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The adipose tissue keeps the
score: priming of the adrenal-
adipose tissue axis by early life
stress predisposes women to
obesity and cardiometabolic risk
Meghan Blair Turner, Carolina Dalmasso and Analia S. Loria*

Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington,
KY, United States
Adverse Childhood Experiences (ACEs) refer to early life stress events, including

abuse, neglect, and other psychosocial childhood traumas that can have long-

lasting effects on a wide range of physiological functions. ACEs provoke sex-

specific effects, whereas women have been shown to display a strong positive

correlation with obesity and cardiometabolic disease. Notably, rodent models of

chronic behavioral stress during postnatal life recapitulate several effects of ACEs

in a sex-specific fashion. In this review, we will discuss the potential mechanisms

uncovered bymodels of early life stress that may explain the greater susceptibility

of females to obesity and metabolic risk compared with their male counterparts.

We highlight the early life stress-induced neuroendocrine shaping of the

adrenal-adipose tissue axis as a primary event conferring sex-dependent

heightened sensitivity to obesity.
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1 Introduction

Adverse childhood experiences (ACEs) are traumatic events that happen before the age

of 17, such as abuse, neglect, parental separation, and household instability. Cumulative

number of ACEs have been associated with an increased risk for premature death (1, 2).

ACEs are highly prevalent worldwide, as six out of 10 adults report experiencing at least one

adverse event in childhood (3). Based on 2011–2020 Behavioral Risk Factor Surveillance

System (BRFSS) data, the CDC estimates that the prevalence of ACEs among U.S. adults is

similar. Overall, 63.9% of U.S. adults reported at least one ACE and 17.3% reported

exposure to four or more ACEs (4). In 1998, a large health maintenance organization clinic

in San Diego published a seminal study on ACEs. This report revealed that increased ACE

exposures corresponded to increased rates of severe obesity, ischemic heart disease, and
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liver disease (1). Specifically, participants who experienced more

than three ACEs had a 1.5 to 1.9-fold risk for severe obesity (Body

Mass Index, BMI, ≥ 35 kg/m2) in adulthood (1, 5).

Since that publication, numerous epidemiological and

population-based studies have replicated the link between ACE

exposures and increased BMI, obesogenic behaviors, and

cardiometabolic risk factors in adulthood. A recent systematic

review found that four or more ACE exposures results in

increased risk for obesity, diabetes, heart disease, and risk-taking

behaviors (6). Moreover, a study of Finnish adolescents found that

multiple ACE exposures confer a 46% increased likelihood of adult

obesity (7), while The Growing Up in Ireland cohort found that

ACE exposure before age nine was associated with early adolescent

obesity (8). Also, ACE exposure was found to be associated with

type 2 diabetes, whereas neglect has the strongest influence

increasing the risk for metabolic disease (9). The seminal ACE

study was based on a retrospective survey comprised of 10 binary

questions regarding childhood physical and emotional abuse,

however, validated variations are widely used in clinical and

epidemiological settings (1, 10). Notably, a cumulative effect of

ACE exposure was demonstrated, as each positive response on the

ACE questionnaire corresponded to a one-point increase in

BMI (10).

Other factors such as sex, race, and type of ACE exposure also

contribute to the stratification of the effects of ACEs on BMI and

metabolic dysregulation. The Trondelag Health Study in Norway

found that parental divorce and negative childhood memories were

associated with higher women’s pre-pregnancy BMI (11). In a

longitudinal U.S. cohort of women, two or more ACE exposures

corresponded to increased adolescent and adult BMI, where sexual

and physical abuse specifically affected Black women (12). The UK-

based Millennium cohort found that BMI in females was increased

by a single ACE exposure, and was most sensitive to parental

separation and physical punishment, while in males, elevated BMI

emerged after the occurrence of three or more ACEs (13). The

number of ACEs needed to increase BMI in both Black and white

women was reduced compared with white men (14). In contrast,

Black men showed a negative association between ACEs and BMI;

however, increased waist circumference suggested greater central

adiposity (14).

Animal models have recapitulated the sex-specific effects of

early life stress on metabolic function and body composition,

providing a translational tool to identify therapeutic targets and

effective approaches to treat disease in this vulnerable population.

Modeling ACEs in rodents is possible based on the premise that the

mammalian maternal bond is crucial for modulating the stress

response in early life (15). Critical windows of stress susceptibility

have been observed across mammalian species, from rodents to

non-human primates, as well as in human infants, which are

protected by maternal sensory input (16). In rodents, a stress

hypo-responsive period (SHRP) that occurs during the first two

postnatal weeks is characterized by lower corticosterone levels and

corticosterone unresponsiveness (16, 17). This SHRP is critical for

the optimal development and maturation of the brain and other

physiological systems. Thus, high levels of stress hormones during
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this critical period result in the long-term dysregulation of the stress

response (18–21).

Investigations of the effects of early life stress have found

significant impairment of the adrenal-adipose tissue axis function

in women and pre-clinical models using female rodents. Notably,

aldosterone has emerged as an adrenal hormone associated with a

sex-specific cardiometabolic risk, where females with early life stress

experience increased susceptibility (22–24). In women, plasma

aldosterone correlates positively with visceral adipose tissue and

negatively with insulin sensitivity, and these associations are

independent of plasma renin activity (25, 26). It is known that

aldosterone synthesis is stimulated by adrenocorticotrophic

hormone (ACTH), arginine-vasopressin (AVP), angiotensin II

(Ang II), leptin, and potassium (27). Subsequently, high

circulating aldosterone binds to mineralocorticoid receptors

expressed in adipocytes, immune cells, endothelial cells, and brain

areas controlling the metabolic function. Along these lines, female

mice exposed to early life stress have shown increased plasma and

adrenal-derived aldosterone, as well as a mineralocorticoid-

dependent expansion of adipose tissue and metabolic

dysregulation (24, 28, 29). Early life stress exposure does not

increase basal adrenal glucocorticoids in adult women or rodents

(24, 30); however, corticosterone response to stress is exacerbated

(31). Adrenal androgens are not well-studied in this context due to

limited translational potential, as rodents do not display a defined

period of adrenarche and secrete adrenal androgens in minuscule

quantities (32). Additionally, adrenal androgens are difficult to

study in humans, as gonadal androgens are systemically

prominent (32).

In his New York Times best-selling book, The Body Keeps the

Score, Dr. Bessel van der Kolk discusses how traumatic experiences

commonly induce neurobiological, immune, and cardiovascular

changes in the body. However, we put forth that in women, the

adipose tissue is truly the scorecard marked upon by early life stress,

as the dysregulated hypothalamic-pituitary-adrenal (HPA) axis

predisposes to obesity and metabolic syndromes.
2 Early life stress models

Animal models that recapitulate the long-term effects of early

life stress aim to disrupt or limit access to maternal care during early

postnatal life. In rodents, this is commonly achieved by separating

the mother from her litter of pups during the SHRP, which is

known as maternal separation (MS) (33, 34). A more aggressive

model of neglect in early life is to combine MS and early weaning

(MSEW) (28, 35). This model is widely used in mice because

murine offspring exhibit greater stress resilience than rats.

Maternal care disruptions induce a stress response during a time

when the HPA axis is not fully developed, which programs the

sensitivity threshold for subsequent stressors. As such, maladapted

HPA axis sensitivity is a hallmark of early life stress models that

leads to neuroendocrine, behavioral, and cardiometabolic outcomes

that mimic those observed in children and adults exposed to

ACEs (36).
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Different MS paradigms exist that involve removing the dam

from the whole litter in the home cage, for durations ranging from

10 minutes to 3- 8 hours daily (34). Across MS models, separations

are typically performed daily for 3-14 days, either consecutively or

intermittently. Litters from an undisturbed cage often serve as a

control group, while in other studies, half of the litter identified by

tail snip or ink marks is subjected to separations and the other half

remains with the dam, serving as controls. MS is typically sufficient

to induce long-term HPA disruptions in rats; however, MSEW is a

more effective approach to induce long-lasting neuroendocrine

dysfunctions in mice (35). In MSEW paradigms, pups are not

only separated from their mothers, typically for longer periods but

are also weaned prematurely at postnatal day (PND)17 compared to

controls weaned at PND21 (28, 35). Another paradigm of early life

stress involves maternal deprivation (MD), a form of MS where

offspring are separated individually for up to 24 hours, which

induces higher levels of stress on the pups (20, 37). When pups

are subjected to MD for shorter periods, the protocol can also be

referred to as early handling (15 minutes) or early deprivation (four

hours) (38).

Maternal care disruption induced by MS or MSEW promotes

fragmented nursing, anxiety, depression, aggression, and changing

licking/grooming frequency that have been shown to sensitize the

offspring’s response to subsequent stressors in the short and long

term (39–42). Another model of early life stress uses this approach by

providing limited nesting and bedding (LNB) materials for the dam.

The LBN model leads to disorganized maternal care in addition to
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poor nest construction which disrupts thermoregulation, an

environmental stressor affecting the dam and pups (41, 43).
3 Early life stress and the HPA axis

Activation of the HPA axis is triggered by stressful events that

induce the release of corticotropin-releasing hormone (CRH) and

AVP from magnocellular neurons in the paraventricular nucleus of

the hypothalamus (PVN) to the pituitary gland (Figure 1). CRH

stimulates ACTH synthesis and release into the bloodstream in the

anterior pituitary gland, while AVP is released directly into the portal

veins of the posterior pituitary (Figure 1). Upon stimulation, both

hormones are released into the systemic circulation and bind to

specific receptors in the adrenal glands to promote rapid

corticosteroid synthesis (27). ACTH binding to melanocortin type

2 receptors (Mc2R) results in calcium-mediated increase in

transcription and activity of rate-limiting steroidogenic acute

regulatory protein (StAR) (44, 45). AVP binds to AVP receptor

type 1 (V1R), inducing a similar intracellular signaling pathway

(46, 47). StAR is responsible for supplying the steroidogenic

substrate, cholesterol, to the mitochondrial membrane for

downstream conversion to steroid hormones based on cell-specific

enzymes (44). In cells of the zonas fasciculata and glomerulosa of the

adrenal gland, enzymes, including CYP11B1, are present for the

synthesis of corticosteroids, corticosterone, and cortisol, specifically

in humans (48). However, activation of CYP11B2 transcription in the
FIGURE 1

Progressive stress exposure during the stress hyporesponsive period alters HPA function. In rodent models, SHRP is characterized by decreased
ACTH and corticosterone production despite increased CRH expression in the hypothalamus. A first hit of stress during this period elicits a modest
elevation in AVP and ACTH, coupled with a significant increase in aldosterone. After early life stress exposure, a subsequent hit of stress leads to
increased activation in the PVN accompanied by increased AVP expression and decreased CRH expression. This “second hit” elicits an increase in
ACTH, followed by elevated corticosterone and significant increases in aldosterone. Priming of the HPA axis during this period of altered stress
response mechanisms may underlie the predisposition for a hyper-aldosteronogeneic response to stressors such as high fat diet in adulthood.
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zona glomerulosa, further converts corticosterone into the primary

mineralocorticoid, aldosterone (49). This pattern of enzyme

expression defines the zone-specificity of glucocorticoid and

mineralocorticoid production (50).

The SHRP is marked by a relatively quiescent stress response

compared to immediately after birth or following the SHRP (16, 17),

and is well documented to occur between PND4-14 in rats and

PND1-12 in mice (16, 21, 51, 52). Expression of CRH in the PVN is

exceptionally high during this time, only downstream ACTH

and corticosterone release in response to mild stress are dampened

(20, 21) (Figure 1). Sex differences in HPA function are in part due to

differences in the circulating gonadal steroid hormone. While

testosterone seems to inhibit HPA function, estrogens show

stimulatory effects. One mechanism by which androgens and

estrogens modulate stress responses is through the binding to their

cognate receptors in the central nervous system showing sex and site-

specific distribution. In the case of androgens, data suggest that the

control of the hypothalamic paraventricular nucleus is mediated

trans-synaptically. For estrogen, modulation of the HPA axis may

be due to changes in glucocorticoid receptor-mediated negative

feedback mechanisms (53). Glucocorticoid-receptor-mediated

negative feedback suppresses ACTH response to mild stressors.

However, if the stressor is sufficient to reach a threshold the

neonatal pituitary is able to producing a robust ACTH response (16).

Exposure to a more severe stressors during early postnatal life

can cause premature emergence from the SHRP (Figure 1). For

instance, although early life stress induces an attenuated CRH

expression in the PVN, plasma corticosterone remains elevated

(19, 20, 54). Artificially-reared PND12 rat pups remained hypo-

responsive as long as rat milk substitute was supplemented via

gastrostomy (55). Dietary glucose supplementation or blocking

ghrelin signaling were also able to attenuate MS effects (56).

Interestingly, early life stress did not alter body weight or growth

at weaning (24, 28, 55). Taken together, this data indicates that

hunger-induced stress could play a critical role in the metabolic

programing of the obesogenic response regardless significant effects

in growth and weight gain.

Most studies of early life stress focus on corticosterone as the

major output of the HPA-mediated stress-response; however,

pituitary hormones are also potent stimulators of aldosterone. Rat

pups subjected to lipopolysaccharide and hypoglycemic challenges

during the SHRP show increased circulating aldosterone compared

to non-challenged pups or adults. This increase in aldosterone levels

cannot be attributed to elevations in ACTH alone (57).

Additionally, primary adrenal cultures from MD rat pups

produce more aldosterone than cultures from non-separated

pups; however, corticosterone production is not different between

groups (58). Early life stress has been shown to methylate the AVP

enhancer, leading to increased expression in adult rodents (59, 60),

and AVP is clinically elevated in adults with early life stress

exposures (61). Taken together, these data suggest that AVP may

play a role in mediating increased aldosterone production following

early life stress exposure.

Activation of the PVN is similar between maternally deprived

and non-deprived pups after a “second hit” of restraint stress;

however, maternally deprived pups show reduced CRH and
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increased AVP expression in this brain area (20). This suggests

that deprivation shifts the hypothalamic stress-response from

primarily CRH-mediated to AVP-mediated. Neither AVP nor

CRH, however, entirely account for steroidogenic stimulation in

early postnatal rats (62, 63). Taken together, these studies suggest

that while the anterior pituitary and zona fasciculata stress

responses are dampened during the SHRP, the posterior pituitary

and zona glomerulosa are preferentially activated during this period.

These insights open up the discussion concerning whether the early

neonatal period may not be hypo-responsive at all, rather the stress

response has been historically measured in the context of a mature

neuroendocrine system. Further, priming of these systems in early

life leads to long-term differential activation that can be pathogenic

during adult life.
4 Sex differences in the HPA axis

Sexually dimorphic responses are documented in a wide variety

of stressors. Female rodents generally display increased baseline

HPA axis activity, and exaggerated HPA responses to stress (64). In

a resting state, females have increased CRH mRNA expression in

the PVN (65, 66) and higher circulating corticosterone compared to

male counterparts (66–68) (Figure 2). Although stress increases the

CRH expression in the PVN in both males and females, the

magnitude and duration of the response are greater in females

(69, 70). Female mice are also more sensitized to CRH-induced

ACTH production (71, 72), and show elevated AVP expression in

the stress-responsive medial parvocellular dorsal division of the

PVN (66, 70) (Figure 2). Despite that females display increases in

CRH and AVP synthesis in response to stressful stimuli (73),

differences in neuronal activation are rarely reported (66, 74, 75).

Both the total size and size relative to body mass of the adrenal

gland are increased in females, which is attributed to hyperplasia of

the corticosterone-producing zona fasciculata (76, 77). Furthermore,

the female adrenal also produces more corticosterone in response to

in vivo ACTH stimulation compared to adrenal-derived production

in males (67, 78). Both central and peripheral mechanisms have been

shown to sensitize the stress response in female rodents and humans.

Additionally, female rodents have an increased capacity to

synthesize adrenal steroid hormones peripherally, even at

resting conditions.

Gonadectomy studies have elucidated striking and consistent

effects of sex hormones on the developmental organization and

function of the HPA axis. Testosterone is overall protective against

HPA axis activation, whereas orchidectomized rodents display

increased basal CRH expression in the PVN (79–81) and plasma

corticosterone (70, 82, 83) compared to intact males. Stress-induced

CRH expression (70) and plasma ACTH and corticosterone levels

(83–87) are also elevated after testis removal. Conversely,

testosterone administration reverses the effects of gonadectomy,

dampening HPA activation (83, 85–87). Interestingly,

orchidectomy does not appear to alter the sensitivity of the

pituitary to CRH or the adrenal to ACTH (85, 87). On the other

hand, female sex hormones, primarily estrogen and progesterone,

tend to exacerbate the activation of the HPA axis. Ovariectomy
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leads to decreased adrenal weight (88, 89) and reduced HPA output

(71, 87, 90, 91) while estrogen or estrogen combined with

progesterone increases ACTH-stimulated corticosterone responses

in male and ovariectomized female rodents (92–94). Similarly,

estradiol treatment in men leads to increased ACTH and cortisol

in response to psychological stress (95). Gonadal hormones have

broad and well-studied effects on all aspects of the HPA axis, which

extend beyond the scope of this review but are extensively covered

elsewhere (64).
5 Early life stress mediates sex-
specific cardiometabolic outcomes
in adulthood

The average American diet is high in both calories and fats, which is

associated with the ever-rising obesity epidemic (96). In rodents and

humans exposed to early life stress, hypercaloric diet acts as a secondary

metabolic stressor. Dalmasso et al. discovered that male rodents exposed

to MSEW and fed a HFD, display fat-derived sympathoextitatory

contributing to the exacerbated neurogenic hypertension, despite

showing similar levels of adiposity compared to male controls (97,

98). The mechanism underlying the increases in blood pressure in this

model involves the activation of the PVN in response to the stimulation

of gonadal fat-derived afferent signals, a mechanism referred as adipose-

afferent reflex. Unlike males, female MSEWmice fed a HFD develop an

exacerbated cardiometabolic phenotype that is independent of the

overactivation of the sympathetic system (24). Female MSEW mice
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weaned to a HFD display increased fat mass in adulthood compared to

normally reared and diet-matched controls (29). Further, this sex-

specific increases in adiposity were due to greater adipocyte size and

triglyceride deposition compared to controls (24). Obese MSEW female

mice also showed reduced glucose tolerance, and increased expression

of adipogenic genes in pre-adipocytes including the glucocorticoid

receptor (Nr3c1), peroxisome proliferator-activated receptor alpha

(Ppara), and fatty acid binding protein 3 (Fabp3), and dramatic

downregulation of aquaporin 3 (Aqp3), a glycerol efflux channel, and

increased hepatic lipogenic gene expression (24, 28, 29, 99).

As reported in female mice, female rats subjected to MS showed

increased adiposity in response to a chronic HFD (99). This

phenotype was reverted by metyrapone administration prior to

the daily MS exposure, inhibiting both corticosterone and

aldosterone synthase enzymes. This data supports the notion that

blunting adrenal corticosteroid production in response to early life

stress prevents the long-lasting effects on the metabolic adaptations

to HFD. Additional studies are needed to elucidate the role of the

adrenal-adipose tissue axis as a mechanism by which more severe

cardiometabolic derangements are observed in female rodents

exposed to early life stress.
6 Early life stress primes the adrenal-
adipose tissue axis in female rodents

Adipose tissue, composed of adipocytes, preadipocytes, and

various resident immune cell populations, has come to light in
FIGURE 2

Neuroendocrine mechanism linking early life stress with increased susceptibility of women to obesity. Women have heightened HPA axis activation
and responsiveness, which is exacerbated by early life stress, predisposing to obesity. Females have increased activation of the hypothalamus,
delineated by increased CRH and AVP expression, compared to males. Both women and female rodents have elevated ACTH in plasma, as well as
aldosterone and cortisol/corticosterone. Increased cortisol/corticosterone is attributed to an expanded zona fasciculata in the adrenal glands, which
are larger in females than males. Exposure to early life stress leads to sensitization of the HPA axis, which increases CRH in the hypothalamus of
rodent models and increased plasma ACTH and AVP in women and female rodents. These secretagogues elicit an elevated basal corticosterone/
cortisol, but moreso, elevated aldosterone from the adrenal glands via binding to MC2R and V1R. Adrenal aldosterone acts on the mineralocorticoid
receptor in adipose tissue to exacerbate production of adipokines leptin and AngII production, which stimulate further aldosterone production via
LepR and AT1R, respectively.
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recent years as a dynamic endocrine organ (100). Adrenal

hormones, particularly aldosterone and corticosterone, have direct

effects on adipose tissue homeostasis via the mineralocorticoid and

glucocorticoid receptors, respectively. In turn, adipose tissue-

secreted adipokines such as leptin and angiotensin II stimulate

adrenal steroidogenesis (101–105) (Figure 2). Exacerbated adipose

tissue expansion in obese MSEW female mice is associated with

increased visceral adipose tissue-derived adipokines, showing that

the adrenal-adipose tissue axis is sensitized in response to early

life stress.
6.1 Aldosterone

Plasma aldosterone concentration and its robust association

with obesity and metabolic syndromes has been well-reviewed

elsewhere (106). This is particularly true in women, as visceral fat

mass positively correlates with aldosterone and negatively correlates

with insulin sensitivity in women, but not in men (107). More

recently, a Chinese cohort demonstrated that increased neck

circumference, an indicator of visceral body fat, is associated with

elevated aldosterone in women (26). Another study showed that

adults who reported childhood trauma had increased aldosterone,

while trauma experienced for the first time in adulthood did not

elicit a significant response (23). Childhood trauma exposure was

associated with increased plasma aldosterone, particularly in

individuals who reported physical or emotional maltreatment

(22). While additional clinical and population-based studies are

needed to strengthen the relationship between aldosterone and

ACEs, findings from human studies correlate with rodent models

of early life stress, highlighting their value in elucidating potentially

translational therapeutics.

Female MSEW mice fed a HFD show exacerbated obesity and

aldosterone production compared with diet-matched control mice,

while chronic treatment in adulthood with spironolactone, a

mineralocorticoid receptor antagonist, resulted in loss of fat mass

coupled with increased glycerol efflux and decreased adipocyte size

in MSEW females, but not in HFD controls (24). Tissue explants

showed that in obese MSEW female mice, the source of increased

aldosterone is predominantly the adrenal gland, although adipose

tissue has a local renin-angiotensin-aldosterone system (RAAS)

capable of synthesizing the hormone (24). Thus, adrenal-derived

aldosterone may be mediating obesogenic effects through two

candidate targets within adipose tissue, as illustrated in Figure 2.

First, the MR expressed in adipocytes, the principal cell type of

adipose tissue, could be driving transcriptional alterations in the cell

leading to hypertrophy as a consequence of triglyceride

accumulation. Second, the MR expressed in resident adipose-

tissue dendritic cells can alter the pro-inflammatory milieu of the

tissue promoting a similar phenotype.

6.1.1 Adipocyte MR
Over-expression and over-activation of the adipocyte MR is

directly related to obesity and metabolic syndrome-like phenotype

in pre-clinical models. In an adipocyte-specific inducible MR
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overexpression model, Urbanet and colleagues found that

adipocyte-MR upregulation correlated with progressive increases

in body weight, visceral adipose tissue mass, and adipocyte size over

12 weeks without differences in food or calorie intake (108).

Additionally, these mice showed markers of metabolic

dysregulation, such as insulin resistance, hypertriglyceridemia,

and hypercholesterolemia. Moreover, the metabolic dysregulation

was further exacerbated by HFD (108). In primary mouse adipocyte

cultures, MR stimulation with aldosterone resulted in an increased

pro-inflammatory and obesogenic adipokine profile including

elevated leptin, IL-6, PAI-1, and chemerin (109). Notably, MR-

knockout adipocytes completely failed to accumulate lipids and had

a 90% reduction in fatty acid binding protein aP2 (FABP4)

expression, a carrier protein for fatty acids that promotes lipid

storage. Similarly, Urbanet et al. found that aldosterone acts

through lipocalin-like prostaglandin D2 synthase (PTGDS)

downstream of the adipocyte MR to increase leptin, FABP4, and

PPARy expression. While later studies showed that knocking out

MR in adipocytes did not significantly change the metabolic

phenotype of diet-induced obese male mice, further studies are

needed to elucidate its role in the MSEW cardiometabolic

phenotype, particularly in females. Notably, in female mice,

adipocyte-derived leptin is a positive regulator of aldosterone

synthesis in the zona glomerulosa of the adrenal glands (104)

independent of obesity.

6.1.2 Dendritic cell MR
Dendritic cells are a population of antigen-presenting immune

cells that influence the phenotypic differentiation of T-cells (110).

Aldosterone activates MR in dendritic cells and induces secretion of

IL-6, and TGF-b, which promotes the polarization of naive T-cells

to T-helper 17 (Th17) cells (111). Dendritic cells which are resident

in adipose tissue are directly correlated to increased Th17 responses,

obesity, and insulin resistance in both mice and clinical populations

(112–114). In obesity, dendritic cells are abundant in visceral

adipose tissue, and are particularly dense in fat-associated

lymphoid clusters of murine gonadal adipose tissue (115).

Blockade of dendritic cell migration into visceral adipose tissue

prevents diet-induced weight gain and metabolic disturbances

(115). Mice with loss of function specifically in fat-resident

dendritic cells were similarly protected (116). In human adipose

tissue, CD1c, a dendritic cell marker, has been positively associated

with insulin resistance (113), and murine CD11c+CD64- dendritic

cells are specifically cited as independent contributors to obesity

and insulin resistance in diet-induced obesity models (112).
6.2 Leptin production during obesity

Leptin is an anorexigenic peptide hormone primarily produced

by the adipose tissue (117) and is elevated in obesity (118). Leptin

dampens ACTH-mediated steroidogenesis in the adrenal cortex

(58), but is also an independent stimulator of aldosterone (104).

Leptin deficient mice (ob/ob) have disrupted hypothalamic

networks between the arcuate nucleus and the PVN that are only
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restored by leptin administration during the SHRP (119). MD in rat

pups at PND10 abolishes the plasma leptin surge, while

corticosterone, aldosterone, and ACTH are increased (58). Three-

or twelve-hour MD in PND8 mouse pups was not sufficient to

induce changes in leptin or corticosterone levels compared to non-

handled mice (120, 121). Interestingly, leptin stimulation in

primary adrenal cultures from PND10 MD rat pups produced

more aldosterone than non-separated cultures (58).

Female rat offspring exposed to both western diet and LBN

showed higher increases in plasma leptin than males after weaning

(121). Female rats exposed to MS and high fat, high sucrose diet had

increased leptin mRNA in periovarian adipose tissue, in addition to

increased PPARy mRNA, serum insulin, and HOMA index (122).

Exogenous leptin administration to adult MS rats does not suppress

food intake or weight gain as it does in non-handled rats (123).

Further, leptin was elevated plasma of young adults who reported

either childhood maltreatment or parental loss compared to those

who did not report early life stress exposure (124). Mechanistically,

it has been shown that obese MSEW female mice showed increased

gonadal white adipose tissue-derived leptin that was not observed in

males or dietary controls. This increased leptin production was

associated with Hypomethylated CpG sites in the leptin promoter

region (29).
6.3 Angiotensin II

Angiotensin II (AngII) is a known for its actions as a vasoactive

peptide regulating vascular tone and water and electrolyte

homeostasis, as well as for being a pathogenic mediator of

obesity-related comorbidities. Angiotensinogen is the sole

precursor for AngII, abundantly produced by the liver, serving as

substrate for renin to produce angiotensin I. Cleavage of

Angiotensin I by angiotensin-converting enzyme 1 (ACE1). AngII

is a potent stimulator of aldosterone from the adrenal glands (105),

which mediates the sodium and water reabsorption in the distal

bneprhon and renal collecting duct. As such, the expression of all

the renin-angiotensin-aldosterone system (RAAS) componetns

have been shown in several tissues, including brain, heart,

vasculature and kidney. Yet, AngII can be generated in the

adipose tissue by both local ACE1 cleavage, and through non-

canonical generation by cathepsin D and cathepsin G (125, 126).

AngII acts locally on adipocytes via the AT1 and AT2 receptors,

directly regulating adipose tissue homeostasis (101). Anti-

adipogenic effects have been observed, but also lipogenic effects

including triglyceride accumulation and activation of fatty acid

synthase and glycerol-3-phosphate dehydrogenase (127).

Female mice fed a HFD develop exacerbated adiposity that is

associated with increased circulating AngII, most likely due to

increased fat-derived AngII production in visceral adipose tissue

(98). However, the pressor response to acute doses of AngII was

similar between control and MSEW obese female mice before and

after treatment with the ACE1 inhibitor enalapril, indicating that

the sensitivity to this peptide is similar between MSEW and control

mice. Conversely, male MSEW mice fed a HFD display similar

adiposity and circulating AngII levels when compared to obese
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controls (98). Furthermore, blocking AngII production with

enalapril lowered blood pressure in obese MSEW male mice

without decreasing the sympathetic activation (98). Taken

together, this data suggests that, in the settings of obesity, MSEW

activates the RAAS in a sex-specific manner. Thus, AngII could play

an important role in obesity expansion experienced by female mice

exposed to early life stress.
7 Discussion

Epidemiological studies on ACE exposures that are not

stratified by sex still typically find an association with BMI. In

women, this association is often found to show a “dose-dependent”

effect, where each additional reported ACE exposure contributes to

further increases in BMI (13, 14). Male mice exposed to early life

stress do not show exacerbated weight-gain as their female

counterparts, likely because current behavioral paradigms do not

reach a persistently high enough level of stress to recapitulate the

cumulative effect of ACEs needed to promote increases in adiposity.

Additionally, male offspring may require exposure to different types

of stress during the SHRP to elicit a physiological response that

mimics what is observed in humans.

The balance between adrenal steroid production and adipokine

production is likely a key mediator of obesity in women who have

experienced ACEs. Aldosterone from the adrenal gland drives the

expression of leptin and other key adipogenic mediators in the

adipose tissue, as well as promoting a broad pro-inflammatory

milieu. Similarly, leptin is an important neuroendocrine mediator

that feeds back on the hypothalamus, as well as the adrenal gland.

Leptin plays an inhibitory role on the PVN of the hypothalamus,

suppressing HPA axis activation (128). Studies have found that

leptin increases aldosterone production from the adrenal gland

(104), but also that it dampens the effects of ACTH on production

of aldosterone and corticosterone (58, 129). It is likely that both

increased leptin and increased aldosterone perpetuate one another

in conditions of metabolic stress.

There are emerging areas of study that may shed light in the

mechanisms underlying sex-specific shaping of the HPA sensitivity in

response to early life stress. Steenblock et al. have characterized a

distinct population of stress-responsive adrenocortical precursor cells

marked by positivity for nestin (Nes+) (130). This population resides in

quiescence under the adrenal capsule, and migrates centripetally in

response to stress, differentiating into steroidogenic cells in their fated

zones (130). Isolated in vitro cultures of these cells show a propensity to

become aldosterone-producing when stimulated. Though sex

differences in Nes+ cell activation have not been explored,

aldosterone-producing cells may become enriched long-term in the

adrenal glands of female rodents exposed to early life stress due to their

innate stress susceptibility.

GLP-1 is a gut-derived peptide that activates the HPA axis,

whereas infusion of GLP-1 in healthy adults reduced aldosterone in

a small clinical cohort (131). GLP-1 receptor agonists such as

Ozempic (semaglutide) and Trulicity (dulaglutide) have become

massively popular drugs for the management of weight, diabetes,

and cardiovascular health. To the authors’ best knowledge, there
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have been no trials evaluating the differential effects of GLP-1

receptor agonists in women exposed to ACEs. A small clinical

study concluded that dulaglutide did not activate the HPA axis,

however measurements were limited to cortisol measurements after

dexamethasone suppression and ACTH stimulation. It is possible

that an already-approved GLP-1 receptor agonist could target

mechanisms linked to cardiometabolic dysregulation in women

exposed to ACEs, opening new venus of precision medicine that

may potentially aid this vulnerable population.

While various paradigms of early life stress in rodents and other

animal models have been extensively studied, few research groups

have emphasized obesity and metabolic disruptions as outcomes in

any of these models. Considering the high prevalence of ACEs in

the population and the robustness of these associations, further

investigation of mechanistic approaches to cardiometabolic

therapeutics could prove highly valuable to public health. This

review highlights and discusses how the adipose tissue keeps the

score of early life stress in the female body. Because prevention is

often not a feasible strategy for mitigating the risks of early life stress

exposures, continued animal research offers hope for targeted

therapeutics that could help to even that score.
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