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Background: Environmental factors have been identified as primary risk factors

for type 2 diabetesmellitus (T2DM). However, studies on the association between

environmental factors and T2DM have mainly focused on morbidity and

mortality, which do not fully reflect the disease burden stemming from air

pollution. Therefore, we aimed to evaluate the correlation between air

pollution and T2DM, including hospital length of stay (LOS) and costs.

Methods: We collected data on patients with T2DM from three healthcare

institutions in Xinxiang from 2016–2021. Data on particulate and gaseous

pollutants in Xinxiang and daily meteorological data were collected from

national databases. The distribution lag nonlinear model was used to evaluate

the correlation between air pollution and the number of inpatients with T2DM,

LOS, and hospital costs. Subgroup analyses were conducted to identify potential

modifying factors.

Results: Overall, 13,797 patients with T2DM were included in our analysis. Within

the cumulative lag of 7 days, with every increase of 1 mg/m3 of carbon monoxide

(CO) and 10 mg/m3 of 2.5 microns particulate matter, nitrogen dioxide and ozone

exhibited significant associations with an increase in diabetes hospitalization risk.

CO exhibited adverse effects on LOS on most lag days. Moreover, hospital costs

were significantly associated with the attributable fraction of LOS and hospital

costs attributed to diabetes.

Conclusions: Exposure to air pollutants increased T2DM risk, imposing

significant economic and social burdens in Xinxiang, China. Implementing

policies to reduce air pollutant exposure may decrease T2DM admissions,

costs, and LOS.
KEYWORDS
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1 Introduction

Type 2 diabetes mellitus (T2DM) significantly contributes to

the global disease burden and risk of premature death (1). One in

eleven adults in the world has diabetes, and 90% of them have

T2DM (2). The average time of death in diabetic patients is 6 years

earlier than non-diabetic patients, and every 10 years of diabetes

diagnosis, life expectancy decreases by about 4 years (3). A global

diabetes report published by the World Health Organization stated

that the global prevalence of T2DM has risen sharply in the past few

decades. Unhealthy lifestyle, obesity, lack of exercise, and

malnutrition are widely regarded as risk factors for T2DM (4–6).

In addition to these recognized risk factors, environmental impact is

increasingly considered as a cause of diabetes (7). Notably, air

pollution is the eighth most important factor among the 79 death

risk factors (8),and is associated with cardiovascular diseases. In a

global and prospective study involving more than 100,000 people in

21 countries, it was found that air pollution was related to the

attribution score of 13.9% people with cardiovascular diseases (9).

Emerging evidence shows that air pollution is also associated with

T2DM (10).

An increasing number of epidemiological studies have

identified environmental factors as primary risk factors for T2DM

(11–14). More than 20 years have passed since it was found that

there is a significant correlation between air pollution and the

prevalence of diabetes (15); however, recently this relationship has

gained growing attention. A previous meta-analysis demonstrated

that exposure to high levels of air pollution is significantly related to

the increased prevalence of T2DM (16). 20% of diabetes worldwide

is associated with exposure to particulate matter 2.5 microns

(PM2.5) (17). Moreover, a large cohort study showed that there

was a positive correlation between exposure to nitrogen dioxide

(NO2) and the prevalence of diabetes (18). Furthermore, short-term

exposure to PM2.5, particulate matter 10 microns (PM10), sulfur

dioxide (SO2), and NO2 is positively associated with T2DM

mortality (19), and under-diagnosed diabetes risk is associated

with long-term ozone (O3) pollution in Malaysia (20).

Air pollution prevention measures have been successful

worldwide. However, in Henan Province, a study shed light on

the severe air pollution situation, especially in the northern part

where the majority of the population lives with polluted air (21).

Despite China’s efforts to improve air pollution, the health burden

caused by air pollution is still high (22). Xinxiang, located in the

northern part of Henan, has a population of 6 million and an annual

gross domestic product of 300 billion Yuan, making it a critical

economically developing region. Xinxiang is a city with relatively

developed industries, surrounded by numerous chemical

manufacturers and other industrial enterprises (23).

In recent years, increasing attention has been paid to the impact

of air pollution on length of stay (LOS) and hospital costs (24).

Diabetes not only leads to a reduced standard of living and health

risks, but also has a significant economic impact on patients. Labor

costs and socio-economic pressures exacerbate the strain on

healthcare systems and governments globally (25). Previous

studies have primarily focused on morbidity and mortality, which

do not fully reflect the disease burden stemming from air pollution.
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Thus, our analysis aimed to assess the influence of air pollutants on

hospital admissions, LOS, and expenses for patients with diabetes

in Xinxiang.
2 Materials and methods

2.1 Patient selection

Data pertaining to patients with diabetes between January 1,

2016 and October 31, 2021 were collected from three healthcare

institutions: The First Affiliated Hospital of Xinxiang Medical

College, The Third Affiliated Hospital of Xinxiang Medical

College, and Xinxiang People’s Hospital. A total of 13,797

patients with diabetes were included. All T2DM cases were

clinically diagnosed and validated with the diagnostic code E11

from the 10th edition of the International Classification of Diseases.

We recorded data on sex, age (categorized as<65 years old or ≥65

years old), hospital LOS, and hospital costs, which were also

included in the database.

This study was approved by the Ethics Committee of the First

Affiliated Hospital of Xinxiang Medical College. The ethical batch

number is EC-022-140. All data used were collected for

administrative purposes without any individual identifiers.

Therefore, informed consent was not required.
2.2 Air pollutants data

The study included six air pollutants, including both particulate

pollutants and gaseous pollutants, with particulate pollutants

including PM2.5 and PM10 and gaseous pollutants including NO2,

SO2, carbon monoxide (CO), and O3. Air pollution data for

Xinxiang City were collected from the Henan Meteorological

Residence for the years 2016–2021. Air pollutant concentrations

were 24-h average concentrations. Furthermore, O3 concentrations

were calculated as the maximum 8-h concentration per day and the

daily average. Daily meteorological data for the same period,

including minimum, average, and maximum temperatures and

relative humidity, were downloaded from the publicly accessible

China National Meteorological Data Sharing System (http://

data.cma.cn/). Meteorological data were calculated every 24 h.
2.3 Statistical analysis

The distribution of air pollutants and meteorological factors

were characterized using mean, standard deviation, quartiles, and

maximum and minimum values. Poisson’s generalized additive

model was used in this study. The confounding factors were the

day of the week (DOW), time, and weather. Notably, the incidence

of diabetes is affected by the air pollution on the same day and the

exposure levels in previous days.

Therefore, we used the distributed lag nonlinear model

(DLNM) to study the correlation. Based on the traditional

models, such as the generalized linear model and generalized
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additive model, we used the cross-basis function to transform the

characteristics of the variables, which has the following expression:

Log (Yt)¼ bZt; lþ  þ ns(time; 7)þns(hum; 3)þns (temp; 3)þDOWþ holidays,

where Yt represents the number of patients with diabetes

hospitalized; Zt denotes the concentration of the six air pollutants

at day t; b represents the coefficient for Zt,l, which represents the

logarithmic increase in hospitalizations per unit increase in air

pollutants; l represents the lag days; ns refers to the restricted cubic

spline; df is the degree of freedom (df); and time denotes the time

variable (df was 7). The following covariates were applied to the

model: df for both humidity and temperature as 3, DOW, and

holidays as an indicator of the holiday season.

In the past, the distributed lag linear model (DLM) was widely

used to study the health effects of air pollution. However, this model

assumes a linear exposure–response relationship. Many exposure–

response relationships (such as temperature–death) exhibit a

nonlinear relationship, such as U and V, making the DLM

unsuitable. To address these problems, in 2006, Armstrong (26)

first proposed and applied the DLNM in epidemiology.

In this study, the DLNM was used to analyze the relationship

between air pollution and the number of diabetes hospitalizations,

days of hospitalization, and hospitalization costs. A 7-day lag was

used to assess the lagged and cumulative impacts due to air pollution;

it was categorized into single-day and multi-day lag, with the single-

day lag ranging from lag 0 to lag 7, and the cumulative lag ranging

from lag 01 to lag 07. Subgroup analyses by sex, age, and season were

also conducted. Sex was categorized into male and female groups; age

was categorized into elderly and non-elderly groups, with a cut-off of

65 years; and seasonal groups were categorized into warm and cold

seasons, with May to September as the warm season group and

January to February as the cold season group.

We used the forward methodology provided by Gasparrini and

Leone (27) to estimate attributable fractions (AFs) and attribution

number to quantify the number of days of hospitalization and the
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cost of hospitalization due to air pollution exposure. We also

constructed a two-pollutant model to assess the potential impacts

of individual air pollutants. The data outputs were relative risks

(RRs) and 95% confidence intervals (CIs) for each 10-unit increase

in PM10, NO2, SO2, CO, and O3 concentrations, and for each 1-unit

increase in CO concentration.

All the calculations were performed using R software version

4.1.0 (R Core Team, Vienna, Austria), with its “DLNM” package.

The statistical review of the study was performed by a

biomedical statistician.
3 Results

3.1 Baseline characteristics

This analysis included 13,791 patients with T2DM (Table 1).

Overall, 137,000 patients with diabetes had a total of 173,200 days of

hospital LOS and 96million Chinese Yuan in hospital costs. The daily

ranges for diabetes hospital admissions, LOS, and costs were 0–26, 0–

332 days, and 0–263,000 Chinese Yuan, respectively. Among the air

pollutants, PM2.5 and PM10 had the broadest concentration ranges,

from 5 mg/m3 to 644 mg/m3 and 12 mg/m3 to 823 mg/m3, respectively.
3.2 Data visualization

The time series results of diabetes, the six air pollutants, and the

meteorological factors in Xinxiang City from 2016 to 2021 are

shown in Figure 1. Diabetes hospitalizations showed a fluctuation

according to the year; however, the overall trend showed an upward

trajectory. The mean temperature and air pollution indicators

exhibited significant periodicity and relatively stable patterns. The

concentrations of CO, NO2, and SO2 decreased annually, with

higher pollutants concentrations observed during the winter.
TABLE 1 Distribution characteristics of diabetes, air pollutants, and meteorological factors.

Variables Mean ± SD Min P25 P50 P75 Max

T2DM cases 6.47 ± 4.16 0 3 6 9 26

LOS 81.28 ± 53.30 0 40 71 115 332

Hospital cost 45,249.35 ± 30.40 0 18,827.85 36,604.48 64,247.45 263,620.56

PM2.5 61.04 ± 47.27 5 32 46 75 644

PM10 119.69 ± 71.49 12 66 94 136 823

SO2 21.31 ± 16.88 3 11 16 25 156

NO2 42.32 ± 19.94 8 27 40 55 168

CO 1.15 ± 0.70 0.3 0.7 1 1.37 8

O3 104.15 ± 50.01 7 60 97 145 276

Temperature 16.23 ± 10.11 -8 7.3 17.1 25.5 34.6

Humidity 61.26 ± 18.11 13 48 63 75 100
T2DM cases, the number of individuals with type 2 diabetes mellitus; LOS, length of stay; Hospital cost, costs for hospitalization due to type 2 diabetes (Hospital cost is expressed in Chinese
Yuan); PM2.5, aerodynamic diameter<2.5 mm; PM10, aerodynamic diameter<10 mm; SO2, sulphur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; Temperature, the
temperature in Xinxiang; Humidity, the humidity in Xinxiang; SD, standard deviation.
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3.3 Association between pollutants and
diabetes admission

The relationship between pollutants and the number of diabetes

hospitalizations showed a largely nonlinear and lagged relationship.

Three-dimensional (3D) plots were used to describe the relationship

between the six air pollutants and the number of hospitalizations for

diabetes (Figure 2). The 3D graphic represents the correlation in

terms of RR, depicting the risk of hospitalization for diabetes mellitus

and the exposure to different pollutants at different lag days.

Table 2 shows the RR when exposed to the six air pollutants at

different lag days, including single-day and cumulative lags. The

single-day lag RR of PM2.5 was detected as significant at lag 1–lag 7.

The cumulative lag RR for PM2.5 exhibited the greatest effect at lag

07 (RR=1.031; 95% CI: 1.007–1.056). Similarly, the effect of NO2 on

the single-day lag RR was significant from lag 0–lag 6, and the

strongest association of cumulative lag occurred at lag 06

(RR=1.067; 95% CI: 1.016–1.121). The single-day lag RR of CO
Frontiers in Endocrinology 04
was significant at lag 1–lag 7, with the highest effect of cumulative

lag at lag 07 (RR=1.139; 95% CI: 0.964–1.345). Regarding O3,

adverse effects of the single-day lag occurred at lag 4–lag 6, and

the greatest cumulative effect estimation was observed at lag 06

(RR=1.013; 95% CI: 0.992–1.036). However, no correlation was

observed between PM10 and SO2 and the risk of hospitalization

for diabetes.
3.4 Association between pollutants, length
of hospital stay, and hospital cost

Hospitalization costs and LOS varied among patients with

diabetes under the influence of different pollutants, as quantified

by the AF and attribution number (Table 3). Among the six

pollutants, CO had the highest AF, reaching 10.8% and 10.41%,

respectively, which resulted in an additional hospital cost of 10.41

million Chinese Yuan and 132,500 hospitalization days (Table 3).
FIGURE 1

Time-series results regarding the association of diabetes with meteorological factors and air pollution indicators in Xinxiang. PM2.5, aerodynamic
diameter<2.5 mm; PM10, aerodynamic diameter<10 mm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone.
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TABLE 2 Relative risk (RR) (95% confidence intervals [CIs]) of diabetes admissions with an increase of 10 mg/m3 in air pollutants (and 1 mg/m3 in
carbon monoxide [CO]).

Lag days
PM2.5 PM10 SO2 NO2 O3 CO

RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

Lag 0 0.999(0.987–1.011) 1.000(0.994–1.006) 0.959(0.915–1.004) 1.034(1.006–1.063) 1.009(0.997–1.022) 0.947(0.866–1.035)

Lag 1 1.003(0.998–1.008) 0.999(0.996–1.003) 0.985(0.963–1.007) 1.013(0.999–1.027) 0.999(0.993–1.006) 1.017(0.977–1.058)

Lag 2 1.004(0.999–1.010) 0.999(0.996–1.003) 0.998(0.974–1.023) 1.004(0.988–1.019) 0.996(0.990–1.003) 1.043(0.998–1.090)

Lag 3 1.004(0.999–1.008) 0.999(0.996–1.002) 1.002(0.983–1.022) 1.002(0.990–1.014) 0.998(0.993–1.003) 1.038(1.003–1.075)

Lag 4 1.003(0.998–1.007) 0.999(0.997–1.003) 1.001(0.983–1.019) 1.004(0.992–1.016) 1.001(0.996–1.006) 1.020(0.985–1.056)

Lag 5 1.003(0.997–1.009) 1.000(0.997–1.004) 0.998(0.975–1.022) 1.005(0.990–1.021) 1.004(0.998–1.010) 1.005(0.960–1.051)

Lag 6 1.005(0.999–1.010) 1.001(0.998–1.004) 0.997(0.977–1.018) 1.002(0.989–1.0157) 1.004(0.998–1.009) 1.010(0.972–1.049)

Lag 7 1.010(1.000–1.020) 1.002(0.996–1.008) 1.002(0.963–1.043) 0.991(0.966–1.0176) 0.997(0.987–1.008) 1.052(0.974–1.135)

(Continued)
F
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FIGURE 2

Three-dimensional graphs. PM2.5, aerodynamic diameter<2.5 mm; PM10, aerodynamic diameter<10 mm; SO2, sulfur dioxide; NO2, nitrogen dioxide;
CO, carbon monoxide; O3, ozone.
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The AF of NO2 was also high, reaching 5.4% and 4.1%, respectively,

leading to an increase of 5.2 million Chinese Yuan in hospital costs

and 710,100 hospitalization days. In addition, PM2.5, PM10, and O3

were significantly associated with LOS and hospital costs, while

SO2 was negatively correlated with hospital LOS and costs.

Supplementary Tables S1 and S2 show the single-day lag RR and

cumulative lag RR of hospital cost, LOS, and their CIs for the six

different pollutants on varying lag days.
3.5 Subgroup analysis

The cumulative lagged RR of air pollution-related diabetes by

sex stratification is depicted in Figure 3. The six air pollutants

showed differences under the sex stratification, with different values

for the associated RRs: PM2.5 at lag 07 (RR=1.045; 95% CI: 1.005–

1.087), PM10 at lag07 (RR=1.018; 95% CI: 0.995–1.042), SO2 at lag

06 (RR=1.086; 95% CI: 0.935–1.262), NO2 at lag 07 (RR=1.134; 95%

CI: 1.038–1.239), and CO at lag 07 (RR=1.258; 95% CI: 1.008–

1.159). No significant associations were observed between O3,

diabetes admissions, and sex.

We performed an analysis of the correlation between air

pollution and diabetes under different age stratifications

(Figure 4). People<65 years of age were more likely to be affected

by O3 exposure and develop T2DM.
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Those who were ≥65 years old and were exposed to NO2 and

CO were more likely to develop T2DM. At lag06, exposure to O3

was significantly associated with diabetes admissions for

individuals<65 years of age (RR=1.044; 95% CI: 1.010–1.080). For

the ≥65-years-old subgroups, the most significant association

between CO and NO2 and diabetes hospitalization was observed

on the sixth day, with NO2 (RR=1.087; 95% CI: 0.972–1.216) and

CO (RR=1.529; 95% CI: 1.170–1.997). No age-related risk of

diabetes was observed with PM2.5, PM10, and SO2 exposure.

Significant differences in diabetes effect estimates were found

under the warm and cold season stratification (Table 4). The effect

estimates of three significant pollutants, SO2, O3, and CO, had

greater effect values in the cold season than in the warm season. The

highest RRs (95% CI) for SO2, O3, and CO on diabetes hospital

admission were observed at lag 07 with 1.059 (95% CI: 0.909–

1.235), at lag 07 with 1.060 (95% CI: 0.961–1.170), and at lag 07 with

1.121 (95% CI: 0.859–1.463), respectively. However, PM2.5, PM10,

and NO2 did not significantly affect hospital admissions

across seasons.

Figure 5 presents the Spearman’s correlation analysis results

between air pollutants and meteorological factors. There was a

positive correlation between particulate pollutants and NO2, SO2,

and CO, with fluctuating correlation coefficients of 0.48–0.87, and

O3 was negatively associated with other air pollutants and humidity.

Temperature was negatively correlated with all air pollutants except
TABLE 2 Continued

Lag days
PM2.5 PM10 SO2 NO2 O3 CO

RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

Lag 01 1.002(0.988–1.017) 1.000(0.992–1.008) 0.944(0.892–0.999) 1.048(1.013–1.084) 1.009(0.993–1.026) 0.963(0.865–1.073)

Lag 02 1.006(0.991–1.022) 1.000(0.991–1.008) 0.942(0.886–1.002) 1.052(1.015–1.091) 1.006(0.988–1.024) 1.005(0.898–1.126)

Lag 03 1.010(0.994–1.027) 0.999(0.989–1.008) 0.945(0.883–1.010) 1.055(1.014–1.096) 1.004(0.985–1.023) 1.044(0.926–1.178)

Lag 04 1.013(0.996–1.031) 0.999(0.989–1.008) 0.946(0.879–1.017) 1.059(1.016–1.103) 1.005(0.986–1.025) 1.066(0.937–1.212)

Lag 05 1.016(0.996–1.036) 0.999(0.988–1.010) 0.944(0.871–1.023) 1.064(1.018–1.113) 1.009(0.989–1.031) 1.071(0.928–1.237)

Lag 06 1.021(0.998–1.044) 1.000(0.988–1.013) 0.942(0.862–1.029) 1.067(1.016–1.121) 1.013(0.992–1.036) 1.082(0.922–1.270)

Lag 07 1.031(1.007–1.056) 1.002(0.989–1.016) 0.944(0.859–1.037) 1.058(1.005–1.114) 1.011(0.989–1.034) 1.139(0.964–1.345)
lag0, zero day lag; lag7, seventh day lag; lag01, one day cumulative lag; lag07, seven days cumulative lag; PM2.5, Aerodynamic diameter<2.5 mm; PM10, Aerodynamic diameter<10 mm; SO2,
sulphur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; RR, relative risk; CI, confidence interval.
TABLE 3 Attributable fraction and attributable number of hospital cost and length of stay of patients with diabetes.

Pollution
Hospital cost LOS

AF (%) AN (million) AF (%) AN (hundred)

PM2.5 4.80(1.70–7.70) 4.62(1.63–7.42) 3.70(1.38–6.10) 64.08(23.90–105.66)

PM10 1.50(-0.20–3.20) 1.44(-0.19–3.08) 0.40(-0.90–1.80) 6.92(-15.58–31.17)

SO2 -4.40(-18.90–8.10) -4.24(-18.22–7.81) -8.50(-19.90–1.50) -14,723(-344.69–25.98)

NO2 5.40(-1.10–11.60) 5.20(-1.06–11.18) 4.10(-1.20–9.20) 71.01(-20.78–159.35)

O3 1.90(-1.00–4.80) 1.83(-0.96–4.62) 1.10(-1.20–3.40) 19.05(-20.78–58.89)

CO 10.80(-4.00–33.90) 10.41(-3.80–32.68) 13.40(-3.00–27.30) 132.5 (-51.96–472.87)
AF, attribution fraction; AN, attribution number; LOS, length of stay; PM2.5, aerodynamic diameter<2.5 mm; PM10, aerodynamic diameter<10 mm; SO2, sulphur dioxide; NO2, nitrogen dioxide;
CO, carbon monoxide; O3, ozone.
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FIGURE 4

Cumulative lag RR with 95% CIs of diabetes-related hospital admissions associated with air pollutants at various lags stratified by age. PM2.5,
aerodynamic diameter<2.5 mm; PM10, aerodynamic diameter<10 mm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone.
FIGURE 3

The cumulative lag relative risk (RR) (95% confidence interval [CI]) of hospital admissions for diabetes stratified by sex. PM2.5, aerodynamic
diameter<2.5 mm; PM10, aerodynamic diameter<10 mm; SO2, sulfur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone.
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O3. Apart from PM2.5, CO, and temperature, all pollutants were

negatively correlated with humidity.

When analyzing a single air pollutant, each 10 mg/m3 increase in

the concentration of particulate pollutants, NO2, and O3 increased

the risk of diabetes by 3.1%, 0.2%, 5.8%, and 1.1%, respectively. The

risk of hospitalization for diabetes increased by 13.9% for every 1

mg/m3 increase in CO concentration. In the double-pollution

model, the RR of O3 adjusted for the other five air pollutants
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were all smaller than the single exposure RR of O3, which

corresponded to the Spearman’s correlation coefficient. Table 5

demonstrates the risk of diabetes in the single-pollutant exposure

and dual-pollutant models for each 10 mg/m3 (1 mg/m3) increase in

air pollutant concentration. The trend of the double-pollution

model aligned with the Spearman’s correlation coefficient,

demonstrating the robustness of the impact estimates of the

six pollutants.
TABLE 4 RR (95% CIs) of diabetes admissions with an increase of 10 mg/m3 in air pollutants (and 1 mg/m3 in CO) according to the single-pollutant
model by season.

Lag days
PM2.5 PM10 SO2 NO2 O3 CO

RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI) RR (95% CI)

Cold

Lag 0 0.993(0.977–1.009) 0.991(0.980–1.002) 0.967(0.904–1.034) 1.008(0.964–1.053) 0.997(0.959–1.036) 0.938(0.834–1.055)

Lag 1 1.003(0.996–1.010) 1.000(0.995–1.005) 1.009(0.977–1.041) 0.999(0.978–1.020) 1.003(0.982–1.025) 1.022(0.969–1.078)

Lag 2 1.006(0.999–1.013) 1.003(0.997–1.008) 1.021(0.987–1.055) 0.993(0.971–1.016) 1.004(0.983–1.025) 1.047(0.992–1.106)

Lag 3 1.005(0.999–1.010) 1.002(0.998–1.006) 1.014(0.989–1.040) 0.989(0.972–1.007) 1.002(0.985–1.019) 1.033(0.989–1.078)

Lag 4 1.002(0.996–1.007) 0.999(0.995–1.003) 1.001(0.977–1.026) 0.987(0.970–1.004) 1.000(0.983–1.017) 1.005(0.962–1.048)

Lag 5 0.999(0.992–1.007) 0.998(0.993–1.003) 0.994(0.962–1.027) 0.986(0.965–1.008) 1.003(0.983–1.024) 0.987(0.934–1.043)

Lag 6 1.002(0.995–1.008) 0.999(0.995–1.004) 1.004(0.975–1.034) 0.987(0.968–1.006) 1.013(0.994–1.032) 1.004(0.955–1.055)

Lag 7 1.011(0.998–1.023) 1.007(0.997–1.016) 1.045(0.991–1.103) 0.989(0.953–1.027) 1.034(0.999–1.070) 1.082(0.985–1.198)

Lag 01 0.996(0.976–1.017) 0.991(0.977–1.005) 0.976(0.897–1.062) 1.007(0.954–1.064) 1.000(0.949–1.054) 0.960(0.827–1.113)

Lag 02 1.003(0.981–1.025) 0.994(0.979–1.010) 0.997(0.908–1.094) 1.001(0.943–1.062) 1.005(0.946–1.067) 1.005(0.857–1.180)

Lag 03 1.007(0.984–1.032) 0.997(0.980–1.013) 1.012(0.914–1.120) 0.990(0.929–1.055) 1.007(0.941–1.077) 1.039(0.874–1.234)

Lag 04 1.009(0.983–1.036) 0.997(0.979–1.015) 1.013(0.908–1.131) 0.977(0.914–1.045) 1.008(0.936–1.085) 1.044(0.866–1.259)

Lag 05 1.009(0.980–1.039) 0.995(0.975–1.015) 1.008(0.891–1.140) 0.965(0.896–1.038) 1.011(0.932–1.097) 1.031(0.834–1.274)

Lag 06 1.011(0.978–1.046) 0.995(0.972–1.018) 1.013(0.881–1.164) 0.953(0.878–1.034) 1.025(0.937–1.121) 1.036(0.813–1.318)

Lag 07 1.022(0.985–1.061) 1.002(0.977–1.028) 1.059(0.909–1.235) 0.943(0.862–1.032) 1.060(0.961–1.170) 1.121(0.859–1.463)

Warm

Lag 0 1.022(0.977–1.070) 1.012(0.990–1.033) 0.935(0.840–1.040) 1.003(0.943–1.067) 1.015(0.996–1.034) 0.904(0.715–1.143)

Lag 1 1.006(0.982–1.030) 1.003(0.992–1.014) 0.956(0.907–1.008) 0.993(0.960–1.028) 1.001(0.992–1.010) 0.965(0.856–1.089)

Lag 2 1.000(0.975–1.025) 0.999(0.988–1.010) 0.986(0.932–1.042) 0.993(0.959–1.029) 0.997(0.988–1.005) 1.008(0.881–1.153)

Lag 3 1.000(0.979–1.021) 0.998(0.989–1.007) 1.014(0.969–1.061) 0.999(0.970–1.028) 0.998(0.992–1.005) 1.031(0.924–1.150)

Lag 4 1.003(0.982–1.024) 0.998(0.989–1.007) 1.031(0.987–1.078) 1.005(0.976–1.035) 1.002(0.996–1.009) 1.035(0.929–1.153)

Lag 5 1.004(0.979–1.030) 0.999(0.987–1.010) 1.028(0.972–1.087) 1.008(0.973–1.044) 1.005(0.996–1.013) 1.022(0.894–1.168)

Lag 6 1.000(0.976–1.024) 0.997(0.986–1.007) 0.994(0.945–1.047) 1.003(0.971–1.036) 1.001(0.994–1.008) 0.994(0.882–1.120)

Lag 7 0.986(0.946–1.028) 0.991(0.972–1.011) 0.925(0.841–1.018) 0.987(0.931–1.047) 0.989(0.975–1.002) 0.955(0.764–1.194)

Lag 01 1.029(0.96–1.093) 1.015(0.988–1.043) 0.894(0.781–1.025) 0.997(0.918–1.082) 1.016(0.991–1.042) 0.873(0.653–1.169)

Lag 02 1.029(0.961–1.102) 1.014(0.984–1.045) 0.882(0.759–1.025) 0.991(0.900–1.091) 1.013(0.986–1.041) 0.881(0.637–1.217)

Lag 03 1.030(0.954–1.111) 1.012(0.980–1.046) 0.895(0.758–1.056) 0.990(0.887–1.104) 1.012(0.984–1.042) 0.908(0.634–1.301)

Lag 04 1.033(0.951–1.123) 1.011(0.977–1.047) 0.923(0.771–1.106) 0.995(0.883–1.122) 1.015(0.986–1.045) 0.940(0.638–1.386)

Lag 05 1.038(0.946–1.138) 1.010(0.973–1.049) 0.950(0.776–1.162) 1.003(0.878–1.146) 1.020(0.989–1.053) 0.961(0.624–1.479)

Lag 06 1.038(0.937–1.149) 1.007(0.966–1.051) 0.945(0.754–1.184) 1.007(0.870–1.166) 1.022(0.988–1.057) 0.956(0.591–1.548)

Lag 07 1.024(0.915–1.145) 0.999(0.954–1.047) 0.875(0.684–1.119) 0.995(0.848–1.167) 1.011(0.976–1.047) 0.914(0.539–1.549)
cold, cold season; warm, warm season; lag0:lag0, zero day lag; lag7, seventh day lag; lag01, one day cumulative lag; lag07, seven days cumulative lag; PM2.5, Aerodynamic diameter<2.5 mm; PM10,
Aerodynamic diameter<10 mm; SO2, sulphur dioxide; NO2, nitrogen dioxide; CO, carbon monoxide; O3, ozone; RR, relative risk; CI, confidence interval.
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To verify the robustness of the model, a sensitivity analysis was

performed. The output values of the six different pollutants for 7

days of cumulative lag were calculated after making changes in the

degrees of freedom for lag days and temperature. It was found that

the output values of RR and 95% CIs of air pollution and T2DM

hospitalization correlations at different degrees of freedom were

within a relatively stable range (Supplementary Table S3).
4 Discussion

The DLNM was used to clarify the relationship between air

pollution and diabetes admissions, LOS, and hospitalization

expenses with respect to variables and lagged days. The findings

indicated that PM2.5, NO2, CO, and O3 were positively correlated

with T2DM hospitalizations, with varying effects across different lag

days and subgroups. In the single-pollution model, we found that

each ten-unit increase in PM2.5, NO2, and O3 and each unit increase

in CO was significantly associated with diabetes, with RR values of

1.031 (1.007–1.056), 1.058 (1.005–1.114), 1.011 (0.989–1.034), and

1.139 (0.964–1.345), respectively. Similarly, a previous study found

that PM2.5 and NO2 was positively associated with the risk of death

due to diabetes in the United States, whereas no association was

observed for O3 (28, 29). Song et al. (29) demonstrated that each

ten-unit increase in PM2.5, PM10, SO2, and NO2 and each unit

increase in CO corresponded to an increase in T2DM

hospitalization. Moreover, Paul et al. (30) observed significant

associations between T2DM and PM2.5 and O3. However, our

study depicted a limited relationship between PM10 levels and the

prevalence of diabetes, contrasting with the results of most previous

studies. Thus, further research is required to confirm these findings.

There is limited research on the correlation between air

pollution and hospital costs and LOS due to diabetes mellitus.
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We observed that air pollutants other than SO2 were positively

correlated with LOS and hospital costs for patients with diabetes,

resulting in a significant economic burden. Notably, neglecting the

importance of health during development results in higher future

costs (31). Therefore, the relevant authorities and medical

institutions should pay attention to the impact of air pollution

and take appropriate measures to reduce the economic costs and

health impacts of air pollution.

The seasonal subgroup analysis depicted correlations between

diabetes prevalence and PM10, SO2, O3, and CO during the cold

season. Studies have demonstrated that older adults and individuals

in cold seasons are more susceptible to outdoor air pollutants (32).

Air pollution arises from a combination of anthropogenic emissions

and meteorological factors (33, 34). Focusing solely on the

individual effects of pollutants or meteorological factors may lead

to an oversight of the overall health effects of the mixture. Air

pollutants impact both health and climate; seasonal and regional

differences may change the concentration of particulate matter,

consequently affecting the correlation between air pollution and

coronary heart disease (35). Seasonal transitions (from winter to

summer) and gradually improving meteorological factors help

reduce the impact of anthropogenic emissions on air pollution (36).

The sex-stratified subgroup analysis revealed that females were

more susceptible to air pollution in terms of developing T2DM than

males were. This may be attributed to the distinct physiological

structure of females. Air pollution affects females more, possibly
FIGURE 5

Spearman’s correlation analysis between air pollutants and
meteorological variables. PM2.5, aerodynamic diameter<2.5 mm;
PM10, aerodynamic diameter<10 mm; SO2, sulfur dioxide; NO2,
nitrogen dioxide; CO, carbon monoxide; O3, ozone.
TABLE 5 Fitting results of single and double air pollutant model.

Model RR (95% CI) Model RR (95% CI)

PM2.5 1.031(1.007–1.055) SO2 0.944 (0.859–1.037)

PM2.5+PM10 1.040(0.999–1.081) SO2+PM2.5 0.926 (0.835–1.028)

PM2.5+NO2 1.010(0.979–1.041) SO2+PM10 0.919 (0.829–1.018)

PM2.5+SO2 1.029(1.003–1.055) SO2+NO2 0.838 (0.748–0.938)

PM2.5+CO 1.027(0.994–1.060) SO2+CO 0.957 (0.862–1.061)

PM2.5+O3 1.025(1.000–1.051) SO2+O3 0.935 (0.846–1.035)

PM10 1.002(0.989–1.015) CO 1.139 (0.964–1.345)

PM10+PM2.5 0.985(0.964–1.008) CO+PM2.5 0.983 (0.782–1.236)

PM10+NO2 0.996(0.979–1.013) CO+PM10 1.121 (0.925–1.359)

PM10+SO2 1.007(0.992–1.022) CO+NO2 1.012 (0.832–1.232)

PM10+CO 0.999(0.984–1.015) CO+SO2 1.140 (0.955–1.360)

PM10+O3 1.005(0.991–1.019) CO+O3 1.123 (0.944–1.337)

NO2 1.058(1.005–1.113) O3 1.011 (0.989–1.034)

NO2+PM2.5 1.065(0.999–1.136) O3+PM2.5 0.994 (0.971–1.019)

NO2+PM10 1.081(1.015–1.151) O3+PM10 0.995 (0.971–1.019)

NO2+SO2 1.118(1.053–1.188) O3+NO2 0.994 (0.970–1.018)

NO2+O3 1.075(1.019–1.134) O3+SO2 0.995 (0.971–1.020)

NO2+CO 1.077(1.015–1.143) O3+CO 1.001 (0.977–1.025)
RR, relative risk; CI, confidence interval; PM2.5, aerodynamic diameter<2.5 mm; PM10,
aerodynamic diameter<10 mm; SO2, sulphur dioxide; NO2, nitrogen dioxide; CO, carbon
monoxide; O3, ozone.
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because of sex-related biological differences, such as hormones,

body shape, diet, and activity patterns (37). Furthermore, the airway

diameters in females are different to those in males, facilitating the

deposition of PM2.5 particles (38).

In the age-stratified analysis, the effect of air pollution in

younger people was slightly lower than that in individuals aged

>65 years. This was mainly observed with NO2 and CO. Abnormal

glucose metabolism caused by air pollution in older adults may have

led to this result (39). Therefore, air pollution may be a risk factor

for diabetes in older individuals. In contrast, O3 exhibited the

opposite effect, potentially owing to differences in outdoor activity

time, with the increased engagement of younger people in outdoor

activities and thus increased inhalation of air pollutants potentially

explaining the stronger effect of air pollutants on this group (40).

More walking and higher levels of greenery are negatively related

with T2DM (7). However, previous research by Kim et al. showed

that older people exposed to air pollution have a lower risk of

diabetes during moderate- and high-intensity physical activities

(41). Furthermore, studies have demonstrated that healthy physical

activity habits can reduce the risk of T2DM, even in the presence of

PM2.5 exposure (42). However, further research is required to

validate this assertion.

Air pollution could constitute a risk factor for T2DM development

(16). There are various pathophysiologic mechanisms by which air

pollution may contribute to diabetes. Previous studies have identified

potential pathological pathways involved in air pollution, including

insulin resistance (43–45), b-cell dysfunction, neurohormonal

dysfunction (46), endothelial dysfunction (47), systemic

inflammation, and alterations in the composition and diversity of gut

microbiota (48). Greater exposure to air pollution is associated with

increased circulating levels of adiponectin, interleukin-1 receptor

antagonists, and high-sensitivity C-reactive protein (49).
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Hypothesized effects of air pollutants encompass impaired

endothelial function, elevated systemic inflammation, mitochondrial

dysfunction, and oxidative stress, which may contribute to the

development of T2DM (50). Furthermore, air pollutants may

modulate inflammatory responses in the homeostatic centers of the

brain and may modulate hypothalamic mechanisms that regulate

appetite and satiety (51). In addition, prolonged exposure to PM10

and NO2 pollution is positively related with glycated hemoglobin (52),

and PM2.5 pollution has resulted in a massive T2DM burden

worldwide (53). Figure 6 shows the mechanisms underlying the

association between air pollution and T2DM.

It is well known that wearing a mask can effectively avoid exposure

to air pollution. Antioxidants also play an important role in avoiding

the damage caused by air pollution. A diet that promotes oxidation and

inflammation will strengthen the harmful effects of air pollutants on

the body (54), while a healthy diet, adhering to the Mediterranean diet

and taking antioxidants from fruits and vegetables can reduce the

burden of diseases caused by air pollution (54, 55). A healthy diet can

effectively prevent T2DM (56). Adequate intake of antioxidants such as

vitamins C and E through diet can reduce diabetes caused by air

pollution (57). In addition to the common air pollution such as

particulate matter, toxic environmental substances also endanger our

health, such as poisons caused by gasoline tail gas. Studies have shown

that the intervention of antioxidant vitamin E can restore the airway

injury of rats exposed to poisons (58). Therefore, intake of antioxidants

is beneficial to health.

In Pr Jean-Jacques Laffont’s book The Economics of Uncertainty

and Information, the influence of taxation on agents inspires us that

increasing the taxation of polluting enterprises may reduce the

willingness of enterprises to invest, which is not conducive to

economic development. Conversely, if the government introduces

policies to improve the air pollution caused by factories and other
FIGURE 6

Mechanism of air pollution and diabetes. PM, particulate matter; IL-RA, interleukin receptor antagonists; hsCRP: high-sensitivity C-reactive protein.
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enterprises, and gives tax relief to some environmental protection

enterprises, air pollution may be further prevented.

This study had some limitations. First, the patients with

diabetes in this study did not include all patients in Xinxiang,

potentially resulting in the oversight of individuals with

insignificant clinical symptoms and leading to underestimation.

Second, this study analyzed data collected over 5 years, possibly

compromising the model’s stability. Third, this study was

observational and ecological, preventing us from making causal

inferences, despite our efforts to reduce confounding bias through

various methods. This study also had several strengths. First, we

used the DLNM to more accurately reflect the lagged relationship

between air pollution and disease. Second, we measured several

aspects of the correlation between air pollution and T2DM,

including hospital admissions, LOS, and hospital costs, which

may lead to a greater understanding of the economic impact and

social pressures of the disease.

In conclusion, air pollutants were positively related with

hospitalization rates, expenses, and LOS in patients with diabetes,

particularly PM2.5, NO2, O3, and CO. This association was also

affected by sex, age, and season. These findings may guide efforts to

prevent T2DM and highlight the multiple benefits of improving the

air quality in Xinxiang and other highly polluted regions.
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