JHW, Olofsen PA. The role of cytokines
in neutrophil development, tissue homing, function and plasticity in health and disease.
Cells. (2023) 12. doi: 10.3390/cells12151981

61. Suzuki J, Hamada E, Shodai T, Kamoshida G, Kudo S, Itoh S, et al. Cytokine
secretion from human monocytes potentiated by P-selectin-mediated cell adhesion. Int
Arch Allergy Immunol. (2013) 160:152–60. doi: 10.1159/000339857

62. Faas MM, de Vos P. Maternal monocytes in pregnancy and preeclampsia in
humans and in rats. J Reprod Immunol. (2017) 119:91–7. doi: 10.1016/j.jri.2016.06.009

63. Barden A, Ritchie J, Walters B, Michael C, Rivera J, Mori T, et al. Study of plasma
factors associated with neutrophil activation and lipid peroxidation in preeclampsia.
Hypertension. (2001) 38:803–8. doi: 10.1161/hy1101.092969

64. Sabatier F, Bretelle F, D’Ercole C, Boubli L, Sampol J, Dignat-George F.
Neutrophil activation in preeclampsia and isolated intrauterine growth restriction.
Am J Obstet Gynecol. (2000) 183:1558–63. doi: 10.1067/mob.2000.108082

65. Fani L, van der Willik KD, Bos D, Leening MJG, Koudstaal PJ, Rizopoulos D,
et al. The association of innate and adaptive immunity, subclinical atherosclerosis, and
cardiovascular disease in the Rotterdam Study: A prospective cohort study. PloS Med.
(2020) 17. doi: 10.1371/journal.pmed.1003115

66. Bekkering S, Quintin J, Joosten LAB, van der Meer JWM, Netea MG, Riksen NP.
Oxidized low-density lipoprotein induces long-term proinflammatory cytokine
production and foam cell formation via epigenetic reprogramming of monocytes.
Ar t e r i o s c l e r Thromb Vas c B i o l . ( 2014 ) 34 : 1731–8 . do i : 10 . 1161 /
ATVBAHA.114.303887/-/DC1
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