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diabetes-induced osteoporosis
Yanhua Li1*, Yaheng Luo1, Debin Huang1 and Lele Peng2

1Department of Endocrinology and Metabolism, The Third Hospital of Changsha, Changsha,
Hunan, China, 2Department of Endocrinology and Metabolism, Want Want Hospital, Changsha,
Hunan, China
Sclerostin, a protein synthesized by bone cells, is a product of the SOST gene.

Sclerostin is a potent soluble inhibitor of the WNT signaling pathway, and is

known to inhibit bone formation by inhibiting osteocyte differentiation and

function. Currently, sclerostin has been the subject of numerous animal

experiments and clinical investigations. By conducting a literature review, we

have gained insights into the most recent advancements in research. Patients

with both type 1 diabetes and type 2 diabetes have high levels of serum sclerostin.

Patients with type 1 diabetes and type 2 diabetes are both more likely to suffer

from osteoporosis, and serum sclerostin levels are elevated in osteoporosis.

Many studies have confirmed that sclerostin has been implicated in the

pathogenesis of osteoporosis, so we speculate that sclerostin plays an

important role in osteoporosis through the glucose metabolism pathway,

which may promote the osteoporosis of morbidity in type 1 diabetes and type

2 diabetes. Based on this, we propose whether serum sclerostin can predict type

1 diabetes and type 2 diabetes-induced osteoporosis, and whether it can be a

new target for the prevention and treatment of type 1 diabetes and type 2

diabetes-induced osteoporosis, providing new ideas for clinicians

and researchers.
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1 Introduction

The prevalence of diabetes is escalating, making it a significant chronic epidemic. The

International Diabetes Federation reports that approximately 537 million individuals

worldwide are currently afflicted with diabetes, constituting 10.5% of the global

population (1). The prevalence of diabetes is projected to increase to 783 million

individuals by 2045 (1). Another metabolic disease with increasing prevalence is

osteoporosis. Osteoporosis, marked by reduced bone density, alterations in bone

microstructure, and subsequent fractures, leads to substantial disability and mortality,
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and has now become a global health concern (2, 3). According to

the International Osteoporosis Foundation, with the global

population aging, it is projected that over 200 million individuals

currently endure the condition of osteoporosis, and one in three

women and one in five men over the age of 50 will experience an

osteoporotic fracture (4).

Through literature review and previous research, we have

learned that sclerostin plays an important role in the pathogenesis

of osteoporosis, especially when accompanied by abnormal glucose

metabolism. Based on this, this article reviews the clinical evidence

regarding serum sclerostin in diabetes and osteoporosis, and delve

into the underlying mechanisms involved. This will provide a basis

for sclerostin as a new biomarker for diabetes-induced osteoporosis,

as well as for potential therapeutic targets. It also provides reference

for further clinical research and scientific basis for new

drug development.
2 Structure, expression, functions, and
signaling pathway related to sclerostin

Sclerostin is a secreted glycoprotein composed of 213 amino

acid residues, originally derived from high bone mass disorders

sclerosis and van Buchem’s disease (5, 6). Sclerostin is a 22-kDa

protein characterized by a core disulfide-bonded structure

composed of three distinct domains: ring 1, ring 2, and ring 3 (7);

the protein’s side chain features a highly flexible N-terminal domain

(amino acids 1-55) and a C-terminal domain (amino acids 145-

189); it contains four disulfide bonds formed by four p-cysteine

residues (8). Unlike the majority of proteins containing cystine

junction motifs, sclerostin exists as a monomer (9). Sclerostin is

synthesized through the expression of the SOST gene on human

chromosome 17q12-q21 (10). The SOST gene contains two distinct

transcription sites. The first transcription site is evolutionary

conserve region 5, and monocyte enhancer factor 2 can promote

the expression of sclerostin by binding to evolutionary conserve

region 5 (11, 12). However, histone deacetylases 4 and 5 are capable

of inhibiting the transcription of the SOST gene by binding to

monocyte enhancer factor 2 (13). The second transcription site is

the upstream promoter region, where runt-related transcription

factor 2 binds and represses sclerostin expression (14, 15). Histone

deacetylases 3 inhibits the transcription of the SOST gene by

targeting the promoter region (16, 17). Sclerostin is mainly

secreted by osteocytes and acts in a paracrine manner (18). It is

detectable in plasma and expressed in tissues such as bone, cartilage,

kidney, liver, pancreas, heart and blood vessels (19). Sclerostin

expression is markedly reduced in newly embedded osteocytes and

undetectable in mature osteoblasts and bone lining cells (20).

Sclerostin, an inhibitor of the WNT signaling pathway,
bbreviations: BMD, bone mineral density; CTX, C-terminal cross-linked

lopeptide of type I collagen; HbA1c, glycosylated hemoglobin; LRP, low-

ensity lipoprotein receptor-related protein; P1NP, N-terminal propeptide of
A

te

d

type 1 procollagen; T1D, type 1 diabetes; T2D, type 2 diabetes.

Frontiers in Endocrinology 02
antagonizes bone formation by binding to low-density lipoprotein

receptor-related protein (LRP) 5/6, functioning as an antianabolic

agent (21, 22). It is also implicated in skeletal muscle regeneration,

insulin resistance, and glucose metabolism (23, 24). Recent

investigations have demonstrated that sclerostin potentiates the

inhibitory effect on bone formation by mediating binding to

LRP6 through its interaction with LRP4 (25).
3 Expression of sclerostin in diabetes

In recent years, the incidence of type 1 diabetes (T1D) has

increased rapidly at a rate of 3%-5% per year worldwide.

Wedrychowicz, et al. (26) demonstrated that serum sclerostin

levels are significantly elevated in patients with T1D and exhibit

an inverse correlation with glycosylated hemoglobin (HbA1c).

Rubin et al. (27) conducted a cross-sectional study, which found

that sclerostin was significantly increased in T1D patients;

However, sclerostin is not associated with HbA1c. This may be

because the participants are older, and the level of sclerostin

increases with age, with higher values masking the relationship

with HbA1c. Neumann et al. (28) conducted a study on T1D and

healthy individuals, found that the level of sclerostin in T1D was

significantly higher than that in the control group, and was not

associated with bone metabolism markers. Therefore, we speculate

that sclerostin may be involved in osteoporosis independently of

bone metabolism markers. Kurban et al. (29) conducted a cross-

sectional study comparing the levels of sclerostin between 40 T1D

and 40 healthy controls, and found that sclerostin was elevated in

T1D, but the difference was not statistically significant, possibly due

to the small sample size. Employing recent research, it has been

demonstrated that the serum level of sclerostin is markedly elevated

in patients with T1D in comparison to healthy controls (30).

Faienza’s research also confirmed the same results (31).

A lot of studies have also been conducted on the expression of

sclerostin in type 2 diabetes (T2D). Sclerostin levels were reported to

be higher in patients with T2D in an age-matched randomized

controlled study (32). Garcia-Martin et al. (33) conducted a cross-

sectional study, revealing that sclerostin levels are elevated in patients

with T2D and demonstrating a correlation between sclerostin levels

and the duration of T2D, HbA1c. The findings of a clinical

investigation conducted by Singh et al. (34), involving a cohort of

171 individuals divided into three categories—healthy individuals,

individuals with pre-T2D, and patients with T2D—demonstrated a

gradual increase in sclerostin levels and sclerostin mRNA expression

from healthy to pre-T2D to T2D. In addition, elevated circulating

sclerostin levels were positively correlated with insulin resistance and

fat mass (35). Frysz et al. (36) conducted a meta-analysis, revealing a

significant association between elevated levels of sclerostin and an

increased risk of diabetes. A cross-sectional analysis of femoral head

bone tissue from postmenopausal women with T2D revealed a

significant increase in the expression of SOST, when compared to

healthy women (37) (Table 1).

Therefore, we speculate that sclerostin is not only involved in

the pathogenesis of diabetes, but also plays an important role in

osteoporosis through glucose metabolism.
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4 Association of sclerostin with
osteoporosis in diabetes

4.1 Association of diabetes
with osteoporosis

Diabetes is considered a significant risk factor for osteoporosis, as

an increasing body of evidence supports its association with an

elevated risk of osteoporotic fractures (38–41). Glycolysis can

promote osteoblast differentiation, may alter the levels of important

intermediate metabolites that regulate gene expression (42). In their

review, Vadivalagan et al. identified aerobic glycolysis as an effective

way to accelerate the treatment of osteoporosis (43). Poor blood sugar

control is an important risk factor for diabetic osteoporosis fracture

(44). Nirwan and Vohora (45) performed experiments in C57BL/6

mice, which were fed a high-fat diet for 22 weeks to induce diabetic

osteoporosis. Subsequently, linagliptin combined with metformin

was used for intervention, and the results suggested that diabetic
Frontiers in Endocrinology 03
osteoporosis could be treated by increasing the level of bone

morphogenetic protein-2 and reducing the level of sclerostin.

Previous studies have confirmed that T1D is closely related to

decreased bone mineral density (BMD) and bone quality (46, 47).

Studies have reported that children and adolescents with T1D

compared with healthy controls, the BMD value is low (48), lead to

adult peak bone mass was lower than those of healthy people, thus

prone to osteopenia and osteoporosis (49). The longer the duration of

T1D and the worse the blood sugar control, the higher the risk of

fractures in patients (46, 47, 50). Two previous cross-sectional studies

have demonstrated that poorer glycemic control was associated with

lower BMD scores in patients with T1D (51). This is due to reduced

bone production and formation of mineralizedmatrix in T1D (52, 53).

It is known that T1D has a negative effect on osteoblast differentiation

and function and a positive effect on osteoclast differentiation and

function, thereby reducing bone formation and increasing bone

resorption (54). The reason may be that hyperglycemia inhibits

osteogenic differentiation of mesenchymal stem cells (55), and
TABLE 1 Changes of sclerostin in patients with T1D and T2D.

Authors,Year Type of Study Study Subjects Major Findings

Type 1 diabetes

Wedrychowicz et al., 2019 (26) A cross-sectional study 40 patients with T1D and 28 healthy as controls Sclerostin levels were significantly higher in patients
with T1D than in the control group without
significant differences between genders

Rubin et al., 2022 (27) A cross-sectional study 232 T1D participants and 104 control participants
without diabetes followed for >30 years

Compared with the control participants, T1D had
higher levels of sclerostin

Neumann et al., 2014 (28) A cross-sectional study 128 men and premenopausal women with long-
standing T1D and 77 age-, body mass index and
gender-matched healthy individuals

Serum sclerostin levels were increased in patients
with T1D, and the positive correlation of age with
serum sclerostin levels was stronger in T1D

Kurban et al., 2022 (29) A cross-sectional study 40 children and adolescents with T1D between the
ages of 7 and 17, and 40 healthy children and
adolescents between the ages of 6 and 17

The level of sclerostin in T1D is elevated, but the
difference is not statistically significant, which may
be due to the small sample size

Hygum et al., 2017 (30) A systematic review and
meta-analysis

–
Serum sclerostin was significantly higher in patients
with T1D compared with controls

Faienza et al., 2017 (31) A cross-sectional study
106 T1D subjects and 80 controls

Serum sclerostin levels are elevated in patients
with T1D

Type 2 diabetes

Gennari et al., 2012 (32) A cross-sectional study 40 T2D and 43 T1D patients were studied and
compared with a reference control group (n = 83)

Sclerostin levels were higher in T2D than in
controls or T1D patients

Garcia-Martin et al., 2012 (33) A cross-sectional study
T2D group (n = 74) and control group (n = 50)

Sclerostin levels were significantly higher in T2D
patients than control subjects and in T2D males
than in T2D females

Singh et al., 2022 (34) An observational study A total of 171 study participants were enrolled in
T2D, pre-T2D, and controls groups, having 57 each
in the group

From healthy to pre-T2D to T2D, the level of
sclerostin increased gradually

Frysz et al., 2022 (36) A meta-analysis
5069 participants with complete data

Higher sclerostin levels were associated with higher
risk of T2D, risk of elevated fasting glucose, and
triglyceride levels

Piccoli et al., 2020 (37) A cross-sectional study Bone tissue from femoral heads of 19 T2D
postmenopausal women and 73 age- and body mass
index-comparable nondiabetic women undergoing
hip replacement surgery

A significantly higher SOST (p = 0.006) in T2D
compared with non-diabetic subjects
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inhibits the ability of osteoblasts to resist mechanical load (56, 57). It

has been established that the bone phenotype of patients with T1D is

characterized by the following four characteristics: reduced BMD (58),

disrupted bone microstructure (59), increased risk of fractures (60),

reduced the conversion rate of bone (61). And risk of fracture in

patients with T1D is six times that of the healthy adults (62). A meta-

analysis of 46 studies with 2617 and 3851 controls showed that

children with T1D had significantly lower BMD measured by dual-

energy X-ray absorptiometry (whole body, lumbar spine, femur),

peripheral bone quantitative CT scanning (radius and tibia), and

quantitative ultrasound of calcaneus and phalanges compared with

controls (63). The findings from the study conducted by Weber et al.

(64) demonstrated a significant reduction in bone mass gain among

individuals diagnosed with T1D one year after diagnosis. Kalaitzoglou

et al. (65) used streptozotocin to induce T1D in mice. The results

suggest that chronic hyperglycemia and pro-inflammatory bone

microenvironment in T1D mice enhance osteoclast activity, which

leads to enhanced bone resorption and decreased bone mass.

A state of low bone turnover has been demonstrated in T2D

(66–68). Hygum et al. (30) conducted a meta-analysis and found

that levels of bone formation markers (N-terminal propeptide of

type 1 procollagen (P1NP) and osteocalcin) and bone resorption

markers (C-terminal cross-linked telopeptide of type I collagen

(CTX) and tartrate-resistant acid phosphatase 5b isoform) were

reduced in T2D. The study by Napoli et al. (69) showed that P1NP

was reduced by about 13% and CTX was reduced by about 43% in

patients with T2D compared with non-diabetic subjects. It has also

been confirmed that the risk of fragility fractures is increased in

patients with T2D (33, 70). Strotmeyer et al. (71) conducted a

cohort study, results show that the adult T2D patients than about

64% higher risk of fracture in patients without T2D.

Both types of diabetes are susceptible to osteoporosis,

suggesting that the two forms of diabetes induce the development

of osteoporosis through different mechanisms (72). Insufficient

osteoblast differentiation is considered to be an important cause

of osteoporosis in T1D patients (73); The inhibition of bone

remodeling is considered a significant contributing factor of

osteoporosis in T2D patients (74). However, the specific

pathogenesis of osteoporosis in diabetes is not clear.
4.2 Expression of sclerostin in diabetes-
induced osteoporosis

Recent studies have shown that sclerostin is involved in bone

metabolism in T1D (31). Clinical data from Wędrychowicz et al.

(26) could point to increased sclerostin levels as a potential cause of

reduced bone formation in T1D. Yee et al. (75) conducted an

animal study to establish a streptozotocin-induced fracture model

of T1D mice. The researchers injected sclerostin antibody into the

mouse model, and on days 21 and 42, a large number of early

osteoblasts were seen, and bone quality was significantly improved.

The same changes were also observed in T2D. Yamamoto’s

study not only confirmed the elevation of sclerostin in T2D, but also

revealed that sclerostin increases vertebral fractures, which may be

due to sclerostin mediated deterioration of bone quality (76).
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Ardawi et al. (77) conducted a cross-sectional study on 482 T2D

patients and 482 healthy individuals, and the results showed that

sclerostin was elevated in T2D, and sclerostin was associated with

increased bone fragility. Wang et al. (78) included 95 T2D patients

and divided them into normal bone group, osteopenia group and

osteoporosis group according to bone mineral density, and found

that the osteoporosis group had the highest level of sclerostin. The

researchers propose that sclerostin mediates osteoporosis in T2D by

inhibiting WNT signaling. In a cross-sectional study conducted by

Ahmad (79), we learned that sclerostin was significantly higher in

T2D compared to healthy people; Moreover, the incidence of

osteopenia and osteoporosis in T2D is higher than that in the

healthy people. Animal study by Hamann et al. (80) concluded that

sclerostin antibody therapy reversed the adverse effects of T2D on

bone mass and strength in rats and improved bone defect

regeneration, suggesting that sclerostin could be used as a

biomarker for early detection of osteoporosis in diabetes patients.

From the above studies, we learned that sclerostin may be involved

in the pathogenesis of osteoporosis through glucose metabolism.
5 Relationship between sclerostin and
clinical outcome in osteoporosis

Owing to its recognized role as a negative regulator of the WNT

signaling pathway, sclerostin binds to LRP5/6 coreceptors, thereby

inhibiting bone formation and promoting bone resorption (81). It has

also been shown that sclerostin stimulates bone resorption through

receptor activator of nuclear factor kappa-B ligand-dependent

pathway, thereby promoting BMD reduction (82). Sclerostin has

been demonstrated to suppress the proliferation of osteoblasts while

simultaneously promoting their apoptosis (83). Cosman et al. (84)

performed a randomized, controlled clinical trial on postmenopausal

women with osteoporosis and demonstrated that treatment with anti-

sclerostin antibodies enhances bone formation and increases BMD,

thereby mitigating the risk of fracture. A 12-month phase IIb trial,

involving postmenopausal women randomized to receive either

teriparatide (20ug/day) or anti-sclerostin antibody (210mg/month),

demonstrated a significant increase in lumbar BMD with the

administration of anti-sclerostin antibody therapy (85). In a meta-

analysis published in 2022 (86), Poutoglidou et al. observed that both a

6-month and a 12-month treatment course with anti-sclerostin

antibodies were capable of enhancing BMD at the lumbar spine,

total hip, and femoral neck, and lowering the incidence of fractures.

Concurrently, anti-sclerostin antibody therapy also demonstrated a

reduction in CTX levels and an elevation in P1NP levels. Therefore,

the usage of anti-sclerostin monoclonal antibodies has progressively

become a significant component in the management of osteoporosis

(87). In a phase III clinical trial, the subcutaneous administration of

antibodies to sclerostin (such as romosozumab, a monoclonal

antibody that binds sclerostin) demonstrated efficacy in enhancing

BMD compared to the placebo in postmenopausal women with

osteoporosis and men with osteoporosis (84, 88). The findings of

Recker et al. (89), Cosman et al. (84) and Kaveh et al. (90)

corroborated this observation. A case report suggests that the

nonunion of humeral shaft fractures in males and postmenopausal
frontiersin.org
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females might be addressed through the administration of anti-

sclerostin medications (91) (Table 2).

Enhanced bone formation has been observed in patients or mice

lacking sclerostin, leading to bone sclerosis, as demonstrated by the

results of several studies (10, 92, 93); In contrast, mice with an

excessive expression of SOST exhibited reduced bone mass (94). In

vitro experiments by Wang et al. (95) revealed that overexpression of

SOST significantly inhibited WNT signaling and messenger

ribonucleic acid levels of osteogenic markers in Col1a2+/G610C

mouse osteoblasts. The domain in which sclerostin plays a major

role in this process is loop 3. The elimination of SOST led to an

increase in bone mass and strength (96, 97). In the mouse studies

conducted by Oh et al. (98), schnurri-3 was observed to suppress

SOST expression in osteoblasts, while the absence of SOST had no

impact on schnurri-3. Specifically, targeted inhibition of both

schnurri-3 and SOST effectively mitigated bone loss and stimulated
Frontiers in Endocrinology 05
bone formation in mice. Li et al. (81) developed a male rat model of

osteoporosis and demonstrated that anti-sclerostin antibodies could

significantly enhance bone mass and preserve bone quality in rats,

primarily by stimulating bone formation and inhibiting bone

resorption. The study conducted by Boyce et al. (99) demonstrated

that administration of anti-sclerostin antibodies enhanced BMD and

elevated serum concentrations of bone formation markers, but failed

to affect levels of bone resorption markers. Brent et al. (100)

employed a rat model, utilizing either anti-sclerostin antibody,

abaloparatide, or a combination of both, and demonstrated that

anti-sclerostin antibody enhanced bone strength in the mid-

diaphysis, neck, and metaphysis of long bones. In contrast, the

combination of anti-sclerostin antibody and abaloparatide led to a

significant increase in bone strength at all sites, augmentedmarkers of

bone remodeling, and reduced trabecular bone spacing. This suggests

that the combined treatment is significantly more effective than either
TABLE 2 Changes in the serum sclerostin levels in osteoporosis.

Authors,Year Type of Study Study Subjects Major Findings

Cosman et al., 2016 (84) A Randomized controlled clinical trial
7180 postmenopausal women who had a T
score of -2.5 to -3.5 at the total hip or
femoral neck

Anti-sclerostin antibody therapy can
increase bone formation and increase
BMD, thereby reducing the risk of fracture

McClung et al., 2014 (85)
A Phase II, multicenter, international,
randomized, placebo-controlled,
parallelgroup, eight-group study

419 postmenopausal women
Anti-sclerostin antibody therapy can
significantly improve BMD at the
lumbar spine

Poutoglidou et al., 2022 (86) A Meta-Analysis and Systematic Review –

At 6 and 12 months, anti-sclerostin
antibody significantly increase BMD in the
lumbar spine, total hip and femoral neck

Lewiecki et al., 2018 (88)
A Phase III Randomized Placebo-
Controlled Trial

245 subjects (163 romosozumab,
82 placebo)

Anti-sclerostin antibody therapy can
improve BMD in male patients
with osteoporosis

Recker et al., 2015 (89)
A Randomized, Double‐Blind Phase 2
Clinical Trial

120 postmenopausal women between 45
and 85 years of age, with a lumbar spine
BMD T‐score of –2.0 to –3.5, inclusive

Anti-sclerostin antibody treatment can
significantly increase BMD in the spine,
femoral neck, and total hip as compared
with placebo, which is dose-dependent

Kaveh et al., 2020 (90) A Systematic review and Meta-analysis –

Treatment with anti-sclerostin antibody
can be a proper therapeutic option in
patients with osteoporosis and low BMD

Lee et al., 2022 (91) A case report
a 67-year-old woman with nonunion of
humerus shaft fracture

Anti-sclerostin antibody therapy can aid in
promoting bone healing of nonunion
FIGURE 1

Sclerostin are involved in the mechanism of osteoporosis. Sclerostin binds to LRP5/6 coreceptors, acts on the WNT signaling pathway, inhibits
osteoblasts and promotes osteoclastogenesis, leading to osteoporosis.
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agent alone. In a mouse model of streptozotocin-induced T1D,

osteoblastic defects and reduced levels of osteocalcin and alkaline

phosphatase were found to be associated with increased expression of

WNT signaling inhibitors Dickkopf-1 and SOST (101). Interestingly,

treatment with anti-sclerostin antibodies accelerates fracture healing

by facilitating osteoblast differentiation and enhancing callus

mineralization, thereby ameliorating bone microstructure (75).

Maillard et al. (102) artificially induced skull defects in mice, and

subsequently employed mesenchymal stem cells to counteract

sclerostin. Eight weeks post-intervention, it was discovered that this

approach not only increased bone formation and promoted bone

repair, but also demonstrated comparable efficacy to SOST knockout

mice. Hamann et al. (80) and Kruck et al. (103), respectively,

demonstrated in animal models that the administration of anti-

sclerostin antibodies accelerates bone formation. We are informed

that anti-sclerostin antibodies act as an stimulator of bone formation

in the short term and as an inhibitor of bone resorption in the long

term, jointly leading to an increase in bonemass by both means (104).

In a study employing SOST knockout mice, we observed that

glucocorticoid administration led to a reduction in osteoprotegerin

levels and an increase in the receptor activator of nuclear factor

kappa-B ligand/osteoprotegerin ratio; Conversely, administration of

an anti-sclerostin antibody inhibited bone resorption by augmenting

osteoprotegerin levels (105). The research conducted by Lin et al.

(106) demonstrated that mice lacking sclerostin exhibited resistance

to bone mass decline. Carro Vazquez at el (107). demonstrated that

treatment with anti-sclerostin antibodies could enhance bone quality

and facilitate bone healing in rats, using the Zucker Diabetic Fatty rat

model. The mechanism involves directly influencing bone by down-

regulating miR-145-5p/p transcription in bone tissue, up-regulating

osteoprotegerin target expression, resulting in decreased osteoclast

production (108), and up-regulating Sp7 (109) and signal

transduction 3A target levels (110), leading to enhanced osteogenic

differentiation. The expression of the SOST gene and protein was

suppressed by mechanical loading, leading to an enhancement in

bone formation (106, 111, 112). The mechanism may be that

mechanical stimulation activates connexin 43 hemichannells to

release prostaglandin E2 from osteocytes, thereby inhibiting the

expression of SOST in osteocytes and enhancing the activity of

osteoblasts and bone formation (113). The research findings by

Kim et al. (114) demonstrate that SOST-/- mice exhibit enhanced

bone formation and reduced visceral and subcutaneous fat

deposition, primarily attributed to the absence of sclerostin protein

which inhibits the differentiation of progenitor cells into mature

adipocytes. Thus inhibit sclerostin can also help the treatment of

obesity. In Zhou et al.’s study (115), 23-month-old male rats were

randomly divided into a orchiectomy group and a sham operation

group. Eight weeks after surgery, the results showed that the serum

sclerostin level in the orchiectomy group was significantly higher than

that in the sham operation group, and was negatively correlated with

trabecular BMD. This also suggests that sclerostin may be a potential

therapeutic target for male osteoporosis. In both animal models and

clinical studies, sclerostin antibody-induced bone formation was

reactivated upon exposure to physical stimuli (84, 116, 117). Many

non clinical pharmacology research results show that the sclerostin
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antibody can inhibit sclerostin to form, which can promote the

fracture healing and callus formation (118). The mechanism of

action is that sclerostin antibody inhibits the binding of sclerostin

to LRP5/6, thereby weakening the antagonistic activity of sclerostin

against WNT-induced responses (119).

Taking the above findings together, sclerostin is emerging as a

potent inhibitor of bone formation by reducing osteoblast

differentiation and activity. As a result, we speculate that

sclerostin can be used as a biomarker for osteoporosis.
6 Conclusion and prospects

Sclerostin is a powerful protein molecules involved in bone

metabolism and skeletal muscle regeneration, mainly related to

osteoporosis (Figure 1). A large number of studies have revealed that

sclerostin is elevated in T1D and T2D, and diabetic patients are more

susceptible to osteoporosis. Numerous clinical studies have also

demonstrated that patients with osteoporosis exhibit elevated levels

of serum sclerostin. Existing evidence suggests that sclerostin

antibodies such as romosozumab reduce sclerostin expression,

leading to improvement in osteoporosis. Therefore, early exploration

of sclerostin targets in diabetes patients plays a vital role in the

prevention and treatment of diabetes-induced osteoporosis.

However, sclerostin can be used in clinical medicine is still to be solved.

To fill the current gap, the following research is needed: To

further clarify the specific mechanism of sclerostin in diabetes-

induced osteoporosis, remove obstacles for clinical study; To

develop safe and effective sclerostin inhibitors, prevent and treat

osteoporosis induced by diabetes is warranted.
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