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Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular pattern

recognition receptor that detects injury signals and initiates inflammatory

responses and host defense. Furthermore, NOD1 serves as a metabolic mediator

by influencing the metabolism of various tissues, including adipose tissue, liver,

cardiovascular tissue, pancreatic b cells, adrenal glands, and bones through diverse

mechanisms. It has been discovered that activated NOD1 is associated with the

pathological mechanisms of certain metabolic diseases. This review presents a

comprehensive summary of the impact of NOD1 on tissue-specific metabolism.
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1 Introduction

Nucleotide-binding oligomerization domain-1 (NOD1), a member of the NOD-like

receptor family, is an intracellular immunoregulatory protein (1, 2). NOD1 is widely

distributed in antigen-presenting cells and epithelial cells (3). It recognizes damage signals

and triggers an inflammatory response to mediate host defense (4). It has been

demonstrated that NOD1 and its downstream pathways activated in the adipose tissue

of individuals diagnosed with metabolic syndrome, and gestational diabetes mellitus, as

well as those who are overweight or obese (5–7). Additionally, there is a significant increase

in NOD1 expression in the myocardium of individuals diagnosed with type 2 diabetes

mellitus (8). These studies indicate that NOD1 may be involved in metabolic processes and

could play a role in metabolic diseases. This article provides a comprehensive review of the

impact of NOD1 onmetabolism across various tissues and organs, highlighting its potential

significance in understanding metabolic disorders. Furthermore, it introduces the potential

for NOD1 to serve as a risk assessment marker for metabolic diseases.
2 NOD1

The NOD1 protein consists of three domains. The C-terminus contains leucine-rich

repeats, which are capable of recognizing specific ligands. The central nucleotide-binding

domain exhibits ATPase activity and undergoes conformational changes upon ligand

activation, thus promoting the oligomerization of NOD1. The N-terminal contains a
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caspase-activation-and-recruitment-domain (CARD), which is

used to recruit downstream effectors (9–11).

NOD1 is a classical cytoplasmic pattern recognition receptor

capable of recognizing pathogen-associated molecular patterns (1, 12).

NOD1 specifically recognizes the peptidoglycan (PGN) fragment g-D-
glutamyl-meso-diaminopimelic acid (iE-DAP) on the bacterial cell wall

(1, 13). Additionally, NOD1 was found activated during viral, fungal,

and parasitic infections. For example, the hepatitis C virus synthesizes

dsRNA through a nonstructural protein 5B RNA-dependent RNA

polymerase. dsRNA interacts with NOD1 to promote its activation

(12). The parasitic nematode L. sigmodontis has been identified as a host

of the intracellular symbiont Wolbachia, which possesses all the

necessary enzymes for synthesizing lipid II, the precursor of bacterial

peptidoglycan. Consequently, L. sigmodontis is capable of activating

NOD1 (14). Furthermore, there have been reports of human

cytomegalovirus (15), Aspergillus fumigatus (16, 17), Trypanosoma

cruzi (18), and Plasmodium berghei (19) activating NOD1. However,

the precise mechanism of their activation remains unclear. In addition

to recognizing pathogen-associated molecules, NOD1 is also capable of

recognizing danger-associated molecular signals. A deficiency in NODs

has been observed to attenuate the inflammatory response by DTT, an

endoplasmic reticulum (ER) stress inducer (20). Peptidoglycan-

independent Brucella abortus has been demonstrated to induce ER

stress through the type IV secretion system, thereby activating the

NOD1/RIP2 signaling pathway (20). The aforementioned evidence

suggests that ER stress may serve as one of the signals for NOD1

activation (20). Interestingly, thapsigargin, an ER stress agonist and a

sarcoplasmic reticulum Ca²+ ATPase inhibitor has been demonstrated

to induce ER stress by mediating calcium influx. It subsequently leads to

the internalization of peripheral micro-peptidoglycan and activates

cytoplasmic NOD1. Indicates that calcium influx contributes to

NOD1 activation (21). Further investigation is required to elucidate

the independent role of calcium influx and ER stress in NOD1

activation. Moreover, NOD1 detects aberrant expression of small Rho

GTPases triggered by perturbations in host cell function caused by

bacterial virulence factors (22). In this way, NOD1 identifies the

pathogenic factors of Salmonella enterica (23) and Shigella flexneri

(24). Recently, it has been found that the activated small Rho GTPase

Rac1 activates intracellular NOD1 during hematopoietic stem and

progenitor cell differentiation. NOD1-mediated “Developmental

Inflammation” induces hematopoietic stem and progenitor cells to

differentiate into hemogenic endothelium (25). It again demonstrates

the ability of NOD1 to sense intracellular perturbations and signals from

small Rho GTPases, suggesting that NOD1 influences the physiological

function of cell fate. However, further study is needed to determine

whether there is selectivity in NOD1 recognition of such signals.

After NOD1 is activated, it interacts through the CARD domain

to bind with receptor-interacting kinase 2 (RIP2) receptors to form

protein complexes (26). E3 ligases, such as inhibitors of apoptosis

proteins (IAP) like c-IAP1, c-IAP2, and XIAP (27, 28), mediate the

conjugation of RIP2 to the K63 ubiquitin chain (29).

Polyubiquitylated RIP2 recruits TAK1 and interacts with the IkB
kinase (IKK) subunit NEMO (IKKg) to recruit the IKK complex.

The IKKs are subsequently activated by TAK1 (29). In addition, the

formation of the TAK1 kinase complex leads to the activation of

MKK6, which in turn activates mitogen-activated protein kinase.
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Finally, it triggers downstream signaling pathways including

nuclear factor kappa B (NF-kB) and mitogen-activated protein

kinase to promote cytokines release (9, 26, 30). Another signal

pathway has identified in epithelial cell lines. NOD1 recruits RIP2,

binds to TNF receptor-associated factor 3, and activates the IFN

regulatory factor 7. Induces the production of IFN-b and activates

IFN-stimulated gene factor 3 for type I IFN signaling. This pathway

has a mucosal protective function (31).

Independent of the NOD1/RIP2 pathway, NOD1 induces

autophagy-related16-like 1 (ATG16L1) translocation to the plasma

membrane in response to bacterial infection. ATG16L1 exerts a

negative regulatory influence on the assembly of the NOD1/RIP2

complex (32, 33). Furthermore, ubiquitin competitively regulates the

binding of NOD1 to RIP2 and ATG16L1 (34). Additionally, NOD1

interacts with caspase-1 to mediate IL-18 maturation and IL-1b

secretion (35, 36). Previous research has shown that NOD1 enhances

procaspase-9 activation and caspase-9-mediated apoptosis (9).

However, it remains unclear whether this process is independent of

NOD1/RIP2. The signaling pathway of NOD1 summarized in Figure 1.
3 NOD1, commensal
microbiota, metabolism

In mammals, a great deal of microbiota coexist with host cells,

and their status is closely related to host health (37). In the intestine,

a barrier system consists of the intestinal epithelium and mucosa

(38). This system separates the commensal bacteria and metabolites

within the intestinal tract from the body’s internal environment

effectively reducing potential disease risks (39). However, under

conditions such as high sugar intake, high-fat consumption, obesity,

and inflammation, an imbalance in intestinal flora occurs along

with increased intestinal permeability. Consequently, intestinal

bacteria and metabolites are released into the bloodstream,

causing chronic low-grade inflammation and metabolic

dysfunction within target organs (40–42).

NOD1 is a protector of intestinal barrier function (43, 44). It

monitors danger signals in intestinal epithelial cells and mediates the

immune response to pathogen invasion (22). NOD1-deficient mice

exhibit increased levels of inflammatory mediators in the intestines,

altered immune characteristics (such as decreased expression of

NOD2, secretory mucin, host defense peptide, and keratinocytes),

and enhanced intestinal permeability (43, 45). The impact of NOD1

on the abundance of gut microbiota remains controversial. A

previous study did not find evidence that NOD1 deficiency affects

the microbiota in the ileum and cecum of mice (45). However, a

recent study revealed an increased abundance of Parabacteroides,

Rikenella, Prevotella, and Helicobacter in the intestines of NOD1-/-

mice (46). It suggests that while maintaining intestinal homeostasis,

NOD1 may regulate the composition of intestinal flora. The

discrepancy between these findings may attributed to differences in

approaches used for microbiota analysis in the two studies.

The specific ligand of NOD1, iE-DAP, is derived from PGN. It

has been demonstrated that the majority of circulating PGN

originates from the host microbiota (47). The serum levels of
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PGN in specific pathogen-free mice are approximately 0.18-0.3 μg

ml-¹, while in germ-free mice, they are undetectable (47). It has been

established that the intestine harbors a vast array of colonizing

microorganisms (48). Intestine exists an iE-DAP production

pathway. The iE-DAP fragments are cleaved from PGN by

lysozyme secreted by intestinal Paneth cells (49). In conclusion,

iE-DAP primarily derived from host microbes, with the intestinal

tract representing a significant source.

During the process of metabolism, NOD1 receptors present in

target tissues recognize ligand signals from the host microbiota,

promoting tissue metabolism and facilitating communication

between host microorganisms and metabolism. Activation of the

NOD1 receptor in pancreatic b cells by intestinal-derived ligands

enhance insulin vesicle transport, stimulate insulin secretion, and

maintain blood glucose homeostasis (49). Similarly, NOD1 receptors

located within the dense core granules of mice adrenal chromaffin cells

are capable of recognizing ligands derived from the intestinal tract.

They recruit Rab2a, which then mediate the storage and secretion of

epinephrine and chromogranin A (50). In addition, the function of

intestinal flora in reducing bone cortical thickness and promoting bone

resorption (enhanced expression of RANKL and TNFa) in mice is

under regulation of NOD1.The bone metabolism in NOD-/- mice

remains insensitive to alterations in intestinal flora due to different

feeding conditions (51). Overall, while maintaining the intestinal

barrier function, NOD1 may contribute to the homeostasis of
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intestinal flora. Additionally, serving as a sensor, NOD1 detects host

microbial signals and is involved in metabolism.
4 Activation of NOD1 is regulated
by diet

Different diets lead to differences in nutrient intake, which

affects the intestinal environment and metabolism (52).

A high-fat diet (HFD) is characterized by high fat intake. It’s a

well-known model of abnormalities in glycolipid metabolism (53).

The concentration of NOD1 ligands in the circulation showed a

significant increase in mice fed an HFD (54). The activity level of

NOD1 ligands increased with prolonged exposure to an HFD (41).

With the up-regulation of NOD1 expression in adipose tissue,

skeletal muscle, liver, and spleen, the expression of inflammatory

cytokines also increased (41, 55, 56). HFD may affect NOD1

expression through several factors independently or synergistically

with its factors. HFD feeding gradually impairs intestinal barrier

function in mice, resulting in enhanced translocation of microbial

metabolites, and consequently elevated circulating levels of NOD1

ligands (41, 57). Moreover, it has been demonstrated that HFD

contributes to gut microbiota dysbiosis (57–59), characterized by a

decrease in Bacteroidetes and an increase in Firmicutes (52). Given

the variations in subject, timing of intervention, and composition of
FIGURE 1

The signaling pathway of NOD1. NOD1 specifically recognizes the peptidoglycan fragment iE-DAP in pathogens. In addition to peptidoglycan, NOD1
has also been reported to be activated by parasite, certain viruses, and danger signals. Activated NOD1 undergoes self-oligomerization and recruits
downstream effector proteins. NOD1 recruits RIP2, which undergoes multiple ubiquitination and phosphorylation to mediate downstream activation
of the NF-KB and MAPK pathways. In epithelial cells, this pathway mediates type 1 IFN signaling. Additionally, ATG16L1 and Caspase-1 have been
reported to be activated through NOD1 recruitment, promoting apoptosis and inflammation respectively. ↑= increased.
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HFD, no study has conclusively demonstrated that an HFD directly

influences NOD1 by modifying the gut microbiota. However, this

dysbacteriosis associated with HFD affects the production of

metabolites such as short-chain fatty acids and bile acids (52).

Alterations in these metabolites may affect NOD1.

A study found that saturated fatty acid intake was negatively

associated with insulin sensitivity in young healthy people with the

NOD1 (Glu266Lys) Lys/Lys genotype (60). It suggests that single

nucleotide polymorphisms in NOD1, in combination with dietary

factors, synergistically increase the risk of metabolic abnormalities.

Dietary saturated fatty acids are found in vegetable oils and animal fats.

Because of their pro-inflammatory effects, excessive intake has been

demonstrated to increase the risk of metabolic disorders (61). Saturated

fatty acids (lauric acid) activate the NOD1/NF-kB signaling pathway in

human colonic epithelial cells HCT116 to induce inflammation (62).

However, NOD1-deficient macrophages are not subjected to

inflammatory stimulation by saturated fatty acids (palmitic acid)

(54). Both lauric acid and iE-DAP-mediated cellular inflammation

were inhibited by polyunsaturated fatty acids (docosahexaenoic acid)

(62). These studies support that NOD1 is one of the targets of saturated

fatty acid-induced inflammation. Unsaturated fatty acids may be

protective against such inflammation. In summary, the dietary

structure represented by the HFD model has a notable influence on

the expression of NOD1. Dietary fatty acids may be one of the key

factors in the involvement of NOD1 in metabolic diseases.

Notably, a study found that, following four weeks of HFD

consumption, NOD1-/- mice did not exhibit abnormal glucose

tolerance, unlike their wild-type (WT) counterparts (63). It

suggests that NOD1 may play a crucial role in the metabolic

damage induced by an HFD and that there is a complex

interaction between NOD1 and the pathogenicity of an HFD.
5 How does NOD1 mediate the
metabolism of various tissues

NOD1 is expressed in various tissues including the human heart,

lungs, skeletal muscle, liver, kidney, pancreas, spleen, and others (9).

The widespread expression of NOD1 significantly contributes to its

involvement in the metabolism of multiple organs and tissues

throughout the body. The role of NOD1 in mediating metabolism in

tissues is summarized in Figure 2.
5.1 NOD1 and insulin

Insulin is a peptide hormone synthesized and secreted by

pancreatic b cells. It is an essential mediator in energy

metabolism (64). NOD1 functions as a signal receiver for

microbial signals within the pancreatic islets, helping efficient

glucose-stimulated insulin secretion (49). Activation of NOD1 in

insulin secretory granules by ligands of intestinal microbial origin

recruits RIP2 and Rab1a, which then mediates the intracellular

transport of the secretory granules, driving them away from the

nucleus towards the plasma membrane to complete the secretion of
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insulin (49). It has been established that NOD1 ligands in normal-

diet WT mice are adequate to support insulin secretion. More

ligand does not enhance its pro-secretory function (49).

Insulin binds to the insulin receptors in the target cell, activating

tyrosine kinases within the receptor. Receptors recruit and

phosphorylate tyrosine residues of the receptor substrate, activating

downstream signaling and thus building a complex insulin signaling

pathway (64, 65). It has been found that NF-kB and MAPK signaling

can be crosstalk with insulin signaling (65), at the same time, both

signals can activated by NOD1 (4). It establishes a link between

NOD1 and insulin signaling. NOD1 can inhibit IRS-1-mediated

metabolism-related insulin signaling (5, 64–66). Phosphorylation of

JNK in human adipocytes increased after iE-DAP intervention that

stimulated phosphorylation of IRS-1 Ser307. Insulin-induced

phosphorylation of IRS-1 tyrosine, Akt Ser473, and Akt Thr308

inhibited under the influence of iE-DAP. Ultimately, interfering

with insulin signaling reduces insulin-induced glucose uptake in

adipocytes (6). In addition to JNK, protein kinases such as ERK1/2

and cytokines such as TNF-a and IL-6 have been reported may be

involved in the interference of insulin signaling by NOD1 (5, 6, 67).

However, further research is needed to clarify the mechanisms of

these NOD1 downstream signaling molecules that affect insulin

signaling, to understand the role NOD1 plays in this process.

Insulin regulates the synthesis of glycogen, lipids, and proteins

to maintain smooth blood glucose and energy metabolism

homeostasis in the body (68). The interference of insulin

signaling by NOD1 leads to reduced insulin sensitivity in NOD1-

expressing tissues, triggering specific metabolic abnormalities in the

corresponding tissues.
5.2 NOD1 and adipose tissue

Adipose tissue is essential for energy metabolism, endocrine

and immune functions and helps to maintain metabolic balance in

the body (69).

5.2.1 Inflammation, oxidative stress, interfering
with insulin signaling

NOD1 in adipocytes activates downstream NF-kB signaling,

enhances secretion of proinflammatory chemokines, and enhances

inflammatory signaling in adipose tissue (66, 67). In addition,

Oxidative stress enhanced by activated NOD1 also contributes to

adipose inflammation (70). NOD1 activates NOX4, NOX1, and

protein kinase Cd (PKCd) in adipocytes. PKCd promoted ROS

generation by NOX1 and NOX4 while inhibiting the expression of

antioxidant enzymes. It also activates the JNK pathway and NF-kB
pathway (70).

Insulin acts in adipose tissue to promote glucose uptake, enhance

lipid synthesis, and inhibit lipolysis (64). However, as we explored in

section 5.1, NOD1 regulation of the IRS1/Akt pathway hinders

insulin signaling, inducing insulin resistance. NOD1 reduces insulin

sensitivity in adipose tissue, decreases glucose uptake (6, 67), and

increases lipolysis in adipose tissue (70–72). As insulin resistance

progresses within adipose tissue, excess lipolysis occurs, which leads
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to increased production of free fatty acids and ectopic accumulation

of fat within the organs that are sensitive to insulin. Results in further

exacerbation of insulin resistance (64, 73).

5.2.2 Enhance lipolysis
Lipolysis is a process in which lipase releases fatty acids from fat

and generates energy (74). Abnormal lipolysis is associated with the

pathogenesis of obesity, type 2 diabetes, non-alcoholic fatty liver,

and other diseases (74). Insulin is an inhibitor of lipolysis (75).

Insulin inhibits lipolysis by activating phosphodiesterase 3B and

suppressing the cAMP and protein kinase A (PKA) (75). When

insulin signaling is blocked in adipose tissue, the anti-lipolytic effect

of insulin is impaired. However, the activation of NOD1 in

adipocytes hinders the insulin signaling pathway, potentially

enhancing lipolysis. NOD1 enhances lipolysis both in mouse

white adipose tissue (71) and 3T3-L1 adipocytes (70–72). NOD1

regulates the enzymatic activity of hormone-sensitive lipase (HSL)

to affect lipolysis (71, 72). HSL is an intracellular lipase widely

expressed and primarily involved in adipocyte lipolysis,

steroidogenesis, and spermatogenesis processes (76). NOD1

promotes phosphorylation of HSL at Ser563 by PKA to modulate

its enzyme activity, and it also facilitates phosphorylation of Plin at

Ser517. Which is necessary for efficient lipolysis (72). By mediating
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the synergistic effects of ERK, PKA, and NF-kB pathways, NOD1

potentiates the HSL-mediated lipolysis program (71).

During the lipolysis process, diacylglycerol accumulates as an

intermediate product within cells leading to the activation of PKCd
and subsequent enhancement of oxidative stress levels (70).

Meanwhile, PKCd triggers cascade activation of interleukin-1

receptor-related kinase IRAK1/4, upregulating expression of pro-

inflammatory cytokines including IL-1b, IL-18, IL-6, TNF-a, and
MCP-1 enhanced inflammation in adipocytes (77).

5.2.3 Endocrine/paracrine
Adipocytes secrete a variety of adipokines, lipids, metabolites,

and Exosomal microRNAs. Thus, adipose tissue can regulate the

metabolic processes of other metabolic tissues (78). In a study,

human hepatocellular carcinoma cells cultured in a conditioned

medium from 3T3-L1 adipocytes intervened in advance by NOD1

ligand (iE-DAP) showed lipid accumulation was enhanced (79). It

was attributed to the secreted factors such as fatty acids and

inflammatory mediators produced by NOD1-involved adipose

inflammation and lipolysis, which enhance hepatocyte lipid

metabolism. It suggests that NOD1 regulates hepatic lipid

metabolism with endocrine/paracrine functions of adipose

tissue (79).
FIGURE 2

The role of NOD1 in mediating metabolism in tissues. NOD1 is expressed in adipose tissue, liver, cardiovascular tissue, pancreatic b-cells, adrenal
glands, and bone, and its activation affects the metabolic function of tissues. ↑= increased; ↓= decreased.
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5.2.4 Reduce adipocyte energy expenditure
Compared to white fat, brown adipose tissue (BAT) cells are

characterized by abundant mitochondria and iron content, as well

as multilocular lipid droplets that enhance energy metabolism and

thermogenesis in response to cold and other stimuli (80). The

classical mechanism of BAT thermogenesis involves the uncoupling

of mitochondrial respiration mediated by uncoupling protein 1

(UCP-1) (80). NOD1 inhibits the formation and function of BAT,

thereby affecting adipose energy expenditure (81). Activation of

NOD1 in mouse embryonic mesenchymal stromal cells C3H10T1/2

and immortalized brown preadipocytes inhibited their

differentiation into brown adipose tissue. This inhibition may be

attributed to the mechanism where NOD1 induces activation of the

NF-kB pathway while inhibiting trans-activation of Peroxisome

proliferator-activated receptor gamma (PPARg) (82). Activated

NOD1 suppressed the UCP-1 promoter activity in brown

adipocytes, resulting in restricted expression of UCP-1 under

both basal and isoproterenol treatment conditions. As a

consequence, the oxygen consumption rate of brown adipocytes

was reduced in both conditions (81). These findings demonstrate

the inhibitory effect of NOD1 on the thermogenic function of BAT.

The impact of NOD1 on thyroid hormone homeostasis may

serve as a potential mechanism through which NOD1 suppresses

UCP-1 expression in mice (46). After consuming HFD, NOD1-

deficient mice exhibited decreased triiodothyronine levels in the

liver and BAT, reduced hepatic Pnpla3 expression, and diminished

UCP1 expression in the BAT. This led to improved insulin

resistance but earlier onset of obesity (46). It has been

demonstrated that elevated triiodothyronine levels stimulate

lipolysis in animal models, resulting in a reduction in adipose

tissue mass (83). The reduction of T3 leads to a deficiency of

PNPLA3, an enzyme with lipase activity that is responsible for

triglyceride hydrolysis; this deficiency impairs triglyceride

breakdown and disrupts phospholipid remodeling (84, 85). The

downregulation of triiodothyronine also suppresses the expression

of UCP1 in BAT, leading to a decrease in thermogenesis and energy

expenditure. This facilitates the development of obesity (86).

However, the effects of physiologically expressed and

overexpressed NOD1 on thyroid hormone remain unknown.

Further investigation is required to elucidate the mechanism by

which NOD1 affects thyroid hormone homeostasis.

5.2.5 Cell differentiation
The inflammation in the microenvironment inhibits the

transcriptional activity of adipocyte differentiation regulators in

adipose stem cells. Additionally, inflammation influences insulin

signaling, impairing triglyceride synthesis and enhanced hydrolysis.

Ultimately, the adipose differentiation in adipose stem cells is

inhibited, while endothelial cell differentiation is promoted (87).

It has been shown that activated NOD1 triggers activation of the

NF-kB pathway in human adipose-derived stem cells and 3T3-L1

cells, leading to the inhibition of PPARg and C/EBPa levels and

attenuating adipocyte differentiation (88). The pro-cellular

differentiation capacity of NOD1 has also been demonstrated in

hematopoietic stem cells and mesenchymal stem cells (25, 89).
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5.3 NOD1 and liver: inflammation,
endoplasmic reticulum stress,
insulin signaling

The liver is a vital organ responsible for metabolic and immune

functions. Hepatic dysfunction contributes to dysregulation of

glucolipid metabolism (90, 91).

Activated NOD1 increases the activation of NF-kB and MAPK

pathways in hepatocytes, promotes the release of chemokines CCL5

and CXCL1 in an NF-kB-dependent manner, and together with

cytokines such as IFN-g mediates an increase in iNOS production

and induces nitric oxide production (92). The pro-inflammatory

response of NOD1 in the liver is affected by ER stress (55). ER stress

facilitates the activation of NOD1 (20). Moreover, the concomitant

occurrence of ER stress and NOD1 activation may synergistically

exacerbate tissue inflammation.

Insulin inhibits gluconeogenesis and glycogenolysis while

promoting glycogen synthesis and lipogenesis in hepatocytes (64).

Similar to adipocytes, NOD1 interferes with insulin signaling in

hepatocytes (42, 55, 66). NOD1 ligand reduces insulin-stimulated

Akt phosphorylation in hepatocytes. Mice intervened with by

NOD1 ligand have reduced insulin sensitivity and reduced

phosphorylation of Forkhead-O1 in liver tissue (66). Forkhead-

O1, a critical transcription factor for hepatic metabolism, promotes

gluconeogenesis and affects intrahepatic lipid metabolism (93, 94).

As a downstream target of the PI3K/Akt insulin signaling pathway,

Forkhead-O1 phosphorylation is enhanced by Akt, leading to a

reduction in its transcriptional activity, which in turn reduces the

expression of genes associated with Forkhead-O1-induced

gluconeogenesis (93, 94). It again demonstrates that NOD1

interferes with insulin signaling, reduces insulin sensitivity in

peripheral tissues, and may decrease the inhibitory effect of

insulin on gluconeogenesis.

In addition, NOD1-mediated inflammation and lipolysis

products enhance hepatocyte lipid metabolism by enhancing

cellular fatty acid uptake, mediating the expression of markers on

the triglyceride synthesis pathway and output pathway, enhancing

hepatocyte inflammation, and hindering insulin signaling (79). It

suggests a remote regulatory role of NOD1 from adipocytes

on hepatocytes.
5.4 NOD1 and cardiovascular system

The inflammatory mechanism of NOD1 hinders insulin signaling

in the tissues, resulting in inefficient glucose utilization, being retained

in the circulation and elevating blood glucose (67, 95). In response to

abnormal blood glucose levels, the pancreas compensates by secreting

more insulin, creating hyperinsulinemia (96). NOD1 promotes

lipolysis, releasing inflammatory mediators and free fatty acids into

circulation and enhances hepatic lipid metabolism (79). Finally,

hyperglycemia (8) and high levels of insulin (97) are all involved in

inducing activation of NOD1 in the cardiovascular system and

triggering cardiovascular dysfunction (98).
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5.4.1 Inflammation
NOD1 is a key mediator of vascular inflammation at multiple

sites throughout the body, with the cardiac macrovascular

inflammatory response being the most intense (99). Activation of

NOD1 induces multiple vascular inflammations throughout the

body in mice, characterized by infiltration of neutrophils and

macrophages mainly in the aortic root (99). This finding

indicated the cardiovascular predisposition associated with

NOD1-dependent vascular inflammation and the capacity of

NOD1 to mobilize leukocyte subsets. The NOD1/RIP2/NF-kB
signaling cascade in endothelial cells (ECs) upregulates VCAM-1

expression and promotes aggregation of monocytes and neutrophils

in large vessels (100). Under HFD conditions, NOD1-deficient mice

exhibit elevated serum levels of CCL2, CXCL1, and CXCL2, leading

to the accumulation of immune cells in the circulation but reduced

aggregation at the site of atherosclerotic lesions (56). These studies

demonstrate that the recruitment of immune cells by NOD1 is

closely related to its function in regulating chemokine expression. In

addition, ECs (101–104), Vascular Smooth Muscle Cells (VSMCs)

(97, 105), and cardiomyocytes (8) were all affected by NOD1-

mediated inflammation. It can be reasonably assumed that

persistent inflammation represents the primary mechanism

through which NOD1 contributes to cardiovascular dysfunction.

5.4.2 Cell transdifferentiation
Injury induces cellular reprogramming in tissues, causing cells

with the ability to remodel to change their cellular identity known as

cell trans-differentiation (106, 107). Endothelial-to-mesenchymal

transition (EndMT) is a typical pattern of transdifferentiation

characterized by decreased endothelial properties and enhanced

mesenchymal properties (108). EndMT can be triggered by

inflammation-related cytokines such as TGFb, IL-33, IL-1b, TNF-
a, etc., and mediated reprogramming by enforced transcription

factors like Spi1 (109, 110). In vitro experiments have shown that

NOD1 induces EndMT by activating the Akt/NF-kB pathway to

create persistent inflammation in Human umbilical vein endothelial

cells (111). This demonstrates that the inflammatory pathway

downstream of NOD1 is involved in EndMT. Apart from

inflammatory pathways, metabolic abnormalities such as

hyperglycemia and oxidized OxLDL also activate EndMT (109).

Interestingly, both activators of EndMT equally activate NOD1

(8, 100, 105), linking metabolic abnormalities, NOD1 activation,

and cell trans-differentiation. Essentially, EndMT is a self-healing

mechanism. However, in pathological states, it promotes

endothelial dysfunction and contributes to pathological changes

in cardiovascular diseases such as atherosclerosis, cardiac fibrosis,

and pulmonary hypertension (108).
6 NOD1 and metabolic disease

6.1 Insulin resistance

Insulin resistance is a decrease in the sensitivity of insulin target

tissues to insulin and the inability of normal levels of insulin to
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mediate appropriate levels of glucose-lowering action. Insulin

resistance contributes to diseases such as obesity, type 2 diabetes,

and metabolic syndrome (64, 68).

NOD1 inhibits the IRS and interferes with the PI3K/Akt

pathway, which is the pathway by which insulin regulates

metabolism (5, 6, 66, 67). This results in weakened insulin

signaling in insulin-sensitive tissues. NOD1 mediates reduced

glucose uptake and enhanced lipolysis in adipocytes, and adipose-

secreting factors subjected to NOD1 enhance lipid deposition in

hepatocytes (6, 79). NOD1 attenuates insulin-mediated

phosphorylation of Forkhead-O1 in hepatocytes and may

attenuate the inhibition of gluconeogenesis (66).

In addition, NOD1 expression in immune cells may contribute

to insulin resistance. A clinical trial found that NOD1 and NOD2

mRNA expression in peripheral blood mononuclear cells from

people with type 2 diabetes was positively correlated with insulin

resistance and glycemic abnormalities (112). Moreover, NOD1

deficiency in immune cells protected mice from HFD-induced

impairment of glycemic homeostasis. This may be attributed to

reduced pro-inflammatory polarisation of macrophages in white

adipose tissue and reduced recruitment of neutrophils (54).
6.2 Cardiometabolic disease

Metabolic abnormalities exacerbate cardiovascular damage and

subsequently increase the risk of endpoint events in cardiovascular

disease, a pathophysiological process in which metabolic risk factors

and cardiovascular disease synergistically cause disease, also known

as cardiometabolic syndrome or cardiometabolic disease (113, 114).

6.2.1 Atherosclerotic lesions
Atherosclerotic lesions are characterized by inflammation and

the deposition of lipid and fibrous substances in the intima of blood

vessels (115, 116).

NOD1/RIP2/NF-kB pathway activation mediates endothelial

inflammation and endothelial dysfunction, promoting the

aggregation of leukocyte subsets into large blood vessels (56, 100).

NOD1 activates EndMT (111). Fibroblast-like cells transdifferentiated

from endothelial cells are involved in plaque formation. These

fibroblast-like cells exhibit a phenotype characterized by reduced

collagen expression and upregulation of destabilizing collagen-MMP

expression. It suggests that EndMT enhances plaque instability (115).

NOD1-deficient mice had reduced leukocyte subpopulations in the

aortic root intima, decreased apoptosis, proliferation of VSMCs, and

increased percentage of mature fiber type I collagen in the plaque,

forming a solid plaque fibrous cap. It suggests that NOD1 activation

promotes plaque generation and increases the risk of plaque rupture

(105). Moreover, insulin resistance induces compensatory

hyperinsulinemia (96). Activation of the NOD1 receptor in VSMCs

by high concentrations of insulin increases the secretion of migration

regulator IL-8 and inflammatory factor IL-1b in VSMCs (97). The

migration of VSMCs to the intima enhances the accumulation of

smooth muscle cells in atherosclerotic plaques (115).
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The regulation of iron metabolism is likely one of the

mechanisms through which NOD1 regulates atherosclerotic

heart disease. Spleen, liver, and heart tissues of NOD1-deficient

mice under HFD conditions exhibit significantly reduced iron

content. In addition, genes related to iron metabolism show

differential expression in the macrophages of these mice (117).

In cases of iron deficiency, there is an increase in collagen fiber

production (118), and increased macrophage glycolysis and lipid

droplet. Iron overload favors M1-type differentiation (119). M1

macrophages ampl i fy the inflammatory response at

atherosclerotic sites and contribute to necrotic core formation

and plaque instability (120).
6.2.2 Diabetic cardiomyopathy
Diabetes mellitus mediates myocardial metabolic disorders,

damages the cardiac microvascular circulation, causes

cardiomyocyte dysfunction, promotes myocardial fibrosis, impairs

systolic and diastolic function, and eventually leads to the

development of congestive heart failure, a condition known as

diabetic cardiomyopathy (121). NOD1 is capable of promoting

the development of diabetic cardiomyopathy. The NOD1/NF-kB
pathway and key proteins of apoptosis are highly expressed in heart

tissues of type 2 diabetic mice (db/db mice), and the expression

levels of key proteins in the NOD1/NF-kB pathway are further up-

regulated after intervention with an activator for NOD1 (8).

Meanwhile, activation of the NOD1/NF-kB pathway promotes

activation of the TGF-b pathway in db/db mice cardiac

fibroblasts (122). TGF-b is a cytokine involved in embryonic

development and tissue repair. The activation and proliferation of

fibroblasts are regulated by TGF-b, which promotes myocardial

fibrosis (122). In vitro data also support that high glucose induces

diabetic cardiomyopathy by stimulating the NOD1/NF-kB
pathway, promoting cardiac cell apoptosis, and enhancing

myocardial fibrosis (123).
6.2.3 Blood pressure
Wistar rats with NOD1 agonist intervention showed increased

expression of NOS2 and elevated nitric oxide production, resulting

in lower blood pressure by vasodilation. The rats also exhibited

symptoms of tachycardia, impaired renal function, and stimulated

coagulation. Additionally, the aorta incubated with NOD1 agonist

demonstrated reduced response to vasopressin (124). In vitro

experiments with NOD1 similarly revealed enhanced nitric oxide

release from VSMCs (125).

Different from Wistar rats (124), spontaneously hypertensive

rats (SHRs) exhibit endothelial dysfunction (126). As SHRs age,

there is an increase in blood pressure levels, myocardial NOD1/

RIP2 expression levels, and myocardial remodeling levels (127).

NOD1 inhibitor delayed vascular remodeling in SHRs (127, 128).

The activation of NOD1 in the cardiovascular system promotes

inflammation, induces EndMT (111), and increases angiogenesis in

ECs (129). Multiple pathophysiological mechanisms jointly mediate

myocardial and vascular remodeling and affect blood pressure

levels (130).
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7 Inhibition of NOD1-mediated
metabolic damage

7.1 Interfering with NOD1 signaling

Previous studies have found that HFD and saturated fatty acids

contribute to NOD1 activation (41, 62). Docosahexaenoic acid is an

n-3 polyunsaturated fatty acid that can be obtained from marine

fish and fish oil (131). It inhibits cellular inflammation mediated by

lauric acid and iE-DAP (62). Need to verify if it has the same NOD1

inhibitory function in vivo.

Troxerutin, commonly found in the daily diet, is a

hydroxyethylated compound of rutin, a natural flavonoid

glycoside. It has been proven to have therapeutic effects on

metabolic syndromes such as diabetes and cardiovascular disease

(132). It has the efficacy of inhibiting ER stress, regulating the

NOD1 pathway, and inhibiting HFD-enhanced hepatic

gluconeogenesis (55).

Several natural monomers/extracts have been reported to

ameliorate NOD1-mediated metabolic damage. Ginsenoside Rg3

(Rg3), an active ingredient in red ginseng, has been shown to inhibit

intimal hyperplasia caused by inflammation. Rg3 inhibits NF-kB
nuclear translocation and suppresses Akt/NF-kB signaling by up-

regulating miR-139-5p expression, contributing to the amelioration

of EndMT in human umbilical vein endothelial cells induced by

NOD1 (111). Moreover, purple sweet potato pigments ameliorate

hepatic inflammation induced by an HFD (133), and Osthole

exhibits cardioprotective effects (134). These effects are probably

related to the inhibition of NOD1 and downstream pathway

activation. However, further research is required to confirm the

mechanism of action.

Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid

with a cytoprotective effect, has been approved for clinical use in the

treatment of primary biliary cholangitis (135). It inhibits ER stress

and the NOD1 pathway, improving glucose metabolism in HFD-fed

mice (55).

PPARg is a ligand-activated transcription factor that is highly

expressed in adipocytes (136). PPARg reduces the inhibitory effect

of NOD1 on adipose tissue browning during adipocyte

differentiation (82). It also regulates the expression of miR-125a,

which inhibits the expression level of NOD1 and its pro-

inflammatory and pro-angiogenic function in ECs (129).

Thiazolidinediones are PPARg receptor agonists that increase

insulin sensitivity (136). However, thiazolidinediones have not

been studied to see how this affects the NOD1.

The Nuclear factor of activated T cells (NFAT) is highly

expressed in monocytes of individuals diagnosed with type 2

diabetes and is positively correlated with NOD1, insulin

resistance, and blood glucose levels (97). NFAT regulates NOD1

transcription in VSMCs, promotes cell proliferation, and induces

phenotypic transformation of VSMCs under hyperinsulinemic

conditions (97). Targeted inhibition of NFAT can regulate the

NOD1 pathway and alleviate the proliferation and differentiation

of VSMCs. However, NFAT consists of five subtypes, each with

different structures and functions (137). It is necessary to explore
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the subtypes of NFAT associated with NOD1 and verify the efficacy

and safety of selective inhibition.
7.2 Targeting RIP2

Another strategy is to target RIP2 and interfere with NOD/RIP2

signaling. Tyrosine kinase inhibitors (TKIs) are currently in clinical

use for cancer treatment. Some TKIs can control blood glucose but

the mechanism is unclear (138). TKIs targeting RIP2 may ameliorate

NOD1-mediated metabolic abnormalities (138). For example,

gefitinib, which has been used in the clinic, reduced NOD1 ligand-

induced metabolic damage in both cellular and animal experiments

(138). However, because of the inhibitory properties of TKIs on a

variety of kinases, multiple potential mechanisms exist to ameliorate

metabolic abnormalities (139). NOD1/RIP2 is not a critical metabolic

regulatory pathway for gefitinib (139). The effect and mechanism of

the inhibitory effect of gefitinib on the NOD1/RIP2 pathway may

require further evaluation.

RIP2 is a downstream signal molecule common to NOD1 and

NOD2 (140). Considering that the two have opposite functions on

insulin sensitivity (140), direct inhibition of RIP2 may reduce the

glucose-lowering effect of NOD2. Furthermore, it is not known

whether direct inhibition of NOD1 has an effect on the body's

immune function. Perhaps being able to target NOD1 expression in

target tissues is a better strategy.
8 Risk assessment indicators for
cardiometabolic disease

In a study, NOD1 has been used as one of the risk prediction

classifiers for acute myocardial infarction associated with cellular

pyroptosis. Due to the small sample size of this study, future

validation through in vivo, in vitro, and clinical trials is needed (141).

Mechanistically, NOD1 disrupts insulin signaling and mediates

insulin resistance (5, 6, 66, 67). In addition, NOD1-induced

inflammation mediates EC, VSMC, and cardiomyocyte

dysfunction. Insulin resistance increases the risk of cardiovascular

disease (142). It has been found that people with the NOD1

(Glu266Lys) Lys/Lys genotype are affected by saturated fatty

acids, increasing the risk of insulin resistance (60). We envisage

that NOD1 has the potential to contribute to the assessment of the

risk of cardiometabolic diseases associated with endothelial damage

such as atherosclerosis. This is particularly applicable to insulin-

resistant populations or those with a Lys/Lys genotype with NOD1

(Glu266Lys). Considering that the mechanism by which NOD1

mediates atherosclerosis is related to its function in promoting the

aggregation of leukocyte subpopulations (100), assessing NOD1

expression on leukocyte subpopulations in the peripheral

circulation of subjects may be a feasible approach.
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9 Summary

NOD1 is involved in endocrine and metabolic processes in

several tissues throughout the body. As a sensitive intracellular

sensor, NOD1 can rapidly recognize host microbial signals, sense

disturbances in the intracellular environment, and transmit

downstream signals. NOD1 induces oxidative stress, ER stress,

EndMT, and apoptosis to respond to the challenges.

Inflammatory response is the most central mechanism of NOD1.

Under physiological conditions, NOD1 functions in immune

defense, determines cell differentiation direction, promotes

hormone secretion, and maintains internal environment stability.

Under pathological conditions, NOD1 is abnormally expressed,

leading to metabolic dysfunction in tissues and organs. NOD1

triggers abnormal cellular metabolism, including glycolipid

metabolism, and is involved in the development and progression

of insulin resistance and cardiometabolic disease. NOD1 not only

increases cardiovascular disease risk factors, but also mediates

damage to cardiovascular endothelium, vascular smooth muscle,

and myocardium. Therefore, NOD1 has the potential to be an

indicator for assessing cardiometabolic diseases. There are several

issues for further study (1) The effect of NOD1 on pancreatic islet

function under conditions where abnormalities of glucolipid

metabolism have already occurred. (2) Whether NOD1 interferes

with other insulin receptor substrates. (3) Signal transduction

between NOD1 signaling downstream and insulin signaling.

(4) Further studies are needed to investigate the metabolic role of

NOD1 in liver and skeletal muscle in physiopathological states.
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